
© April 2024| IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 11

Crypto Currency Price Prediction Using Machine Learning

Python

Omkar Singh1, Leanne Fernandes2, Atharva Malusare3, Santanu Mandal4

1 HOD & Research Group Head Dept. of DS, Mumbai University, India
2Dept. of IT, Thakur College of Science & Commerce, India

3Dept. of IT, Thakur College of Science & Commerce, India
4Dept. of IT, Thakur College of Science & Commerce, India

Abstract– Starting in the 1980s, cryptocurrencies, then

referred to as cyber currencies began to become popular.

In this respect, the history of cryptocurrencies can be

traced back to the 1980s when they were called cyber

currencies. Bitcoin, the first digital currency based on

blockchain technology was introduced in 2008 which led

to the rise of alternative cryptocurrencies and attracted

interest for its potential effect on even financial systems

during this time frame blockchain technology developed

while other cryptocurrencies emerged forcing attention

towards it and other sectors due to its potential

consequences in financial systems and beyond since then

regulatory implications and wider interest have been

spawned by both that growth of cryptocurrency market

and advancements in blockchain technology.

Key Words: Crypto Currency, LSTM, RNN, Price

Prediction, Machine Learning, Bitcoin, Ethereum,

Dogecoin, Binance, Cardano.

1. INTRODUCTION

As we all know that in the past few years Crypto

Currency has taken an immense Growth. The price of

Bitcoin has gone from 600$ in 2016 to 63558$ in April

2021 currently there are not sufficient tools for analysis

and methodologies for accurately predicting crypto

prices of the currencies.

This scarcity presents a challenge for investors and

analyst who seek reliable means to forecast the price

movements of digital assets within the crypto currency

market.

One of the key challenges for investors and traders in

the crypto currency market is predicting the price

movements of these digital assets. Machine learning

algorithms can analyse historical data, identify

patterns, and make predictions based on these patterns.

When applied to crypto currency price prediction,

machine learning models can assist investors in

making informed decisions about buying, selling, or

holding crypto currencies.

Crypto currency is a peer-to-peer system that can

enable any person anywhere to receive or send

payments. It is a digital payment system that don’t rely

on banks to verify transactions. It is stored in a digital

wallet. It received its name because it is using

encryption to verify all the transactions.

Seeing in the increasing economics and geopolitics

issues from last 2 years global currency value has been

decreased, all the investors had a bad fall in stock

market and have lost their wealth. This has started

people’s interest in digital currencies.

Therefore, our system helps in crypto currency price

prediction using machine learning python. Some

traders and analysts may use other methods like

fundamental analysis, technical analysis to predict

prices but there is always some risk and uncertainty.

With this system the traders and investors have various

new opportunities to explore new approaches and

incorporate advancements in AI, data analytics, other

relevant fields and tailored prediction solutions to suit

different trading or investment strategies.

2. ORIGIN

Starting in the 1980s, cryptocurrencies, then referred

to as cyber currencies began to become popular. In this

respect, the history of cryptocurrencies can be traced

back to the 1980s when they were called cyber

currencies. Bitcoin, the first digital currency based on

blockchain technology was introduced in 2008 which

led to the rise of alternative cryptocurrencies and

attracted interest for its potential effect on even

financial systems during this time frame blockchain

© April 2024| IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 12

technology developed while other cryptocurrencies

emerged forcing attention towards it and other sectors

due to its potential consequences in financial systems

and beyond since then regulatory implications and

wider interest have been spawned by both that growth

of cryptocurrency market and advancements in

blockchain technology

3. MACHINE LEARNING MODELS AND

ANALYSIS

For this project we have used the LSTM model (Long

Short-Term Memory) which is an extensive part of

RNN (Recurrent Neural Network). The LSTM is

mainly designed to address the vanishing gradient

problem. First of all, let’s understand what RNN is and

how it is works. RNN is a type of neural network

specially works in the sequential data such as time

series prediction or more commonly in cryptocurrency

prediction. In RNN the output of the previous step is

fed as an input to get the output of the next step. In

traditional Neural Network, all the inputs and outputs

are independent from each other but in some cases to

predict the next word or next output, the previous

output is required and as a result it is required to

remember the previous output. Thus, RNN solved this

with the help of Hidden Layer or Hidden State. The

RNN works with the sequential data, this hidden state

helps the RNN to remember the information about the

sequence of the data. At each time step, the network

takes an input vector and combines it with the hidden

state from the previous time step to produce an output

and update the hidden state. This recurrent connection

allows RNNs to incorporate information from previous

time steps into the current prediction or output.

Furthermore, understand how a hidden state in RNN

works with some examples. Let us consider the

following two input and output of the sequences

XY=[a,b,c,d,…,y,z]=[b,c,d,e,…,z,a]

We will first try to train a MLP (Multi-Layer

Perceptron) with one input and output from X and Y.

We can write this relationship in maths as f(x) →y

where x is an element of X and y is an element of Y

and f (⋅) is our MLP. After training, if given the input

a=x, our neural network will give an output b=y

because f (⋅) learned the mapping between the

sequence X and Y. Now, let’s try to teach other

sequences to the same MLP.

 XY=[a,a,b,b,c,c,⋯,y,z,z]=[a,b,c,⋯,z,a,b,c,⋯,y,z]

More likely, this MLP will not be able to recognise or

learn the relationship between X and Y. This is because

a normal MLP can't learn and understand the

relationship between the previous and current outputs.

Now, we will use the same sequences to train an RNN.

In general, in an RNN we take two inputs one for our

input and the previous hidden values and two outputs

one for the output and the next hidden values. F(x, ht)

→(y, ht+1)

Important: here ht+1 represents the next hidden value.

Below we will execute some sequences of this RNN

model.

x = a and h = 0 (a, next_hidden) <- f(x, h) prev_hidden

= next_hidden x = a and h = prev_hidden (b,

next_hidden) <- f(x, h) prev_hidden = next_hidden x =

b and h = prev_hidden (c, next_hidden) <- f(x, h)

prev_hidden = next_hidden If we look at the above

process we can see that we are taking the previous

hidden state values to compute the next hidden state.

What happens is while we iterate through this process

prev_hidden = next_hidden it also encodes some

information about our sequence which will help in

predicting our next character.

About LSTM:

The LSTM is an extension of recurrent neural

networks which is mainly designed to overcome the

limitations of RNN. The vanishing gradient is

particularly problematic for traditional RNN because

they are unable to retain information over long

sequences. Thus, LSTM is designed to overcome the

issue with the help of their gate architecture which

helps to regulate the flow of information and gradients

throughout the network. LSTM contains a memory

cell, which is a container that can hold information for

a long period of time. These networks are capable of

learning long term dependencies in a sequential data,

which makes them suitable for task such as time series

forecasting. In LSTM the memory cell is controlled by

the three gates that are input gate, output gate and

forget gate. These gates are responsible on managing

the information on what should be add, remove to and

output from the memory cell. The input gate controls

what information is added to the memory cell. The

forget gate controls what information is removed from

the memory cell and the output gate controls what

information is output from the memory cell.

© April 2024| IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 13

Architecture and working of an LSTM:

The LSTM architecture has a chain structure that

contains four neural networks and different memory

blocks called cells. Information is retained by the cells

and the memory manipulations are done by the gates.

In mathematically this gate is computed with the help

of a sigmoid activation function. The sigmoid

activation functions. The sigmoid activation function

is a mathematical function which is often used in

neural networks. It is called "sigmoid" because it’s in

S-shaped curve.

• The Input Gate: The input gate decides which new

information to add in the cell state. It determines

whether the current input and the previous hidden

state is relevant for updating the cell state. The

output of an input gate (between 0 and 1) is

multiplied with the output of tanh block that

produces the new values that must be added to

previous state. This vector is then added to the

previous state to generate the current state.

Mathematically, the input gate it is computed using a

sigmoid activation function and is typically

represented as follows: it = σ (Wi⋅ [ht−1, xt] +bi)

Where:

Wi is the weight matrix associated with the input gate,

[ht−1, xt] is the concatenation of the previous hidden

state ht−1 and the current input xt, bi is the bias vector

for the input gate, and σ is the sigmoid activation

function, which squashes the input to a value between

0 and 1.

• The Output Gate: The output gate controls the

flow of the information from the cell state to the hidden

state. It determines how much of the information stored

in the cell state should be output at the current time

step. In output gate, the input state and the previous

state are gated as before so that to generate another

scaling fraction that is combined with the output of

tanh block that brings the current state.

Mathematically, the output gate ot is computed using a

sigmoid activation function and is typically

represented as follows:

ot = σ (Wo⋅ [ht−1, xt] +bo) Where:

Wo is the weight matrix associated with the output

gate,

[ht−1, xt] is the concatenation of the previous hidden

state ht−1 and the current input xt, bo is the bias vector

for the output gate, and σ is the sigmoid activation

function, which squashes the input to a value between

0 and 1.

• The Forget Gate: Just like the output gate, the

forget gate controls the flow of the information from

the previous cell state to the current cell state. It

determines which information from the previous state

should be retained and which should be removed. In

forget gate the input is combined with the previous

output to generate a fraction between 0 and 1 that

determines how much of the previous state need to be

retained or in other words, how much of the state

should be forgotten.

• Mathematically, the forget gate ft is computed

using a sigmoid activation function and is typically

represented as follows:

ft = σ (Wf⋅ [ht−1, xt] +bf)

Where:

Wf is the weight matrix associated with the forget gate,

[ht−1, xt] is the concatenation of the previous hidden

state ht−1 and the current input xt, bf is the bias vector

for the forget gate, and σ is the sigmoid activation

function, which squashes the input to a value between

0 and 1.

4. METHODS

While implementing our machine learning model we

have first came up with the idea of random forest

classifier which is a supervised machine learning

algorithm used for classification, regression and other

tasks. This classifier is specially used for handling

complex datasets which contains a number of decision

trees on various subsets of the given dataset and takes

the average to improve the predictive accuracy of that

dataset. As a result, we have first created the model

using the random forest classifier has it features to

handle large number of datasets using it decision trees.

This classifier works by creating number of decision

trees during the training phase. Each tree is constructed

by using a random subset of the data set which

introduces the randomness and diversity into the trees

preventing them from being too similar to each other

and as a result it also reduces the risk of overfitting the

data in the model. This classifier is also useful in

working with the missing data within the dataset as it

creates decision trees. Mathematically, the prediction

of a Random Forest classifier can be represented as

follows:

© April 2024| IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 14

Let T be the set of decision trees in the forest, and fi (x)

be the prediction of the i-th decision tree for input

sample x.

For a classification task, the predicted class ŷ for input

sample x is: ŷ = mode{fi(x)∣∀i∈T}

For a regression task, the predicted value ŷ for input

sample x is:

ŷ = ∣T∣1∑i=1∣T∣fi(x)

Where ∣T∣ denotes the number of decision trees in the

forest.

Next model we have implemented by using the

Extreme Gradient Boosting Classifier or in simple

XGBoost Classifier. It is a powerful algorithm

especially used for gradient boosting. Gradient

boosting is a powerful ensemble learning technique

used for both regression and classification tasks in a

machine learning. This XGBoost is known for its

efficiency, speed, and effectiveness in producing high-

quality predictive models. Additionally, XGBoost is

efficient in handling of missing values, which allows it

to handle real-world data with missing values without

requiring significant preprocessing. It has a built-in

support for parallel processing, making it possible to

train models on large datasets in a reasonable amount

of time. As a result, we have implemented the second

model using this algorithm. Mathematically, the

prediction of an XGBoost classifier can be represented

as follows:

The XGBoost classifier makes predictions by

aggregating the outputs of all the weak learners (trees)

weighted by a shrinkage parameter η ŷ =

∑k=1Kη⋅fk(x)

Where fk(x) is the prediction of the k-th tree for input

sample x.

In Closing we have implemented the third model by

using the Long Short Term Memory algorithm or in

short the LSTM which is the extension of Recurrent

Neural Network (RNN). IT is specially designed to

overcome the issue of vanishing gradient problem

inherent in traditional RNNs. These networks are

capable of learning long term dependencies in a

sequential data, which makes them suitable for task

such as time series forecasting. IT contains a memory

cell, which is a container that can hold information for

a long period of time. This memory cell is controlled

by the three gates that are input gate, output gate and

forget gate. These gates are responsible on managing

the information on what should be add, remove to and

output from the memory cell. The input gate controls

what information is to be added to the memory cell.

The forget gate controls what information is removed

from the memory cell and the output gate controls what

information is output from the memory cell. The

LSTM architecture has a chain structure that contains

four neural networks and different memory blocks

called cells. The information is been retained by the

cells and the memory manipulations are done by these

gates. In mathematically this gate is computed with the

help of a sigmoid activation function

5. EVALUATION

Finalizing the result of Random Forest Classifier we

have taken the parameters of closing price of bitcoin as

a feature to predict the future market price of bitcoin.

We have also taken the sentiment analysis of bitcoin as

a negative and positive sentiment to perform a better

prediction if any unplanned event occurs. This

performed well but not as good as it should be

performed. The accuracy over the past prices

Performed well. The accuracy was 51% which was

under performed by the algorithm.

The next model that we trained was the XGBoost

model. We have taken the same parameters of closing

price of bitcoin as a feature to predict. Comparing with

the first model i.e. Random Forest Classifier it over the

past prices was 60% as compared to the random forest.

To provide more accuracy over the data we have done

the back testing of the data within this model. We have

taken 15 days of interval of the data to perform the

back testing, the difference came of 5% after

performing the back testing of the data. As compared

to Random Forest Classifier with performed well in

predicting the future prices.

 The last model that we trained was the LSTM model.

This LSTM performed very well compare to the rest

two models. Here also we have taken the closing price

of bitcoin as a parameter to perform the training of the

model. To provide a better analysis we have taken past

100 and 200 days of mean averages. After splitting in

testing and training part of 7:3 ratio we have added the

parameters of past 100 days of mean averages to the

training part. We have then trained the model with the

epoch of 50 i.e. it will train the model 50 times to

provide an accurate result. If we would train the model

above 50 times it would than overfitted in the data. The

model would not provide accurate result on the other

data and if less than 50 than more overly the model

© April 2024| IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 15

would be underfitted. After training of the model, we

tested it with the other 30% data, and it performed

highly accurate than the other two random forest and

xgboost which provided the accuracy of 95%. In

regards to long term predictions it has been observed

that the LSTM outperformed both the other algorithms.

 Random Forest Classifier 51%

XGBOOST Classifier 60%

LSTM 95%

6. CONCLUSION

In conclusion the use of machine learning algorithms

in python for prediction of cryptocurrency prices is a

significant promising area of research; while

employing machine learning models to this end can

provide valuable insights into the volatile nature of

cryptocurrency markets and help in forecasting price

trends as well as making more informed investment

decisions, it is important to recognize that predicting

cryptocurrency prices has some built-in difficulties and

uncertainties which includes market sentiment

regulatory developments and technology changes

however there are several limitations associated with

the study including market sentiment regulatory

developments and technological advancements thus

more studies should be carried out in order to get better

understanding about how these models behave

REFERENCE

1."Bitcoin Price Index - Real-time Bitcoin Price

Charts", Coin Desk Available: https://www.coindesk.

com/price “

2. “A. Ng, "Linear Regression with Multi Variable",

Stanford, CA”

3. “D. Nelson, A. Pereira and R. de Oliveira, "Stock

Market’s Price Movement Prediction with LSTM

Neural Networks", in Neural Networks (IJCNN).

4.“M. Dixon, D. Klabjan and J. Bang, “Classification-

based Financial Markets Prediction using Deep Neural

Networks", Illinois Institute of Technology.”

https://doi.org/10.1162/neco.1997.9.8.1735

5. S. Hochreiter and J. Schmidhuber, “Long Short-

Term Memory,” Neural Computation, vol. 9, no. 8, pp.

1735–1780.”

6. D. Shah and K. Zhang, "Bayesian regression and

Bitcoin", Massachusetts Institute of Technology.”

7. I.Georgoula, D. Pournarakis, C. Bilanakos, D.

Sotiropoulos and G. Giaglis, "Using Time-Series and

Sentiment Analysis to Detect the Determinants of

Bitcoin Prices".

8. Babitha, D., Ismail, M., Chowdhury, S., Govindaraj,

R., & Prakash, K.B. (2020). Automated road safety

surveillance system using hybrid cnn-lstm approach.

International Journal of Advanced Trends in Computer

Science and Engineering, 9(2), 1767-1773.

doi:10.30534/ijatcse/2020/132922020

