On Neutrosophic $\psi \alpha g$ -Closed Sets

P.R.Kavitha

Assistant Professor, Department of Mathematics, KG College of Arts and Science, Saravanampatti, Coimbatore-35

Abstract - The aim of this paper is to introduce the concept of ψag -closed sets in terms of neutrosophic topological spaces. We also study some of the properties of neutrosophic ψag -closed sets. Further, we introduce continuity and contra continuity for the introduced set. The two functions and their relations are studied via a neutrosophic point set.

Index Terms - neutrosophic topology; neutrosophic wagclosed set; neutrosophic wag-continuous function; neutrosophic contra wag -continuous mappings.

1.INTRODUCTION

Zadeh [1] introduced and studied truth (t), the degree of membership, and defined the fuzzy set theory. The falsehood (f), the degree of no membership, was introduced by Atanassov [2-4] in an intuitionistic fuzzy set. Coker [5] developed intuitionistic fuzzy topology. Neutrality (i), the degree of indeterminacy, as an independent concept, was introduced by Smarandache [6,7] in 1998. He also defined the neutrosophic set on three components (t, f, i) = (truth, i)falsehood, indeterminacy). The Neutrosophic crisp set concept was converted to neutrosophic topological spaces by Salama et al. in [8]. This opened up a wide range of investigation in terms of neutosophic topology and its application in decision-making algorithms. Arokiarani et al. [9] introduced and studied α -open sets in neutrosophic topoloical spaces. Devi et al. [10–12] introduced $\alpha\psi$ -closed sets in general topology, fuzzy topology, and intutionistic fuzzy topology. In this article, the neutrosophic $\psi \alpha q$ -closed sets are introduced in neutrosophic topological space. Moreover, we introduce and investigate neutrosophic $\psi \alpha g$ -continuous and neutrosophic contra $\psi \alpha g$ -continuous mappings.

2.PRELIMINARIES

Let neutrosophic topological space (NTS) $be(X, \tau)$. Each neutrosophic set (NS) in (X, τ) is called a neutrosophic open set (NOS), and its complement is called a neutrosophic closed set (NCS). We provide some of the basic definitions in neutrosophic sets. These are very useful in the sequel.

Definition 1. [6] A neutrosophic set (NS) *A* is an object of the following form

 $U = \{\langle x, \mu_U(x), \nu_U(a), \omega_U(x) \rangle : x \in X\} \text{ where the mappings } \mu_U : X \to I, \nu_U : X \to I, \text{ and } \omega_U : X \to I \text{ denote the degree of membership (namely } \mu_U(x)), \text{ the degree of indeterminacy (namely } \nu_U(x)), \text{ and the degree of nonmembership (namely } \omega_U(x)) \text{ for each element } x \in X \text{ to the set } U, \text{ respectively, and } 0 \leq \mu_U(x) + \nu_U(x) + \omega_U(x) \leq 3 \text{ for each } a \in X.$

Definition 2. [6] Let U and V be NSs of the form U = $\{\langle a, \mu_U(x), \nu_U(x), \omega_U(x) \rangle : a \in X\}$ and V = $\{\langle x, \mu_V(x), \nu_V(x), \omega_V(x) \rangle : x \in X\}$. Then (i) $U \subseteq V$ if and only if $\mu_U(x) \leq \mu_V(x), \nu_U(x) \geq$ $\nu_V(x)$ and $\omega_U(x) \geq \omega_V(x)$; (ii) $\overline{U} = \{\langle x, v_{II}(x), \mu_{II}(x), \omega_{II}(x) \rangle : x \in X\};$ (iii) $U \cap V = \{(x, \mu_U(x) \land \mu_V(x), \nu_U(x) \lor V \}$ $\nu_V(x), \omega_U(x) \vee \omega_V(x) : x \in X$; (iv) $U \cup V = \{ \langle x, \mu_U(x) \lor \mu_V(x), \nu_U(x) \land \}$ $\nu_V(x), \omega_U(x) \land \omega_V(x) \rangle : x \in X$ We will use the notation $U = \langle x, \mu_U, \nu_V, \omega_U \rangle$ instead of $U = \{ \langle x, \mu_U(x), \nu_V(x), \omega_U(x) \rangle : x \in X \}$. The NSs 0_{\sim} and 1_{\sim} are defined by $0_{\sim} = \{\langle x, \underline{0}, \underline{1}, \underline{1} \rangle : x \in$ *X*} and $1_{\sim} = \{\langle x, 1, 0, 0 \rangle : x \in X\}.$ Let f be a mapping from an ordinary set X into an

ordinary set *Y*. If $V = \{(y, \mu_V(y), \nu_V(y), \omega_V(y)) : y \in Y\}$ is an NS in *Y*, then the inverse image of *V* under *f* is an NS defined by

$$f^{-1}(V) = \{ \langle x, f^{-1}(\mu_V)(x), f^{-1}(\nu_V)(x), f^{-1}(\omega_V)(x) \} : x \in X \}.$$

The image of NS $U = \{(y, f^{-1}(\mu_U)(y), f^{-1}(\nu_U)(y), f^{-1}(\omega_U)(y)) : y \in Y\}$

under f is an NS defined by $f(U) = \{(y, f(\mu_U)(y), f(\nu_U)(y), f(\omega_U)(y)) : y \in Y\}$ where

$f(\mu_U)(y) = \begin{cases} \sup \\ x \in f^{-1}(y) \\ 0 \end{cases}$	$\mu_U(x)$,	$iff^{-1}(V)\neq 0$
		otherwise
$f(v_U)(y) = \begin{cases} \inf \\ x \in f^{-1}(y) \\ 1 \end{cases}$	$ u_U(x)$,	$iff^{-1}(V)\neq 0$
_		otherwise
$f(\omega_U)(y) = \begin{cases} \inf \\ x \in f^{-1}(y) \\ 1 \end{cases}$	$\omega_U(x)$,	$if \; f^{-1}(V) \neq 0$

otherwise

for each $y \in Y$.

Definition 3. [8] A neutrosophic topology (NT) in a nonempty set *X* is a family τ of NSs in *X* satisfying the following axioms:

(NT1) 0_{\sim} , $1_{\sim} \in \tau$;

(NT2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$;

 $\begin{array}{ll} (\mathrm{NT3})\cup G_i \ \in \ \tau \ \text{for any arbitrary family} \ \{G_i \colon i \in J\} \subseteq \\ \tau \end{array}$

Definition 4. [8] Let *U* be an NS in NTS *X*. Then

 $Nint(U) = \bigcup \{0 : 0 \text{ is an NOS in } X \text{ and } 0 \subseteq U\}$ is called a neutrosophic interior of U;

 $Ncl(U) = \cap \{0 : 0 \text{ is an NCS in } X \text{ and } 0 \supseteq U\}$ is called a neutrosophic closure of U.

Definition 5. [9] A subset U of a neutrosophic space (X, τ) is called

1. a neutrosophic semi-open set if $U \subseteq Ncl(Nint(U))$, and a neutrosophic semi-closed set if $Nint(Ncl(U)) \subseteq U$,

2. a neutrosophic α -open set if $U \subseteq Nint(Ncl(Nint(U)))$, and a neutrosophic α -closed set if $Ncl(Nint(Ncl(U))) \subseteq U$.

The semi-closure and α -closure of a subset U of a neutrosophic space (X, τ) is the intersection of all semi-closed, α -closed) sets that contain U and is denoted by Nscl(U) and $N\alpha cl(U)$).

Definition 6. A subset A of a neutrosophic topological space (X, τ) is called

1. a neutrosophic semi-generalized closed (briefly, Nsg-closed) set if $Nscl(U) \subseteq G$ whenever $U \subseteq G$ and G is neutrosophic semi-open in (X, τ) ;

2. a neutrosophic $N\psi$ -closed set if $Nscl(U) \subseteq G$ whenever $U \subseteq G$ and G is Nsg-open in (X, τ) .

3. ON NEUTROSOPHIC $\psi \alpha g$ -CLOSED SETS

Definition 7. A neutrosophic $\psi \alpha g$ -closed ($N\psi \alpha g$ closed) set is defined as if $N\psi cl(U) \subseteq G$ whenever $U \subseteq G$ and G is an $N\alpha g$ -open set in (X, τ) . Its complement is called a neutrosophic $\psi \alpha g$ -open ($N\psi \alpha g$ -open) set.

Definition 8. Let *U* be an NS in NTS *X*. Then

 $N\psi\alpha g \ int(U) = \bigcup \{0 : 0 \text{ is an } N\psi\alpha g \ OS \text{ in } X \text{ and } 0 \subseteq U\}$ is said to be a neutrosophic $\psi\alpha g$ -interior of U;

 $N\psi\alpha g \ cl(U) = \cap \{0 : 0 \text{ is an } N\psi\alpha g \ CS \text{ in } X \text{ and } 0 \subseteq U\}$ is said to be a neutrosophic $\psi\alpha g$ -closure of U.

Theorem 1. All $N\alpha$ -closed sets and N-closed sets are $N\psi\alpha g$ -closed sets.

Proof. Let *U* be an $N\alpha$ -closed set, then U = Nacl(U). Let $U \subseteq G$, where *G* is $N\alpha$ -open. Since *U* is $N\alpha$ -closed, $N\psi cl(U) \subseteq N\alpha cl(U) \subseteq G$. Thus, *U* is $N\psi \alpha g$ -closed.

Theorem 2. Every N semi-closed set in a neutrosophic set is an $N\psi\alpha g$ -closed set.

Proof. Let *U* be an *N*semi-closed set in (X, τ) , then U = Nscl(U). Let $U \subseteq G$, where *G* is $N\alpha$ -open in (X, τ) . Since *U* is *N*semi-closed, $N\psi cl(U) \subseteq Nscl(U) \subseteq G$. This shows that *U* is $N\psi\alpha g$ -closed set. The converse of the above theorems are not true, as can be seen by the following counter example.

Example 1. Let $X = \{u, v, w\}$ and neutrosophic sets G_1, G_2, G_3, G_4 be defined by

 $G1 = \langle x, \left(\frac{u}{0.3}, \frac{v}{0.4}, \frac{w}{0.2}\right), \left(\frac{u}{0.5}, \frac{v}{0.1}, \frac{w}{0.2}\right), \left(\frac{u}{0.2}, \frac{v}{0.5}, \frac{w}{0.6}\right) \rangle$ $G2 = \langle x, \left(\frac{u}{0.6}, \frac{v}{0.3}, \frac{w}{0.4}\right), \left(\frac{u}{0.1}, \frac{v}{0.5}, \frac{w}{0.1}\right), \left(\frac{u}{0.3}, \frac{v}{0.2}, \frac{w}{0.5}\right) \rangle$ $G3 = \langle x, \left(\frac{u}{0.6}, \frac{v}{0.4}, \frac{w}{0.4}\right), \left(\frac{u}{0.1}, \frac{v}{0.1}, \frac{w}{0.1}\right), \left(\frac{u}{0.2}, \frac{v}{0.2}, \frac{w}{0.5}\right) \rangle$

 $G4 = \langle x, (\frac{u}{0.3}, \frac{v}{0.3}, \frac{w}{0.2}), (\frac{u}{0.5}, \frac{v}{0.5}, \frac{w}{0.2}), (\frac{u}{0.3}, \frac{v}{0.5}, \frac{w}{0.6}) \rangle$ $G5 = \langle x, (\frac{u}{0.3}, \frac{v}{0.3}, \frac{w}{0.3}), (\frac{u}{0.5}, \frac{v}{0.5}, \frac{w}{0.4}), (\frac{u}{0.3}, \frac{v}{0.5}, \frac{w}{0.3}) \rangle$ $G6 = \langle x, (\frac{u}{0.6}, \frac{v}{0.4}, \frac{w}{0.5}), (\frac{u}{0.1}, \frac{v}{0.3}, \frac{w}{0.1}), (\frac{u}{0.3}, \frac{v}{0.3}, \frac{w}{0.4}) \rangle$ $G7 = \langle x, (\frac{u}{0.2}, \frac{v}{0.3}, \frac{w}{0.3}), (\frac{u}{0.5}, \frac{v}{0.5}, \frac{w}{0.2}), (\frac{u}{0.3}, \frac{v}{0.3}, \frac{w}{0.5}) \rangle$ Let $\tau = \{0_{\sim}, G_1, G_2, G_3, G_4, 1_{\sim}\}$. Here, G_6 is an $N\alpha$ open set, and $N\psi cl(G_5) \subseteq G_6$. Then G_5 is $N\psi \alpha g$ -closed in (X, τ) but is not $N\alpha$ -closed. Thus, it is not N-closed and G_7 is $N\psi \alpha g$ -closed in (X, τ) , but not Nsemi-closed.

Theorem 3. Let (X, τ) be an NTS and let $U \in NS(X)$. If *U* is an $N\psi\alpha g$ -closed set and $U \subseteq V \subseteq N\psi cl(U)$, then *V* is an $N\psi\alpha g$ -closed set.

Proof. Let *G* be an $N\alpha$ -open set such that $V \subseteq G$. Since $U \subseteq V$, then $U \subseteq G$. But *U* is $N\psi\alpha g$ -closed, so $N\psi cl(U) \subseteq G$, since $V \subseteq N\psi cl(U)$ and $N\psi cl(V) \subseteq N\psi cl(U)$ and hence $N\psi cl(V) \subseteq G$. Therefore *V* is an $N\psi\alpha g$ -closed set.

Theorem 4. Let U be an $N\psi\alpha g$ -open set in X and $N\psi int(U) \subseteq V \subseteq U$, then V is $N\psi\alpha g$ -open.

Proof. Suppose U is $N\psi\alpha g$ -open in X and $N\psi int(U) \subseteq V \subseteq U$. Then \overline{U} is $N\psi\alpha g$ -closed and $\overline{U} \subseteq \overline{V} \subseteq N\psi cl(\overline{U})$. Then \overline{U} is an $N\psi\alpha g$ -closed set by Theorem 3. Hence, V is an $N\psi\alpha g$ -open set in X.

Theorem 5. An NS U in an NTS (X, τ) is an $N\psi\alpha g$ open set if and only if $V \subseteq Nyint(U)$ whenever V is an $N\alpha$ -closed set and $V \subseteq U$.

Proof. Let U be an $N\psi\alpha g$ -open set and let V be an $N\alpha$ closed set such that $V \subseteq U$. Then $\overline{U} \subseteq \overline{V}$ and hence $N\psi cl(\overline{U}) \subseteq \overline{V}$, since \overline{U} is $N\psi\alpha g$ -closed. But $N\psi cl(\overline{U}) = \overline{N\psi int(U)}$, so $V \subseteq N\psi int(U)$. Conversely, suppose that the condition is satisfied. Then $\overline{N\psi int(U)} \subseteq \overline{V}$ whenever \overline{V} is an $N\alpha$ -open set and $\overline{U} \subseteq \overline{V}$. This implies that $N\psi cl(\overline{U}) \subseteq \overline{V} = G$, where G is $N\alpha$ -open and $\overline{U} \subseteq G$. Therefore, \overline{U} is $N\psi\alpha g$ -closed and hence \overline{U} is $N\psi\alpha g$ -open. Theorem 6. Let *U* be an $N\psi\alpha g$ -closed subset of (X, τ) . Then Nycl(U) - U does not contain any non-empty $N\psi\alpha g$ -closed set.

Proof. Assume that *U* is an $N\psi\alpha g$ -closed set. Let *F* be a non-empty $N\psi\alpha g$ -closed set, such that $F \subseteq$ $N\psi cl(U) - U = N\psi cl(U) \cap \overline{U}$. i.e., $F \subseteq N\psi cl(U)$ and $F \subseteq \overline{U}$. Therefore, $U \subseteq \overline{F}$. Since \overline{F} is an $N\psi\alpha g$ open set, $N\psi cl(U) \subseteq \overline{F}$) $\Rightarrow F \subseteq (N\psi cl(U) - U) \cap \overline{(N\psi cl(U))} \subseteq N\psi cl(U) \cap N\psi cl(U)$. i.e., $F \subseteq \phi$. Therefore, *F* is empty.

Corollary 1. Let *U* be an $N\psi\alpha g$ -closed set of (X, τ) . Then $N\psi cl(U)$ -*U* does not contain any non-empty *N*-closed set.

Proof. The proof follows from the Theorem 3.9.

Theorem 7. If U is both $N\psi$ -open and $N\psi\alpha g$ -closed, then U is $N\psi$ -closed.

Proof. Since *U* is both an $N\psi$ -open and $N\psi\alpha g$ -closed set in *X*, then $N\psi cl(U) \subseteq U$. We also have $U \subseteq N\psi cl(U)$. Thus, $N\psi cl(U) = U$. Therefore, *U* is an $N\psi$ -closed set in *X*.

4. ON NEUTROSOPHIC $\psi \alpha g$ -CONTINUITY AND NEUTROSOPHIC CONTRA $\psi \alpha g$ -CONTINUITY

Definition 9. A function $f: X \to Y$ is said to be a neutrosophic $\psi \alpha g$ -continuous (briefly, $N \psi \alpha g$ -continuous) function if the inverse image of every open set in *Y* is an $N \psi \alpha g$ -open set in *X*.

Theorem 8. Let $g: (X, \tau) \to (Y, \sigma)$ be a function. Then the following conditions are equivalent.

(i) g is $N\psi\alpha g$ -continuous;

(ii) The inverse $f^{-1}(U)$ of each *N*-open set *U* in *Y* is $N\psi\alpha g$ -open set in *X*.

Proof. The proof is obvious, since $g^{-1}(\overline{U}) = \overline{g^{-1}(U)}$ for each *N*-open set *U* of *Y*.

Theorem 9. If $g: (X, \tau) \to (Y, \sigma)$ is an $N\psi\alpha g$ -continuous mapping, then the following statements hold:

(i) $g(N\psi\alpha gNcl(U)) \subseteq Ncl(g(U))$, for all neutrosophic sets *U* in *X*;

95

(ii) $N\psi \alpha gNcl(g^{-1}(V)) \subseteq g^{-1}(Ncl(V))$, for all neutrosophic sets *V* in *Y*.

Proof.

(i) Since Ncl(q(U)) is a neutrosophic closed set in Y and g is $N\psi\alpha g$ -continuous, then $g^{-1}(Ncl(g(U)))$ is $N\psi\alpha q$ -closed in Χ. Now. since $U \subseteq$ $g^{-1}(Ncl(g(U))), N\psi \alpha gcl(U) \subseteq g^{-1}(Ncl(g(U))).$ Therefore, $g(N\psi \alpha gNcl(U)) \subseteq Ncl(g(U))$. (ii) By replacing U with V in (i), we obtain $g(N\psi \alpha gcl(g^{-1}(V))) \subseteq Ncl(g(g^{-1}(V))) \subseteq$ $N\psi\alpha gcl(g^{-1}(V)) \subseteq$ Ncl(V).Hence, $g^{-1}(Ncl(V)).$

Definition 10. A function is said to be a neutrosophic contra $\psi \alpha g$ -continuous function if the inverse image of each NOS V in Y is an $N\psi \alpha gC$ set in X.

Theorem 10. Let $g : (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following assertions are equivalent:

(i) g is a neutrosophic contra $\psi \alpha g$ -continuous function;

(ii) $g^{-1}(V)$ is an $N\psi\alpha gC$ set in X, for each NOS V in Y.

Proof. (i)) \Rightarrow (ii) Let g be any neutrosophic contra $\psi \alpha g$ -continuous function and let V be any NOS in Y. Then \overline{V} is an NCS in Y. Based on these assumptions, $g^{-1}(\overline{V})$ is an $N\psi \alpha gO$ set in X. Hence, $g^{-1}(V)$ is an $N\psi \alpha gC$ set in X.

The converse of the theorem can be proved in the same way.

Theorem 11. Let $g : (X, \tau) \to (Y, \sigma)$ be a bijective mapping from an NTS (X, τ) into an NTS (Y, σ) . The mapping g is neutrosophic contra $\psi \alpha g$ -continuous, if $Ncl(g(U)) \subseteq g(N\psi \alpha gint(U))$, for each NS U in X.

Proof. Let *V* be any NCS in *X*. Then Ncl(V) = V, and *g* is onto, by assumption, which shows that $g(N\psi\alpha gint(g^{-1}(V))) \supseteq Ncl(g(g^{-1}(V))) =$ Ncl(V) = V. Hence, $g^{-1}(g(N\psi\alpha gint(g^{-1}(V)))) \supseteq g^{-1}(V)$. Since *g* is an into mapping, we have $N\psi\alpha gint(g^{-1}(V)) =$ $g^{-1}(V)(g(N\psi\alpha gint(g^{-1}(V)))) \supseteq g^{-1}(V)$. Therefore, $N\psi\alpha gint(g^{-1}(V)) = g^{-1}(V)$, so $g^{-1}(V)$ is an $N\psi\alpha gO$ set in *X*. Hence, *g* is a

neutrosophic contra $\psi \alpha g$ -continuous mapping.

Theorem 12. Let $g : (X_1, \tau) \to (Y_1, \sigma)$ be a function. If the graph $h: X_1 \to X_1 \times Y_1$ of g is neutrosophic contra $\psi \alpha g$ -continuous, then g is neutrosophic contra $\psi \alpha g$ -continuous.

Proof. For every NOS, *V* in *Y*₁ holds $g^{-1}(V) = 1 \wedge g^{-1}(V) = h^{-1}(1 \times V)$. Since *h* is a neutrosophic contra $\psi \alpha g$ -continuous mapping and $1 \times V$ is an NOS in *X*₁ × *Y*₁, $g^{-1}(V)$ is an $N \psi \alpha g C$ set in *X*₁, so *g* is a neutrosophic contra $\psi \alpha g$ -continuous mapping.

REFERENCES

- [1] Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353.
- [2] Atanassov, K. Intuitionstic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96.
- [3] Atanassov, K. Review and New Results on Intuitionistic Fuzzy Sets; Preprint IM-MFAIS-1-88; Mathematical
- [4] Foundations of Artificial Intelligence Seminar: Sofia, Bulgaria, 1988.
- [5] Atanassov, K.; Stoeva, S. Intuitionistic fuzzy sets. In Proceedings of the Polish Symposium on Interval and
- [6] Fuzzy Mathematics, Poznan, Poland, 26–29 August 1983; pp. 23–26.
- [7] Coker, D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 1997, 88, 81– 89.
- [8] Smarandache, F. Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic
- [9] Logic, Set, Probability and Statistics; University of New Mexico: Gallup, NM, USA, 2002.
- [10] Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic
- [11] Probability; American Research Press: Rehoboth, NM, USA, 1999.
- [12] Salama, A.A.; Alblowi, S.A. Neutrosophic Set and Neutrosophic Topological Spaces. IOSR J. Math. 2012, 3, 31–35.
- [13] Arokiarani, I.; Dhavaseelan, R.; Jafari, S.; Parimala, M. On some new notions and functions in neutrosophic
- [14] topological spaces. Neutrosophic Sets Syst. 2017, 16, 16–19.

- [15] Devi, R.; Parimala, M. On Quasi ay-Open Functions in Topological Spaces. Appl. Math. Sci. 2009, 3, 2881–2886.
- [16] Parimala, M.; Devi, R. Fuzzy *ay*-closed sets. Ann. Fuzzy Math. Inform. 2013, 6, 625–632.
- [17] Parimala, M.; Devi, R. Intuitionistic fuzzy ayconnectedness between intuitionistic fuzzy sets. Int. J.Math. Arch. 2012, 3, 603–607.