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Abstract— for a single node massive data, the mining 

calculation of the decision-tree is very large. In order to 

solve this problem, this paper proposes the HF_SPRINT 

parallel algorithm that bases on the Hadoop platform. The 

parallel algorithm optimizes and improves the SPRINT 

algorithm as well as realizes the parallelization. The 

experimental results show that this algorithm has high 

acceleration ratio and good scalability. 

Index Terms- Hadoop, Map Reduce, SPRINT 

I. INTRODUCTION 

Decision-tree is one of the key Data Mining technologies 

and categorization based on decision-tree has always been 

a research focus. However, current researches on 

decision-tree mining algorithm mainly focus on 

improving the mining algorithm which only improves the 

efficiency of the mining system but not the data 

processing capability. With the rapid development of 

computer and networking technology, the mass of data 

increases exponentially, which makes the single point 

data mining platform unsuitable for data analysis? To 

solve this problem, cloud computing is required. Cloud 

computing is the result of distributed processing, parallel 

processing and grid computing. Distributed and parallel 

massive data computing and processing are the keys of 

cloud computing. Thus, we can solve the massive data 

mining problem by parallelizing traditional decision-tree 

algorithms and then running them through cloud 

computing. In this, taking into account the characteristic 

of decision-tree, we propose a data mining platform based 

on Hadoop. The efficiency and efficiency of the are then 

evaluated through an improved platform parallelizing 

decision-tree algorithm. 

Data Classification 

 

Classification is an important data mining problem. 

Although classification is a well studied problem, most of 

the current classification algorithms require that all or a 

portion of the the entire dataset remain permanently in 

memory. This limits their suitability for mining over large 

databases. We present a new decision-tree-based 

classification algorithm, called SPRINT that removes all of 

the memory restrictions, and is fast and scalable. The 

algorithm has also been designed to be easily parallelized, 

allowing many processors to work together to build a single 

consistent model. This parallelization, also presented here, 

exhibits excellent scalability as well. The combination of 

these characteristics makes the proposed algorithm an ideal 

tool for data mining. 

Challenges in Data Classification: 

Classification is an important data mining problem. 

Although classification is a well studied problem, most of 

the current classification algorithms require that all or a 

portion of the the entire dataset remain permanently in 

memory. This limits their suitability for mining over large 

databases. The new decision-tree-based classification 

algorithm, called SPRINT that removes all of the memory 

restrictions, and is fast and scalable. The algorithm has also 

been designed to be easily parallelized, allowing many 

processors to work together to build a single consistent 

model. This parallelization, also presented here, exhibits 

excellent scalability as well. The combination of these 

characteristics makes the proposed algorithm an ideal tool 

for data mining 

Discussion of problem: 

Decision-tree is one of the key Data Mining technologies 

and categorization based on decision-tree has always been a 

research focus. However, current researches on decision tree 

mining algorithm mainly focus on improving the mining 

algorithm which only improves the efficiency of the mining 

system but not the data processing capability. With the rapid 

development of computer and networking technology, the 

mass of data increases exponentially, which makes the 

single point data mining platform unsuitable for data 

analysis? To solve this problem, cloud computing is 

required. Cloud computing is the result of distributed 

processing, parallel processing and grid computing.  
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II. PROBLEM STATEMENT 

Decision-tree is one of the key Data Mining technologies 

and categorization based on decision-tree has always been 

a research focus. However, current researches on 

decisiontree mining algorithm mainly focus on improving 

the mining algorithm which only improves the efficiency 

of the mining system but not the data processing 

capability. With the rapid development of computer and 

networking technology, the mass of data increases 

exponentially, which makes the single point data mining 

platform unsuitable for data analysis? To solve this 

problem, cloud computing is required. Cloud computing 

is the result of distributed processing, parallel processing 

and grid computing. Distributed and parallel massive data 

computing and processing are the keys of cloud 

computing. Thus, we can solve the massive data mining 

problem by parallelizing traditional decision-tree 

algorithms and then running them through cloud 

computing. In this, taking into account the characteristic 

of decision-tree, we propose a data mining platform based 

on Hadoop. The effectiveness and efficiency of the 

platform are then evaluated through an improved 

parallelizing decision tree algorithm. Classification is an 

important data mining problem. Although classification is 

a well studied problem, most of the current classification 

algorithms require that all or a portion of the the entire 

dataset remain permanently in memory. This limits their 

suitability for mining over large databases. We present a 

new decision-tree-based classification algorithm, called 

SPRINT that removes all of the memory restrictions, and 

is fast and scalable. The algorithm has also been designed 

to be easily parallelized, allowing many processors to 

work together to build a single consistent model. This 

parallelization, also presented here, exhibits excellent 

scalability as well. The combination of these 

characteristics makes the proposed algorithm an ideal tool 

for data mining. 

Classification has been identified as an important problem 

in the emerging field of data mining. While classification 

is a well-studied problem, only recently has there been 

focus on algorithms that can handle large databases. The 

intuition is that by classifying larger datasets, we will be 

able to improve the accuracy of the classification model. 

Classification is an important data mining 

problem. Although classification is a well studied 

problem, most of the current classification algorithms 

require that all or a portion of the the entire dataset remain 

permanently in memory. This limits their suitability for 

mining over large databases. The new decision-tree-based 

classification algorithm, called SPRINT that removes all of 

the memory restrictions, and is fast and scalable. The 

algorithm has also been designed to be easily parallelized, 

allowing many processors to work together to build a single 

consistent model. This parallelization, also presented here, 

exhibits excellent scalability as well. The combination of 

these characteristics makes the proposed algorithm an ideal 

tool for data mining 

III. SYSTEM DEVELOPMENT 

Data Classification Algorithms: 

 Classification is an important data mining problem. 

Recent researches are on the data classification algorithms 

that can handle large databases. The intuition is that by 

classifying larger datasets, we will be able to improve the 

accuracy of the classification model. 

The Classification problem:- 

The classification problem may be informally stated as 

follows: We are given a training set consisting of many 

training examples, taken by uniformly sampling the instance 

space we wish to ‘classify’. Each training example consists 

of a tuple with multiple attributes, one of which is the class 

label. The aim of classification is to process the training set 

and produce a classifier/model which ‘accurately’ describes 

each class. This model can then be used to classify data 

whose class label is unknown. 

Decision-Tree Algorithm Designs  

A decision tree classifier is usually built in two 

phases: A construction phase and a pruning phase. The 

construction phase is computationally more expensive than 

the pruning phase, since it involves multiple scans over the 

data, while the pruning phase only requires access to the 

fully grown decision tree. 

Decision-tree is one of the important branches of data 

mining algorithms. Most of the decision-tree algorithms, 

such as ID3, C4.5, CART, and etc, require that the training 

sample datasets stay in memory, which is impractical for 

data mining involving with thousands and millions datasets. 

To address the problem of limited main memory, John 

Shafer proposed SPRINT to apply to very large scale 

training sets and create compact accurate decision-tree. 

SPRINT has good expansibility and parallelizability, does 

not limited by the size of memory, runs fast, and allows 

multiple processors create a decision-tree model at 

collaboratively. In this we take SPRINT as an example and 

discuss the design of Hadoop based decision tree 

algorithms. 
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The SPRINT Algorithm:- 

A decision tree based classifier called SPRINT 

(acronym for Scalable Parallelizable Induction of decision 

Trees) is presented, which, as the name suggests, is both 

scalable w.r.t. size of dataset as well as parallelizable. Let 

us look at some of the main ideas involved in this 

algorithm. 

Decision-tree is one of the important branches of data 

mining algorithms. Most of the decision-tree algorithms, 

such as ID3, C4.5, CART, and etc, require that the 

training sample datasets stay in memory, which is 

impractical for data mining involving with thousands and 

millions datasets. To address the problem of limited main 

memory, John Shafer proposed SPRINT to apply to very 

large scale training sets and create compact accurate 

decision-tree. SPRINT has good expansibility and 

parallelizability, does not limited by the size of memory, 

runs fast, and allows multiple processors create a 

decision-tree model at collaboratively. In this we take 

SPRINT as an example and discuss the design of Hadoop 

based decision tree algorithms. 

Overview of SPRINT: 

A decision tree classifier is built in two phases 

[3] [2]: a growth phase and a prune phase. In the growth 

phase, the tree is built by recursively partitioning the data 

until each partition is either “pure” (all members belong 

to the same class) or sufficiently small (a parameter set by 

the user). This process is shown in Figure 2. The form of 

the split used to partition the data depends on the type of 

the attribute used in the split. Splits for a continuous 

attribute A are of the form value(A) < c where t is a value 

in the domain of A. Splits for a categorical attribute A are 

of the form value(A) E X where X C domain(A). We 

consider only binary splits because they usually lead to 

more accurate trees; however, our techniques can be 

extended to handle multi-way splits. Once the tree has 

been fully grown, it is pruned in the second phase to 

generalize the tree by removing dependence on statistical 

noise or variation that may be particular only to the 

training set. The tree growth phase is computationally 

much more expensive than pruning, since the data is 

scanned multiple times in this part of the computation. 

Pruning requires access only to the fully grown decision 

tree. Our experience based on our previous work on SLIQ 

has been that the pruning phase typically takes less than 

1% of the total time needed to build a classifier. We 

therefore focus only on the tree-growth phase. For 

pruning, we use the algorithm used in SLIQ, which is based 

on the Minimum Description Length principle. 

Consider, for example, the credit rating problem, 

wherein a credit rating company wishes to classify 

customers based on a training database containing 

information about them. The classi cation tree is generated 

in a top down fashion as follows: The data is recursively 

partitioned until either each partition is su ciently ‘pure’ 

(parameterized by a user specified confidence ), or is too 

small to yield statistically significant results. If neither of 

the above two criteria hold, the best possible split is chosen 

(For example, education level (e-level) at root node in and 

data is partitioned according to that split. We shall see in 

section 2.2.4 how the ‘goodness’ of a split is evaluated. As 

shown in figure , only binary splits are performed. For a 

continuous attribute A, it is of the form: value(A) < a, where 

a is a value in domain(A), while for a categorical attribute 

A, splits are of the form: value(A) 2 S, where S domain(A).                                 

                                  E-level in 

{graduate, postgraduate} 

    Yes                                      No 

       Rating=good                                 Salary > 60K 

       Rating=good                      Rating=Poor 

The Algorithm:- 

The recursive algorithm is as given in Algorithm 

above. Below explains how split points are evaluated and 

how splits are performed. 

Algorithm :-Flow of SPRINT algorithm 

Partition(Data D) 

begin 

        if more than % (=confidence) of the elements in D 

belong to the same class OR size 

            of D < minsize then 

            return; 

       end if 

      for each attribute A do 

      evaluate splits on attribute A (Section 2.2.4) 

      end for 

     Use the best split to partition D into D 1 and D2 

    Partition(D 1) 

     Partition(D 2) 

end 
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The well-known CART [3] and C4.5 [2] classifiers, for 

example, grow trees depth-first and repeatedly sort the 

data at every node of the tree to arrive at the best splits for 

numeric attributes. SLIQ, on the other hand, replaces this 

repeated sorting with one-time sort by using separate lists 

for each attribute (see [5] for details). SLIQ uses a data 

structure called a class list which must remain memory 

resident at all times. The size of this structure is 

proportional to the number of Figure 3: Example of 

attribute lists input records, and this is what limits the 

number of input records that SLIQ can handle. SPRINT 

addresses the above two issues differently from previous 

algorithms; it has no restriction on the size of input and 

yet is a fast algorithm. It shares with SLIQ the advantage 

of a one-time sort, but uses different- data structures. In 

particular, there is no structure like the class list that 

grows with the size of input and needs to be memory-

resident. We further discuss differences between SLIQ 

and SPRINT in Section 2.4, after we have described 

SPRINT.  

Data Structures:- 

 The two principal data structures used by 

SPRINT are attribute lists and histograms. An attribute 

list is a vertical projection of the training set, consisting of 

three columns: An attribute value, the class label and the 

id of the record from which these values were obtained. 

At the root of the classification tree, the attribute lists are 

got by projecting out the required attributes from the 

training set. At each node of the tree, whenever a split is 

performed, the attribute list corresponding to that node is 

partitioned as per the split condition, and each partition is 

associated with the corresponding child. The attribute lists 

for numerical attributes are sorted initially, and continue 

to remain sorted throughout the tree construction phase. 

 For categorical attributes, the histogram (also 

called count matrix) contains the class distribution for 

each value of the attribute. For numerical attributes, two 

histograms are associated: Cabove and Cbelow. These , as 

the notation suggests, keep track of the class distributions 

above and below certain values of the attribute. 

IV. RELATED WORK 

Data Placement and Workload Balancing 

Recall that the main data structures used in SPRINT are 

the attribute lists and the class histograms. SPRINT 

achieves uniform data placement and workload balancing 

by distributing the attribute lists evenly over N processors 

of a shared-nothing machine. 

This allows each processor to work on only l/N of the total 

data. The partitioning is achieved by first distributing the 

training-set examples equally among all the processors. 

Each processor then generates its own attribute-list 

partitions in parallel by projecting out each attribute from 

training-set examples it was assigned. Lists for categorical 

attributes are therefore evenly partitioned and require no 

further processing. However, continuous attribute lists must 

now be sorted and repartitioned into contiguous sorted 

sections. For this, we use the parallel sorting algorithm 

given in [8]. The result of this sorting operation is that each 

processor gets fairly equal-sized sorted sections of each 

attribute list. 

Finding split points 

Finding split points in parallel SPRINT is very similar to the 

serial algorithm. In the serial version, processors scan the 

attribute lists either evaluating split points for continuous 

attributes or collecting distribution counts for categorical 

attributes. This does not change in the parallel algorithm - 

no extra work or communication is required while each 

processor is scanning its attribute-list partitions. We get the 

full advantage of having N processors simultaneously and 

independently processing l/N of the total data. The 

differences between the serial and parallel algorithms appear 

only before and after the attribute-list partitions are scanned. 

Continuous attributes 

For continuous attributes, the parallel version of SPRINT 

differs from the serial version in how it initializes the 

C&low and C,,bove class-histograms. In a parallel 

environment, each processor has a separate contiguous 

section of a “global” attribute list. Thus, a processor’s 

Cbelou, and Cabove histograms must be initialized to reflect 

the fact that there are sections of the attribute list on other 

processors. Specifically, C&l- must initially reflect the class 

distribution of all sections of an attribute-list assigned to 

processors of lower rank. The C&,,,Ve histograms must 

likewise initially reflect the class distribution of the local 

section as well as all sections assigned to processors of 

higher rank. As in the serial version, these statistics are 

gathered when attribute lists for new leaves are created. 

After collecting statistics, the information is exchanged 

between all the processors and stored with each leaf, where 

it is later used to initialize that leaf’s C&we and Cb&vr 

class histograms. 

Categorical attributes 

For categorical attributes, the difference between the serial 

and parallel versions arises after an attribute-list section has 

been scanned to build the count matrix for a leaf. Since the 
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count matrix built by each processor is based on “local” 

information only, we must exchange these matrices to get 

the “global” counts. This is done by choosing a 

coordinator to collect the count matrices from each 

processor. The coordinator process then sums the local 

matrices to get the global count-matrix. 

RESULTS 

 

 

 

V. CONCLUSION 

The parallelization of decision-tree algorithms is the 

research focus of solving the classification problem for 

huge size data sets. SPRINT algorithm is one of the 

decision-tree algorithms with good parallelizability, but 

finding the split point for continuous attributes is very 

time consuming. During our study of parallelizing the 

SPRINT algorithms, we propose the HF_SPRINT 

algorithm based on Hadoop platform. The simulation 

results show that compared to H_SPRINT, HF_SPRINT 

has good parallel computing capability and significantly 

reduces the computing time 
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