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Abstract - MicroRNAs (miRNAs) play an essential role in 

the post-transcriptional gene regulation in plants and 

animals. They regulate a wide range of biological 

processes by targeting messenger RNAs (mRNAs). 

Evidence suggests that miRNAs and mRNAs interact 

collectively in gene regulatory networks. The collective 

relationships between groups of miRNAs and groups of 

mRNAs may be more readily interpreted than those 

between individual miRNAs and mRNAs, and thus are 

useful for gaining insight into gene regulation and cell 

functions. Several computational approaches have been 

developed to discover miRNA-mRNA regulatory 

modules (MMRMs) with a common aim to elucidate 

miRNA-mRNA regulatory relationships. However, most 

existing methods do not consider the collective 

relationships between a group of miRNAs and the group 

of targeted mRNAs in the process of discovering 

MMRMs. Our aim is to develop a framework to discover 

MMRMs and reveal miRNA-mRNA regulatory 

relationships from the heterogeneous expression data 

based on the collective relationships. 

 

Index Terms - miRNA-mRNA regulatory modules, 

Collective group relationships, Group pair, Canonical 

correlations. 

INTRODUCTION 

 

Renal cancer is common cancer, and the incidence 

rates in males and females are 5% and 3%, 

respectively1. Clear cell renal cell carcinoma (ccRCC) 

accounts for 70–80% of renal cancer, which is the 

most representative subtype, and the incidence rate 

increased year by year. Compared with other cancers, 

kidney cancer-related clinical symptoms and 

biomarkers are less, so early diagnosis is difficult. 

Moreover, ccRCC has poor responses to conventional 

chemotherapy and radiation therapy, leading to a low 

5-year survival rate of advanced patients, which is 

only 10–20%2,3. Nowadays, VEGF tyrosine kinase 

inhibitor monotherapy had been one type of standard 

therapy. Moreover, with the advances in 

immunotherapy and the more newly discovered 

therapeutic target, a combination of the 

immunotherapy and the targeted therapies could be the 

next standard of treatment4. Therefore, it is especially 

necessary to explore the internal mechanism of ccRCC 

to find some new therapeutic targets. 

In this study, some novel RNAs may act as RNA to 

regulate gene expression in RCC, and their potential 

mechanisms have been investigated by utilizing gene 

chip and bioinformatics methods. The process digraph 

is showed in Fig. 1: Firstly, circRNAs related 

microarray datasets of ccRCC were obtained from 

GEO database, and differential expressed circRNAs 

(DECs) were also acquired. Then, to demonstrate 

whether the DECs function as ceRNAs in ccRCC, 

their related miRNAs and miRNA target genes have 

been collected, and a circRNA/miRNA/mRNA 

network also has been constructed. Furthermore, a 

protein–protein interaction (PPI) network was 

successfully built, and the hub-genes were also 

obtained. Functional enrichment and pathway 

enrichment analyses were performed to reveal the 

potential pathogenesis of ccRCC. Furthermore, 

connectivity map (CMap) analysis and 

pharmacogenomics analysis were conducted to predict 

bio-active compounds and potential drugs for the 

treatment of ccRCC, which may provide a new method 

in the latent therapeutic capacity of circRNAs in 

ccRCC. 



© July 2021| IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002 

IJIRT 152105 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 322 

 

Circular RNA (circRNA), derived from the exon or 

intron region of a gene, is a particular type of non-

coding RNA molecule that is different from linear 

RNA. Compared with linear RNA structure, circRNA 

has no 5′–3′ polarity and no polyA tail, making it a 

closed circular structure. Therefore, it is more stable 

than linear RNA, and it is not easily degraded by RNA 

exonuclease or RNase5. CircRNAs’ function can 

generalize as below (1) miRNA can regulate the post-

transcriptional expression of target genes, and 

circRNA can act as a competing endogenous RNA 

(ceRNA) to bind to miRNA like a sponge to regulate 

the function of miRNA, thus indirectly regulating the 

expression of genes (2) It can affect gene expression 

through interacting with RNA binding protein and 

modulating the stability of mRNAs (3) It also can 

function as protein scaffolds and encode functional 

proteins in some cancer cells lines6,7,8,9. Recently, 

some studies have demonstrated that circRNA not 

only acts as a molecular marker but can also 

participate in cancer proliferation and invasion by 

regulating miRNA in colorectal cancer, lung cancer, 

and bladder cancer10. 

 

PROCEDURE 

 

MicroRNAs (miRNAs) are a family of small (i.e. with 

typical length of 19–25 nucleotides) non-protein-
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coding RNA molecules that can play important 

regulatory roles in animals and plants [1, 2]. They 

base-pair with messenger RNAs (mRNAs) of protein-

coding genes to induce mRNA degradation or 

translational repression. The mature human miRNAs 

potentially target majority of the human mRNAs. It 

has been demonstrated that miRNAs regulate a wide 

range of biological or cellular processes such as 

proliferation, metabolism, differentiation, 

development [9], apoptosis, cellular signaling, and 

cancer development and progression. 

In the data pre-processing step, DICORE first creates 

a weighted bipartite graph representation of the 

relationships among the individual variables of the 

given miRNA and mRNA expression profiles. Taking 

the variables as the vertices of a weighted bipartite 

graph G, a weighted edge is introduced between a 

miRNA variable and a mRNA variable to represent 

their interaction. Referring to Fig. Fig.1,1, given p 

miRNAs and q mRNAs, let W denote the (p×q) 

miRNA-mRNA interaction weights matrix, where wij 

is the interaction weight for miRNA i targeting mRNA 

j. To compute miRNA-mRNA interaction weights, we 

calculate the Pearson correlation coefficient (PCC) 

[25] between each pair of miRNA and mRNA using 

the R built-in function, cor. The obtained PCCs are 

within the range of [−1,1], and the signed correlation 

coefficients provide two types of valuable 

information: the absolute values implying the strength 

of the miRNA-mRNA interactions (the higher the 

values, the stronger the interactions), and the signs 

indicating the directions of the associations. However, 

as the aim of the paper is to identify MMRMs (and 

thus to uncover miRNA-mRNA regulatory 

relationships), the collaboration score (explained in 

the next section) defined for discovering the modules 

considers the sum of the miRNA-mRNA correlations. 

In order to cater for both up and down miRNA 

regulations when calculating the total strength of the 

interactions, we use absolute values of the PCCs in the 

interaction weights matrix W, otherwise the signed 

PCCs or interaction weights will cancel out in Eq. 

Due to the higher possibility of dense interactions in 

the expression profile datasets, complete weighted 

graph mining may not be able to distinguish correct 

group structure. Accordingly we used a cutoff 

threshold η to tradeoff between the two extreme 

approaches namely complete unweighted graph 

mining and complete weighted graph mining. 

There is a growing body of literature showing that 

multiple miRNAs are coordinated by forming 

cohesive groups to collectively regulate one or more 

pathways [16, 17]. The collective relationships yielded 

between a group of miRNAs and a group of mRNAs 

due to the tendency of the group formation act as a 

vital force in catering similar functioning miRNAs and 

mRNAs together. Therefore, the collective 

relationships between cohesive groups of miRNAs 

and their targeted mRNAs may provide better 

understandings on robust and potent regulatory 

relationships of miRNA-mRNA regulatory modules 

(MMRMs). 

Several algorithms have been proposed to identify 

MMRMs from expression data using different 

approaches including Bayesian network learning [18], 

rule induction [19], association rule mining [20], 

population-based probabilistic learning [21], 

probabilistic graphical model [22–24], matrix 

factorization [25], and graph mining [17, 26]. Most of 

these existing methods do not consider the collective 

relationships between a group of miRNAs and the 

group of targeted mRNAs in the process of identifying 

MMRMs. In addition, many of them are either 

stochastic, or require prior knowledge such as number 

of modules to be identified, confirmed interactions, 

target site information. 

Adapting a greedy overlapping neighborhood 

expansion clustering method, ClusterONE, which was 

developed to discover protein complexes from 

protein-protein interactions networks, Li et al. [27] 

proposed a clustering algorithm, Mirsynergy to detect 

synergistic miRNA regulatory modules. However, it 

requires and depends on the prior knowledge of 

confirmed gene-gene interactions. Recently Karim et 

al. [28] coined the notion of collective group 

relationships and developed a method by integrating 

unweighted graphing mining concept and canonical 

correlation analysis to explore miRNA-mRNA 

regulatory relationships. However, it is noted that 

unweighted graph mining techniques are associated 

with limitation in representing the true interactions, 

and sometimes fail to capture correct regulatory 

relationships. Whereas weighted graph mining 

approaches can greatly improve the detection of the 

module structures [29], and hence regulatory 

relationships. 

In this paper, we propose an effective computational 

framework, DIscovering COllective group 
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RElationships (DICORE) to identify MMRMs and 

hence reveal miRNA-mRNA regulatory relationships 

from heterogeneous data. In order to extract MMRMs 

from the given gene expression datasets, we utilize the 

notion of collective group relationships, which provide 

MMRMs with additional quantitative strength 

information. The method finds a deterministic solution 

to the problem of discovering MMRMs from weighted 

bipartite graph representation of the given datasets, 

and rank the collective group relationships based on 

their strength of collective relationships. We apply 

DICORE to a dataset for Epithelial to Mesenchymal 

Transition, a breast cancer dataset, and a multi-class 

cancer dataset. Based on the knowledge from the 

literature, it is observed that the identified MMRMs 

exhibit enriched functionality with biological 

significance. 

METHODS 

Problem statement 

Consider two sets of variables X={X1,…,Xp} and 

Y={Y1,…,Yq} such that X ∩ Y = ∅, representing the 

attributes of two different types of objects. In this 

paper, X and Y refer to the expression levels of a set 

of miRNAs and a set of mRNAs, respectively. With 

their given datasets, DX and DY, having n matching 

miRNA and mRNA expression samples, our goal is to 

identify any Cx⊂X and Cy⊂Y, such that Cx and Cy 

are related, as a result of miRNAs in Cx 

collaboratively interacting with mRNAs in Cy and 

vice versa. We call (Cx,Cy) a group pair, and the 

relationship between Cx and Cy a COllective group 

RElationship (in short, CORE). The COREs are 

characterized by both group pairs and the collective 

relationships among the two cohesive groups in group 

pairs. Then the group pair (Cx,Cy) is an MMRM if the 

strength of the CORE between Cx and Cy is 

significant. 

In order to discover COREs, and thus to identify 

MMRMs, we develop a two stages method, 

DIscovering CORE (DICORE). Two measures, 

collaboration score and canonical correlations, are 

employed in the two stages respectively. In the 

following, we firstly overview the workflow of 

DICORE, and then present the details of DICORE, 

including the definition of the collaboration score and 

the calculation of canonical correlations. 

 

OVERVIEW OF DICORE 

The workflow of DICORE. The overall workflow 

comprises a data pre-processing step and two main 

stages: (1) forming separate miRNA and mRNA 

groups and (2) searching for COREs. 

 

CONCLUSIONS 

 

Analysis of the results demonstrates that a large 

portion of the regulatory relationships discovered by 

DICORE is consistent with the experimentally 

confirmed databases. Furthermore, it is observed that 

the top mRNAs that are regulated by the miRNAs in 

the identified MMRMs are highly relevant to the 

biological conditions of the given datasets. It is also 

shown that the MMRMs identified by DICORE are 

more biologically significant and functionally 

enriched. 

RESULTS 

 

We propose DIscovering COllective group 

RElationships (DICORE), an effective computational 

framework for revealing miRNA-mRNA regulatory 

relationships. We utilize the notation of collective 

group relationships to build the computational 

framework. The method computes the collaboration 

scores of the miRNAs and mRNAs on the basis of their 

interactions with mRNAs and miRNAs, respectively. 

Then it determines the groups of miRNAs and groups 

of mRNAs separately based on their respective 

collaboration scores. Next, it calculates the strength of 

the collective relationship between each pair of 

miRNA group and mRNA group using canonical 

correlation analysis, and the group pairs with 

significant canonical correlations are considered as the 

MMRMs. We applied this method to three gene 

expression datasets and validated the computational 

discoveries. 
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