More Results On Power 3 Mean Cordial Labeling of Graphs

S. S. Sandhya¹, S. Sarasree²

¹Assistant Professor, Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai ²Research Scholar, Sree Ayyappa College for Women, Chunkankadai. Manonmaniam Sundararanar University, Abishekapatti – Tirunelveli - 627012, Tamilnadu, India

Abstract- In this Paper, we investigate Power 3 Mean Cordial labeling of graphs for Triangular Snake, Quadrilateral Snake .

Mathematics subject classification:05C78

Index Terms- Graph, Power 3 Mean Graph, Triangular Snake, Quadrilateral Snake ,Power 3 Mean Cordial graphs

I. INTRODUCTION

We begin with simple, connected, undirected graph G = V(G), E(G) without loops or parallel edges. For a detailed survey of labeling, we refer to J.A. Gallian[4]. For all other standard terminology and notations we follow[3]. The concept of Mean Cordial labeling was introduced in [1].

Definition 1.1

A graph *G* with *p* vertices and *q* edges is called a power -3 mean graph, if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1,2,..., q + 1 in such a way that in each edge e =uv is labelled with f(e = uv) = $\left[\left(\frac{x^3+y^3}{2}\right)^{\frac{1}{3}}\right] or \left[\left(\frac{x^3+y^3}{2}\right)^{\frac{1}{3}}\right]$. Then, the edge labels are distinct. In this case *f* is called Power 3 Mean labelling of *G*. **Definition 1.2** Let *f* be a function from V(G) to $\{0,1,2,3,4\}$. For each edge u v of *G*, assign the label f(e = uv) =

For each edge u v of G, assign the label $f(e = uv) = \left[\left(\frac{x^3+y^3}{2}\right)^{\frac{1}{3}}\right] or \left[\left(\frac{x^3+y^3}{2}\right)^{\frac{1}{3}}\right]$ f is called a Power 3 Mean Cordial labeling of G, if $|V_f(i)-V_f(j)| \le 1$ and $|e_f(i)-e_f(j)| \le 1$, $i,j \in \{0,1,2,3,4\}$ where $V_f(x)$ and $e_f(x)$ denote the number of vertices and edges labeled with x(x = 0,1,2,3,4) respectively. A graph with a Power 3 Mean Cordial labeling is called a Power 3 Mean Cordial graph.

II. MAIN RESULTS

Theorem 2.1

Triangular snake T_n is a power 3 mean cordial graph **Proof** Let P_n be a path of $u_1, u_2, ..., u_n$ Let $V(T_n) = V(P_n) \cup \{u_i, 1 \le i \le n - 1\}$ and $E(T_n) = E(P_n) \cup \{u_i v_i, u_{i+1}, v_i, 1 \le i \le n - 1\}$

Case (i)

 $n \equiv 0 \pmod{5}$ Let n = 5tDefine $f(u_i)$ $1 \le i \le t$ = 0 $1 \le i \le t$ $f(u_{t+i})$ = 1 $f(u_{2t+i}) = 2$ $1 \le i \le t$ $f(u_{3t+i}) = 3$ $1 \le i \le t$ $f(u_{4t+i}) = 4$ $1 \le i \le t$ $f(v_i)$ = 0 $1 \le i \le t$ $f(v_{t+i}) = 1$ $1 \le i \le t$ $f(v_{2t+i}) = 2$ $1 \leq i \leq t$ $f(v_{3t+i}) = 3$ $1 \le i \le t$ $f(v_{4t+i}) = 4$ $1 \le i \le t$ $f(w_i)$ = 0 $1 \le i \le t$ $f(w_{t+i}) = 1$ $1 \le i \le t$ $f(w_{2t+i}) = 2$ $1 \le i \le t$ $f(w_{3t+i}) = 3$ $1 \le i \le t$ $f(w_{4t+i}) = 4$ $1 \le i \le t$ Then $v_f(0) = v_f(1) = v_f(2) = 2t v_f(3) = v_f(4) = 2t + 1$ and $e_f(0) = 2t e_f(1) = e_f(2) = 2t + 2$ $e_{f}(4) = e_{f}(4) = 4t$ Obviously f is a power 3 mean cordial Case (ii) $n \equiv 1 \pmod{5}$

Let n = 5t + 3

Assign the labels to the vertices u_i and v_i $(1 \le i \le n -$ 1) as in case (i) Then assign the label 2 to 0 the vertex u_nv_n Here $v_f(0) = v_f(1) = 2t$ $v_{f}(2) = 2t + 2$ $v_f(3) = v_f(4) = 2t + 1$ and $e_f(0) = 2t \ e_f(1) = 2t + 2e_f(3) = 2t + 3e_f(3) = e_f(4) = 4t +$ 2 Case (iii) $n \equiv 2 \pmod{5}$ Let n = 5t + 2Assign the label to the vertices u_i and v_i $(1 \le i \le n - 1)$ as in case (i) and then the label 2 to the vertices u_{n-1} , v_{n-1} and the label 1 to the vertices $u_n v_n$ Here $v_f(1) = v_f(2) = 2t + 2$ $v_{f}(0) = 2t$ $v_f(3) = v_f(4) = 2t + 1$ and $e_f(0) = 2t e_f(1) = 2t + 3$ $e_{f}(2) = 4t + 1$ $e_f(3) = e_f(4) = 4t + 2$

obviously f is a power 3 mean cordial. **Case (iv)** $n \equiv 3 \pmod{5}$

Example 2.2

Power 3 mean cordial labeling of triangular snake T_n as shown in figure

Assign the labels to the vertices u_i and v_i $(1 \le i \le n -$ 1) as in case (i) and then v_i ($1 \le i \le n - 1$) as in case (i) then the label 2 to the vertices to u_{n-2} , v_{n-2} and v_{n-1} and the label 0 to the vertices u_nv_n. Here $v_f(0) = v_f(1) = v_f(2) = 2t + 2$ $v_f(3) = v_f(4) = 2t + 1$ and $e_f(0) = 2t + 1 e_f(1) = e_f(2) = 4t + 1$ $e_f(3) = e_f(4) = 4t + 2$ Obliviously, f is a power 3 mean cordial labelling. Case (v) $n \equiv 4 \pmod{5}$ Let n = 4t + 5Assign to the vertices u_i and v_i $(1 \le i \le n-1)$ as in case (i) and the label to the vetices $u_{n-3} v_{n-3}$ and the label 2 to the vertices $u_{n-2} v_{n-2}$ and the label to the vertices u_{n-2} 1, v_{n-1} and the label 0 to the vertices $u_n v_n$ Here $v_{4}(2) = v_{4}(3) = 2t + 2$

$$v_{f}(0) = v_{f}(1) = v_{f}(2) = v_{f}(3) = 2t - v_{f}(4) = 2t + 1$$

and

$$\begin{split} e_f(0) &= 2t+1 \ e_f(1) = e_f(2) = e_f(3) = 4t+1 \\ e_f(4) &= 4t \ +2 \end{split}$$

Theorem 2.3	$f(u_{t+i}) = 1$	$1 \le i \le t$
Quadrilateral snake Q_n is a power 3 mean cordial	$f(u_{2t+i})=2$	$1 \le i \le t$
labeling of graph	$f(u_{3t+i}) = 3$	$1 \le i \le t$
Proof:	$f(\boldsymbol{u}_{4t+i}) = 4$	$1 \le i \le t$
Let P_n be the path $u_1, u_2, \ldots u_n$	$f(v_i) = 0$	$1 \le i \le t$
Let $V(Q_n) = V(P_n) \cup \{v_i w_i, 1 \le i \le n\}$	$f(v_{t+i}) = 1$	$1 \le i \le t$
and	$f(v_{2t+i})=2$	$1 \le i \le t$
$E(Q_n) = E(P_n) \cup \{u_i v_i, u_{i+1} w_i, v_i w_i, 1 \leq i \leq n-1 \}$	$f(v_{3t+i}) = 3$	$1 \le i \le t$
Case (i)	$f(v_{4t+i}) = 4$	$1 \le i \le t$
$n \equiv 0 \pmod{5}$	$f(w_i) = 0$	$1 \le i \le t$
Let $n = 5t$	$f(w_{t+i}) = 1$	$1 \le i \le t$
Define $f(u_i) = 0$ $1 \le i \le t$	$f(w_{2t+i})=2$	$1 \le i \le t$
	$f(w_{3t+i}) = 3$	$1 \le i \le t$

IJIRT 151829 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1190

$$\begin{split} f(w_{4t+i}) &= 4 \qquad 1 \leq i \leq t \\ Then \\ v_f(0) &= v_f(1) = v_f(2) = 2t+2 \end{split}$$

and $v_f(3) = v_f(4) = 2t + 3$ and $e_f(0) = 2t + 2$ $e_f(1) = e_f(2) = 4t$ $e_f(3) = e_f(4) = 4t + 2$ Obliviously f is a power 3 mean cordial labeling **Case (ii)**

 $n \equiv 1 \pmod{5}$ $n \equiv 5t + 1$

Assign the labels to the vertices u_i , v_i and w_i $(1 \le i \le n - 1)$ as in case (i). Then assign the label 2 to the vertex u_n , v_n and w_n .

Here

$$\begin{split} v_f(0) &= v_f(1) = 2t+2 \\ v_f(2) &= 4t+1 \ v_f(3) = v_f(4) = 2t+3 \\ and \\ e_f(0) &= 2t+2 \qquad e_f(1) = 4t \\ e_f(2) &= 4t+2 \qquad e_f(3) = e_f(4) = 4t+4 \end{split}$$

Case (iii)

 $n \equiv 2 \pmod{5}$

Let n = 5t + 2Assign the label to the vertices u_i , v_i and w_i $(1 \le i \le n - 1)$ as in case (i) and then the label 2 to the vertices u_{n-1} , v_{n-1} , w_{n-1} and the label 1 to the vertices u_n , v_n , w_n . Here

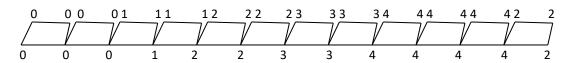
 $v_f(0) = 2t + 2$ $v_f(1) = v_f(2) = 4t + 1$

Example 2.4

 $v_{f}(3) = 2t + 3$ and $e_{f}(0) = 2t + 2$ $e_{f}(1) = 4t + 2$ $e_f(2) = e_f(3) = e_f(4) = 4t + 2$ obviously f is a power 3 mean cordial labeling. Case (iv) $n \equiv 3 \pmod{5}$ Let n = 5t + 3Assign to the vertices $u_i v_i$ and $w_i (1 \le i \le n - 1)$ as in case (i) and then the labels 2 to the vertex u_{n-2} , v_{n-2} , w_{n-2} $_2$ and the label 0 to the vertices to the vertices u_{n-1} , v_{n-2} 1, w_{n-1} and the label to the vertices u_n , v_n , w_n . Here $v_f(0) = v_f(1) = v_f(2) = 4t + 1$ $v_f(3) = v_f(4) = 2t + 3$ and $e_{f}(0) = 4t$ $e_f(1) = e_f(2) = e_f(3) = e_f(4)$ = 4t + 4Case (v) $n \equiv 4 \pmod{5}$ Let n = 5t + 4Assign the labels to the vertices $u_i v_i$ and $w_i (1 \le i \le n$ -1) as in case (i) and then the label to the vertices u_{n-1} 3, v_{n-3} and w_{n-3} and the label 2 to the vertices u_{n-2} , v_{n-2} , w_{n-2} and the label 1 to the vertices u_{n-1} , v_{n-1} , w_{n-1} and label 0 to the vertices u_nv_nw_n. Here

$$\begin{split} v_f(0) &= v_f(1) = v_f(2) = v_f(3) = 4t + 1 \\ v_f(4) &= 2t + 1 \\ and \qquad e_f(0) = 4t \; e_f(1) = e_f(2) = e_f(3) = e_f(4) = 4t + 4 \\ clearly \; f \; is \; a \; power \; 3 \; mean \; cordial \; labeling. \end{split}$$

Power 3 mean cordial labeling of quadrilateral snake Q_n is as shown in figure.



III. ACKNOWLEDGEMENT

The authors are thankful to the referee for their valuable comments and suggestions.

REFERENCES:

[1] Albert Wiiliam ,Indra Rajasingh and S.Roy ,Mean Cordial Labeling of certain Graphs ,Journal of computer and Mathematical Sciences ,4(2013),no.3,274-281.

[2] F.Harary ,Graph Theory ,Narosa Publishing House ,New Delhi,1988.

[3] J.A.Gallian , A Dynamic Survey of Graph Labeling , The Electronic Journal Combinatories, (2013).

[4] Raja Ponraj ,Muthirulan Sivakumar ,Murugesan Sundraram, Mean Cordial Labeling of Graphs, Open

Journal of Discrete Mathematics, 2(2012),145-148 https://doi.org/10.4236/ojdm.2012.24029

[5] Sarasree.S and S.S.Sandhya "Power 3 Mean Labeling of Cycle Related Graphs", International Journal of analytical and experimental model Analysis, Vol. XIII,Issue :IIFebruary -2021ISSN NO:0886-9367.