SUPER EDGE ANTI MAGIC GRACEFUL LABELING OF SOME SPECIAL GRAPHS

N. Mary Bernard Assistant Professor, TDMNS College, T. Kallikulam.

Abstract- Let G(V, E) be a graph with p vertices and q edges. A Super Edge Anti Magic Graceful Labeling (SEAMGL) of a graph G(p, q) is a one to one and onto function $f: E \to \{1, 2, 3, ..., q\}$ with the property that for each $u \in V$, $\sum_{e \in N(u)} f(uv) = distinct$. Such a labeling is Super Edge Anti Magic Graceful (SEAMG) if |f(u) + f(v) - f(uv)| = distinct. A graph G is called Super Edge Anti Magic Graceful (SEAMG) if G admits Super Edge Anti Magic Graceful Labeling. In this paper we determine Friendship graph, Dumbbell graph, Middle graph and Prism graph which are Super Edge Anti Magic Graceful. (SEAMG).

Index Terms- Super edge anti-magic, Graceful labeling, Friendship graph, Dumbbell graph, Middle graph, Prism graph.

AMS Subject Classification: 05C78

I. INTRODUCTION

A graph labelling [3] is a function which has domain as graph elements such as vertices and / or edges with co-domain as a set of numbers. Usually, the co-domain has been taken as integers. Many of graph labelings are defined and wellstudied by so many authors.

In 1963, Sedlacek introduced the concept of magic labelling [8] in graphs. A graph G(p,q) is magic if the edges of G can be labeled by the numbers $\{1, 2, 3, ..., q\}$ so that the sum of labels of all the edges incident with any vertex is the same.

In 1967, Rosa introduced graceful labelling [11]. An injection f from the vertices of G to $\{0, 1, 2, ..., q\}$ is called graceful labeling of G if when we assign each edge uv, the label |f(u) - f(v)|, the resulting edges are distinct.

In 1990, N. Hartsfield and G. Ringel introduced the concepts called **Anti magic labeling** and **Anti magic graphs** [7]. A graph G is Anti Magic if the q edges of G can be distinctly labeled in such a way that when taking the sum of the edges labels incident to each vertex they all will have distinct constants is called the anti-magic labelling. Throughout, it is assumed that *G* is connected, finite, simple and undirected graph.

II. MAIN RESULT

A Super Edge Anti Magic Graceful Labeling (*SEAMGL*) of a graph G(p,q) is a one to one and onto function $f: E \to \{1, 2, 3, ..., q\}$ with the property that for each $u \in V$, $\sum_{e \in N(u)} f(uv) = distinct$. Such a labeling is Super Edge Anti Magic Graceful (*SEAMG*) if |f(u) + f(v) - f(uv)| = distinct.

Definition:

A **friendship graph** Fn is a planar undirected **graph** with 2n + 1 vertices and 3nedges. The **friendship graph** Fn can be constructed by joining *n* copies of the cycle **graph** C₃ with a common vertex.

Theorem :

A friendship graph Fn is SEAMG. Proof:

Let $G = F_n$

Let p be the number of vertices, and q be the number of edges.

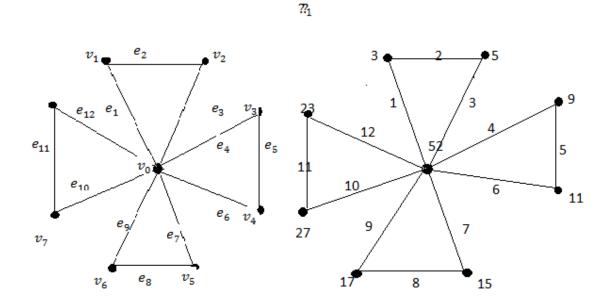
Let $v_1, v_2, v_3, \dots, v_n$ be the vertices of the Fan graph.

Let $E(G) = \{1,2,3,...,3n\}$ and $V(G) = \{1,2,3,...,2n + 1\}$ (*ie*) $V(G) = \sum_{e \in N(u)} f(uv)$. Define a function $f : V(G) \cup E(G) \rightarrow \{1,2,...,qn + n\}$ as in the following way; Fix, $f(e_1) = 1 \cdot f(e_i) = i$ for $1 \le i \le n - 1$. $f(v_i) = f(e_i) + f(e_{i+1}), i = 1,2,3,...,n - 1$ = i + i + 1 = 2i + 1, i

$$= 1,2,4,5,7,8,10,11 \dots, i \neq 3t, t$$

= 1,2,3, ...

And $f(v_n) = qn + n$ It is easy to observe that the Fan graph F_n is *SEAMG*. Illustration:



Definition:

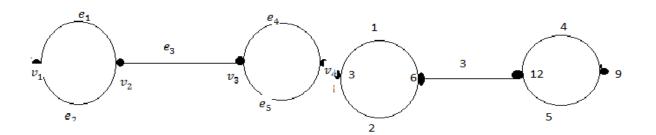
A **dumbbell graph**, denoted by $D_{a,b,c}$ is a bicyclic **graph** consisting of two vertex- disjoint cycles C_a , C_b and a path P_{c+3} ($c \ge -1$) joining them having only its end-vertices in common with the two cycles

Theorem: A **dumbbell graph** admits *SEAMG*. **Proof:**

Let $v_1, v_2, v_3, \dots, v_n$ be the vertices of the dumbbell graph,

Illustration:

Let $e_1, e_2, e_3, \ldots, e_n$ be the edges of the dumbbell graph, such that Label the edges are as follows: $f(e_i) = i \text{ for } 1 \le i \le n$, and the vertices are labelled by $f(v_i) =$ $\sum_{e \in N(u)} f(uv) \quad 1 \le i \le n$. Also |f(u) + f(v) - f(uv)| is distinct. It is clear that the dumbbell graph is *SEAMG*.



Definition:

The **middle graph** of a **graph** is the **graph** whose vertex set is where two vertices are adjacent if and only if they are either adjacent edges of G or one is a vertex and the other is an edge incident with it.

Theorem: A Middle graph is Super Edge Anti Magic Graceful.

Proof:

Let G(p,q) be a Middle graph.

Let $v_1, v_2, v_3, \dots, v_n$ be the vertices of the Middle, graph

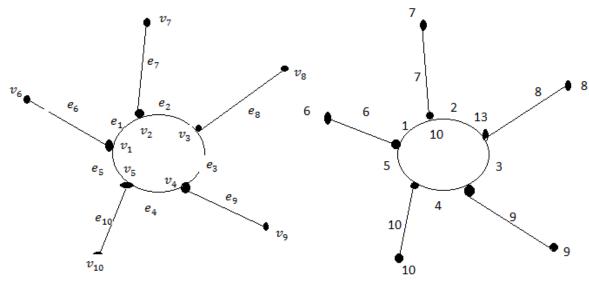
Let $e_1, e_2, e_3, \dots, e_n$ be the edges of the Middle graph

The edges are label as $\{1,2,3, \dots, q\}$, where q is the number of edges.

Illustration:

(i.e.)
$$f(e_1) = 1$$
, $f(e_2) = 2$, $f(e_3) = 3$, ..., $f(e_n) = q$.
The vertices are label as,
 $f(v_i) = i$ for $1 \le i \le \frac{q}{2}$ and
 $f(v_{\frac{q}{2}} + i) = f\left(\frac{e_q}{2} + 1\right) + f\left(\frac{e_q}{2} + 2\right) + f(e_i)$, $1 \le i \le \frac{q}{2}$

hence all the vertex labels are distinct. Also |f(u) + f(v) - f(uv)| is distinct. It is clear that G admits *SEAMGL*. Thus, the middle graph is *SEAMG*.



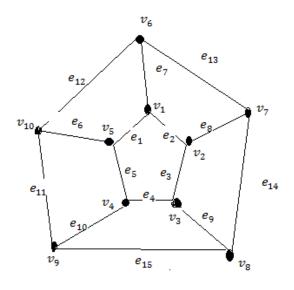
Definition:

The **prism graph** is the line **graph** of the complete bipartite **graph**. The **prism graph** is isomorphic with the cubical **graph**

Theorem 3.5: A Prism graph is Super Edge Anti Magic Graceful.

Proof:

Let G be a prism graph. The edges of the graph are $\{e_1, e_2, e_3, \dots, e_n\}$ and the vertices of a graph are $\{v_1, v_2, v_3, \dots, v_n\}$. The edges are label as, $f(e_i) = i$, i = 1,2,3,...,nand the vertex labels are $f(v_i) = \sum_{e \in N(u)} f(uv)$, i = 1,2,3,...,nAlso |f(u) + f(v) - f(uv)| is distinct. It is clear that G admits *SEAMGL*. Hence the prism graph is *SEAMG*. **Illustration:**



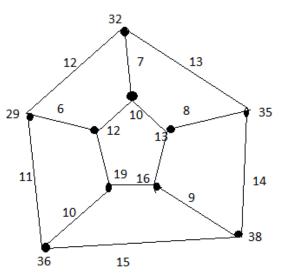
REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Elsevier, North Holland, New York, 1986.

[2] R. Frucht and F.Harary, On the corona two graphs, Aequationes Math, 4(1970), 322-325
[3] J.A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin. (2017) #DS6.
[4] F. Harary, Graph Theory, Addison-Wesley, 1969.

[5] Y. Liang, X.Zhu Anti – magic labelling of cubic graphs. J.Graph Theory, 75(2014), 31-36.
[6] Y.Liang, T. Wong and X.Zhu, Anti-magic labelling of trees, Discrete Math.331(2014);9-14
[7] Y. Liang, X.Zhu Anti – magic labelling of Cartesian product of graphs,

Theoret.Comput.Sci.477(2013), 1-5.



[8] J.A. MacDougall, M. Miller, Slamin and W.D.Wallis, Vertex-magic total labelings of graphs,Util. Math. 61 (2002) 3–21.9

[9] J.A. MacDougall, M. Miller and K.A. Sugeng, Super vertex-magic total labelings of graphs, Proceedings of the 15th Australian Workshop on Combinatorial Algorithms, (2004) 222–229.
[10] G. Marimuthu and M. Balakrishnan, E-super

vertex magic labeling of graphs, Discrete Appl. Math. 160 (2012) 1766–1774.

[11] G. Marimuthu and M. Balakrishnan, Super edge magic graceful graphs, Inform. Sci., 287 (2014), 140-151.

[12] J. Sedla cek, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, June (1963) 163–167.

[13] V. Swaminathan and P. Jeyanthi, Super vertexmagic labeling, Indian J. Pure Appl.Math. 34(6)(2003) 935–939.