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Abstract—Our research centers on exploring Alfven 

waves within a fermionic spin-1/2 multispecies quantum 

plasma, confined by magnetic and gravitational forces. 

Through the integration of the fundamental equations of 

Hall magnetohydrodynamics and the inclusion of 

quantum corrections, we derive a series of modified 

Zakharov-like equations uniquely crafted to 

characterize Alfven waves in this particular system. Our 

objective is to comprehensively investigate and 

comprehend the features of these Alfven waves. As part 

of our investigation, we establish the dispersion relation, 

offering significant insights into the wave properties and 

behavior exhibited within the plasma under 

examination. 

Index Terms— Alfven wave, Quantum plasma, QHD 

model, Zakharov equation 

I. INTRODUCTION 

In recent years, Alfven waves have garnered 

significant attention and have become the focus of 

extensive research. These waves are characterized by 

low-frequency oscillations of ions and the magnetic 

field within a plasma, with frequencies much lower 

than the ion gyrofrequency. The inertia of ion mass 

density contributes to the wave dynamics, while the 

restoring force is provided by magnetic field line 

tension. Notably, Alfven waves propagate parallel to 

the direction of the magnetic field, while ion motion 

and magnetic field perturbations occur perpendicular 

to the direction of propagation. 

The substantial interest in Alfven waves arises from 

their critical roles in energy transport and heating 

processes in laboratory and astrophysical plasmas. 

These waves are known to contribute to plasma 

heating and have been thoroughly investigated both 

theoretically and experimentally. In fusion plasma 

devices, "Alfven wave heating" has been explored as 

an additional method to enhance plasma heating. 

Additionally, Alfven waves have been proposed as a 

model for understanding the heating mechanisms 

observed in the coronae of the Sun and other stars. 

Research on Alfven waves has thus provided valuable 

insights into energy transfer and heating phenomena in 

various plasma systems. 

Alfven waves and magnetoacoustic waves are 

fundamental in facilitating the transfer of magnetic 

energy within solar and stellar winds. They also 

contribute to the pulsations observed in Earth's 

magnetosphere and serve as scattering mechanisms for 

accelerating cosmic rays in astrophysical shock waves. 

The applications of these waves extend beyond these 

examples, finding relevance in various fields such as 

laboratory experiments, space physics, and 

astrophysics. Extensive literature in these areas 

explores the diverse range of applications and 

phenomena associated with Alfven waves and 

magnetoacoustic waves. 

In recent years, Alfven waves, being one of the 

fundamental low-frequency modes of magnetized 

plasmas, have been extensively studied due to their 

crucial role in energy transportation and heating in 

magneto plasmas, including laboratory, space, and 

astrophysical plasmas. The ideal 

magnetohydrodynamic (MHD) model, first utilized 

for deriving Alfven waves, is a fluid model employed 

to describe magnetized plasmas, treating the entire 

plasma as a single fluid entity. Alternatively, the two-

fluid model considers the plasma to consist of ion and 

electron fluids, with electrons assumed to be 

magnetized while ions are not. The inclusion of the 

Hall term introduces dispersion when the plasma 

comprises ion and electron fluids. 

The field of quantum plasma has emerged as a vibrant 

area of research due to its potential applications in 

various practical fields. Quantum plasmas find 

applications in ultrasmall electronic devices, plasmas 

generated through laser-matter interactions, ultra-cold 

plasmas, and extremely dense astrophysical objects 

such as neutron stars and white dwarfs. To explore 

quantum effects in plasmas, the Quantum 
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Hydrodynamic (QHD) model is utilized, serving as the 

quantum counterpart to the classical fluid model. In 

this model, the momentum equation of charged 

particles is modified to incorporate Fermi pressure and 

the Bohm potential term. An ideal 

magnetohydrodynamic (MHD) model, incorporating 

statistical effects and quantum diffraction effects, has 

been developed, particularly relevant to dense 

astrophysical objects like the interiors of white dwarfs. 

Additionally, the QHD model of spin-1/2 charged 

particles, including defined physical quantities for all 

species containing particles with spin-up and spin-

down, has been recently studied with all possible 

electrostatic and electromagnetic modes. It has been 

observed that dispersion resulting from diffraction 

effects gives rise to a new type of dispersive Alfvenic 

wave. 

This research paper focuses on the identification of 

Alfven waves in a degenerate multispecies quantum 

plasma, consisting of fermionic particles with a spin of 

½ and confined by magnetic and gravitational fields. 

To investigate this system, we utilize the fundamental 

equations derived from quantum Hall-

magnetohydrodynamics (QMHD). Our objective is to 

comprehend the behavior and properties of Alfven 

waves within this specific quantum plasma 

environment. Through the modified Zakharov 

approach, we derive a set of nonlinear equations that 

govern the system under examination. Additionally, 

we obtain a modified linear dispersion relation tailored 

specifically for Alfven waves with finite amplitudes. 

This dispersion relation accounts for the effects of spin 

magnetization, enabling us to gain deeper insights into 

the wave behavior in the presence of spin-induced 

magnetization. 

  

II. THEORY 

 

Commencing from the momentum equations 

governing ions and electrons within a magnetized 

plasma, we can proceed to formulate the quantum 

magnetohydrodynamic (QMHD) model, 

𝑚𝐻
𝑑𝑢𝐻

𝑑𝑡
= 𝑒(𝐸 + 𝑢𝐻 × 𝐵)                                     (1a) 

 

𝑚𝐻𝑒
𝑑𝑢𝐻𝑒

𝑑𝑡
= 𝑒(𝐸 + 𝑢𝐻𝑒 × 𝐵)                                 (1b) 

 

𝑚𝐶
𝑑𝑢𝐶

𝑑𝑡
= 𝑒(𝐸 + 𝑢𝐶 × 𝐵)                                      (1c) 

𝑚𝑂
𝑑𝑢𝑂

𝑑𝑡
= 𝑒(𝐸 + 𝑢𝑂 × 𝐵)                                     (1d) 

 

Owing to the large inertia of ions, their quantum 

effects can be ignored. Due to the slowly varying 

nature of the Alfven waves, the electron inertia is 

ignored in the electron equation of motion, 

−𝑒𝐸 − 𝑒(𝑢𝑒 × 𝐵) −
∇𝑃𝐹𝑒

𝑛𝑒
+ 𝐹𝑄 = 0                        (2)    

The Fermi pressure for degenerate electrons can be 

expressed as 𝑃𝐹𝑒 =
(3𝜋2)

2
3⁄
ℎ

2

5𝑚𝑒
𝑛𝑒

5
3⁄
 . The last term in eq. 

(2) is the quantum force on the electron which is given 

by 

 

𝐹𝑄 −
ℎ

2

2𝑚𝑒
∇ [

∇2√𝑛𝑒

√𝑛𝑒
] + (

𝜇𝐵
2 𝐵

𝜀𝐹𝑒
) ∇𝐵                               (3) 

 

The ion continuity equation can be written as 

 
𝜕𝑛𝐻

𝜕𝑡
+ ∇. (𝑛𝐻𝑢𝐻) = 0                                             (4a) 

𝜕𝑛𝐻𝑒

𝜕𝑡
+ ∇. (𝑛𝐻𝑒𝑢𝐻𝑒) = 0                                         (4b) 

 
𝜕𝑛𝐶

𝜕𝑡
+ ∇. (𝑛𝐶𝑢𝐶) = 0                                              (4c) 

 
𝜕𝑛𝑂

𝜕𝑡
+ ∇. (𝑛𝑂𝑢𝑂) = 0                                             (4d) 

 

The Ampere’s law in the presence of spin 

magnetization is 

 

∇ × 𝐵 = 𝜇0(𝐽𝑝 + 𝐽𝑚)                                               (5)                  

 

Similarly, the Faraday’s law is 

 

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
                 (6) 

 

For the derivation of the basic equations of the QMHD 

model, we substitute from (5) into (2) and get 

𝐸 = − (𝑢𝐻 +
1

𝑒𝑛
∇ × 𝑀 −

1

𝑒𝑛𝜇0

∇ × 𝐵) × 𝐵 −
∇𝑃𝐹𝑒

𝑒𝑛
 

+
𝐹𝑄

𝑒
               (7a) 

 

𝐸 = − (𝑢𝐻𝑒 +
1

𝑒𝑛
∇ × 𝑀 −

1

𝑒𝑛𝜇0

∇ × 𝐵) × 𝐵 −
∇𝑃𝐹𝑒

𝑒𝑛
 

+
𝐹𝑄

𝑒
             (7b) 
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𝐸 = − (𝑢𝐶 +
1

𝑒𝑛
∇ × 𝑀 −

1

𝑒𝑛𝜇0

∇ × 𝐵) × 𝐵 −
∇𝑃𝐹𝑒

𝑒𝑛
 

+
𝐹𝑄

𝑒
                  (7c) 

 

𝐸 = − (𝑢𝑂 +
1

𝑒𝑛
∇ × 𝑀 −

1

𝑒𝑛𝜇0

∇ × 𝐵) × 𝐵 −
∇𝑃𝐹𝑒

𝑒𝑛
 

+
𝐹𝑄

𝑒
                (7d) 

 

where, we have used the quasi-neutrality 

condition( 𝑛~𝑛𝑖~𝑛𝑜). Eliminating E from (1) and (6) 

by using (7), we can write the normalized effective one 

fluid momentum equation as 

 

𝑑𝑢𝐻

𝑑𝑡
=

1

𝑛
(∇ × 𝐵)𝐵 −

𝛽

2𝑛
2

3⁄
∇𝑛

2
3⁄ +

𝐻𝑒
2

2
∇ (

∇2√𝑛

√𝑛
) 

+
𝜀0

2𝛽

2
𝐵∇𝐵 −

1

𝑛
(∇ × 𝑀) × 𝐵                                  (8a) 

 

𝑑𝑢𝐻𝑒

𝑑𝑡
=

1

𝑛
(∇ × 𝐵)𝐵 −

𝛽

2𝑛
2

3⁄
∇𝑛

2
3⁄ +

𝐻𝑒
2

2
∇ (

∇2√𝑛

√𝑛
) 

+
𝜀0

2𝛽

2
𝐵∇𝐵 −

1

𝑛
(∇ × 𝑀) × 𝐵                                  (8b) 

 

𝑑𝑢𝐶

𝑑𝑡
=

1

𝑛
(∇ × 𝐵)𝐵 −

𝛽

2𝑛
2

3⁄
∇𝑛

2
3⁄ +

𝐻𝑒
2

2
∇ (

∇2√𝑛

√𝑛
) 

+
𝜀0

2𝛽

2
𝐵∇𝐵 −

1

𝑛
(∇ × 𝑀) × 𝐵                                      (8c) 

 

𝑑𝑢𝑂

𝑑𝑡
=

1

𝑛
(∇ × 𝐵)𝐵 −

𝛽

2𝑛
2

3⁄
∇𝑛

2
3⁄ +

𝐻𝑒
2

2
∇ (

∇2√𝑛

√𝑛
) 

+
𝜀0

2𝛽

2
𝐵∇𝐵 −

1

𝑛
(∇ × 𝑀) × 𝐵                                     (8d) 

 

Eliminating again E between (1) and (6), the 

normalized magnetic field induction equation (with 

Hall term) takes the form 

𝜕𝐵

𝜕𝑡
= ∇ × (𝑢𝐻 × 𝐵) − ∇ ×

1

𝑛
[

(∇ × 𝐵) × 𝐵

−(∇ × 𝑀) × 𝐵
]       (9a) 

 

𝜕𝐵

𝜕𝑡
= ∇ × (𝑢𝐻𝑒 × 𝐵) − ∇ ×

1

𝑛
[

(∇ × 𝐵) × 𝐵

−(∇ × 𝑀) × 𝐵
]     (9b) 

𝜕𝐵

𝜕𝑡
= ∇ × (𝑢𝐶 × 𝐵) − ∇ ×

1

𝑛
[

(∇ × 𝐵) × 𝐵

−(∇ × 𝑀) × 𝐵
]       (9c) 

𝜕𝐵

𝜕𝑡
= ∇ × (𝑢𝑂 × 𝐵) − ∇ ×

1

𝑛
[

(∇ × 𝐵) × 𝐵

−(∇ × 𝑀) × 𝐵
]       (9d) 

Convenience to deal with circularly polarized Alfven 

waves. We can combine the x and y components of Eq. 

(9) by using 𝑀± = 𝑀𝑥 + 𝑖𝑀𝑦 , 𝐵± = 𝐵𝑥 + 𝑖𝐵𝑦and 

𝑢± = 𝑢𝑥 + 𝑖𝑢𝑦  to get 

𝜕2𝐵±

𝜕𝑡2 +
𝜕

𝜕𝑧
[𝑢𝑧

𝜕𝐵±

𝜕𝑡
+

𝑑

𝑑𝑡
(𝑢𝑧𝐵±)] −

𝜕

𝜕𝑧
[

1

𝑛

𝜕𝐵±

𝜕𝑧
−

𝜀0
2𝛽

𝑛

𝜕(𝑛𝐵±)

𝜕𝑧
] + 𝐻(1 − 𝜀0

2𝛽)
𝜕

𝜕𝑧
[

𝑑

𝑑𝑡
(

1

𝑛

𝜕𝐵±

𝜕𝑧
)] = 0      (10a) 

 

𝜕2𝐵±

𝜕𝑡2 +
𝜕

𝜕𝑧
[𝑢𝑧

𝜕𝐵±

𝜕𝑡
+

𝑑

𝑑𝑡
(𝑢𝑧𝐵±)] −

𝜕

𝜕𝑧
[

1

𝑛

𝜕𝐵±

𝜕𝑧
−

𝜀0
2𝛽

𝑛

𝜕(𝑛𝐵±)

𝜕𝑧
] + 𝐻𝑒(1 − 𝜀0

2𝛽)
𝜕

𝜕𝑧
[

𝑑

𝑑𝑡
(

1

𝑛

𝜕𝐵±

𝜕𝑧
)] =

0                                                                                     (10b) 

 

𝜕2𝐵±

𝜕𝑡2 +
𝜕

𝜕𝑧
[𝑢𝑧

𝜕𝐵±

𝜕𝑡
+

𝑑

𝑑𝑡
(𝑢𝑧𝐵±)] −

𝜕

𝜕𝑧
[

1

𝑛

𝜕𝐵±

𝜕𝑧
−

𝜀0
2𝛽

𝑛

𝜕(𝑛𝐵±)

𝜕𝑧
] + 𝐶(1 − 𝜀0

2𝛽)
𝜕

𝜕𝑧
[

𝑑

𝑑𝑡
(

1

𝑛

𝜕𝐵±

𝜕𝑧
)] = 0      (10c) 

 

𝜕2𝐵±

𝜕𝑡2 +
𝜕

𝜕𝑧
[𝑢𝑧

𝜕𝐵±

𝜕𝑡
+

𝑑

𝑑𝑡
(𝑢𝑧𝐵±)] −

𝜕

𝜕𝑧
[

1

𝑛

𝜕𝐵±

𝜕𝑧
−

𝜀0
2𝛽

𝑛

𝜕(𝑛𝐵±)

𝜕𝑧
] + 𝑂(1 − 𝜀0

2𝛽)
𝜕

𝜕𝑧
[

𝑑

𝑑𝑡
(

1

𝑛

𝜕𝐵±

𝜕𝑧
)] = 0     (10d) 

 

The parallel component of Eq. (8) by using the above 

definitions can be written as 

𝑑𝑢𝑧

𝑑𝑡
= −

1

2𝑛

𝜕𝐵±
2

𝜕𝑧
+

𝜀0
2𝛽

2

𝜕𝐵±
2

𝜕𝑧
+

𝜀0
2𝛽

𝑛
𝐵±

2 𝜕𝑛

𝜕𝑧
−

𝛽

3𝑛

𝜕𝑛

𝜕𝑧
+

𝐻𝑒
2

2

𝜕

𝜕𝑧
(

𝜕2

𝜕𝑧2√𝑛

√𝑛
)                                                          (11) 

 

From the equation of continuity 

 
𝜕𝑛

𝜕𝑡
+

𝜕

𝜕𝑧
(𝑛𝑢𝑧) = 0                                                  (12) 

 

Taking the time derivative of Eq. (12) and using Eq. 

(11), we have 

 

𝜕2𝑛

𝜕𝑡2 −
𝛽

3

𝜕2𝑛

𝜕𝑧2 −
1

2
(1 − 𝜀0

2𝛽𝑛)
𝜕2𝐵±

2

𝜕𝑧2 −

𝐻𝑒
2

2

𝜕

𝜕𝑧
[𝑛

𝜕

𝜕𝑧
(

𝜕2

𝜕𝑧2√𝑛

√𝑛
)]                                                (13) 

 

Equations (10), (11), and (13) are nonlinear equations 

in a Fermionic spin-1/2 quantum plasma. In the case 

when n and uz are constants, Eq. (10) becomes 

[
𝜕2

𝜕𝑡2 − 𝑉𝐴
2(1 − 𝜀0

2𝛽𝑛)
𝜕2

𝜕𝑧2 + 𝑖
𝑉𝐴

2

Ω𝑖
(

1
−𝜀0

2𝛽
)

𝜕3

𝜕𝑧3 𝜕𝑡
] 𝐵± =

0                                                                             (14) 

 

This gives a dispersion relation for wave solutions 

with arbitrary amplitudes which is given by 

 

𝜔2 +
𝜔𝜔𝐴

2

Ω𝑖
− 𝜔𝐴

2 = 0                                               (15) 



© April 2024| IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002 
 

IJIRT 162828 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 149 

where, 𝜔𝐴 = 𝑘𝐴𝑉𝐴√(1 − 𝜀0
2𝛽) is a spin modified 

Alfven wave frequency with corresponding wave 

number 𝑘𝐴. For a low regime of frequency, i.e., 
𝜔𝐴

Ω𝑖
<

< 1, E q. (15) will become 

 

𝜔± = 𝜔𝐴 (1 ∓
𝜔𝐴

2Ω𝑖
)                                                (16) 

III. MATH 

In order to discuss the dispersion relation of 

parametrically in spin ½ multi species quantum 

plasma magnetically and gravitationally confined, we 

use the observed values of certain astrophysical 

scenarios, like that of dense plasmas (atmosphere of 

neutron stars, interior of massive white dwarfs). For 

these regions, the usual plasma parameters may be 

n0≈1030–1035 m-3 and B0 ≈105–1010 T. [24–29] The 

existence of high magnetic fields (106G) in white 

dwarfs was also predicted by Blackett and Ginzburg 

[43,44] and has been verified with the help of Zeeman 

spectroscopy. A number of white dwarfs have also 

been observed having magnetic fields in the range of 

a few hundred Mega gauss. Since in degenerate 

quantum plasmas, the Fermi energy, quantum 

tunnelling, quantum statistical parameter, and 

magnetization energy are the functions of density as 

well as of magnetic field, thus, any change in n0 and 

B0 will consequently alter the wave dynamics. Using 

SI units, the quantum statistical parameter is β ~ 1044 

(n0
5/3 / B0

2) and the normalized Zeeman energy due to 

electron spin is   Ɛ0 ~1015 (B0 /n2/3) 18 In the context of 

dense astrophysical objects, the quantum statistical 

parameter β takes on a finite value, and the normalized 

Zeeman energy resulting from the electron spin effect, 

denoted as Ɛ0, is typically on the order of unity or 

smaller. Utilizing quantum magnetohydrodynamics 

(QMHD), we derive a dispersion relation specifically 

for a spin-1/2 multispecies quantum plasma that is 

subjected to either magnetic or gravitational 

confinement. This dispersion relation provides 

valuable insights into the behaviour and properties of 

the plasma under such conditions. 
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