
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100148 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 47

DATA CLASSIFYING LARGER DATASETS BY USING

SPRINTS

 K. Veeraprathap Reddy1, T. Chandra Sekhara Reddy2
1M.Tech, CSE Dept, MLRIT, Hyderabad

2M.Tech(S.E), Associate. Professor, MLRIT, Dundigal, Ranga Reddy

Abstract— for a single node massive data, the mining

calculation of the decision-tree is very large. In order to

solve this problem, this paper proposes the HF_SPRINT

parallel algorithm that bases on the Hadoop platform. The

parallel algorithm optimizes and improves the SPRINT

algorithm as well as realizes the parallelization. The

experimental results show that this algorithm has high

acceleration ratio and good scalability.

Index Terms- Hadoop, Map Reduce, SPRINT

I. INTRODUCTION

Decision-tree is one of the key Data Mining technologies

and categorization based on decision-tree has always been

a research focus. However, current researches on

decision-tree mining algorithm mainly focus on

improving the mining algorithm which only improves the

efficiency of the mining system but not the data

processing capability. With the rapid development of

computer and networking technology, the mass of data

increases exponentially, which makes the single point

data mining platform unsuitable for data analysis? To

solve this problem, cloud computing is required. Cloud

computing is the result of distributed processing, parallel

processing and grid computing. Distributed and parallel

massive data computing and processing are the keys of

cloud computing. Thus, we can solve the massive data

mining problem by parallelizing traditional decision-tree

algorithms and then running them through cloud

computing. In this, taking into account the characteristic

of decision-tree, we propose a data mining platform based

on Hadoop. The efficiency and efficiency of the are then

evaluated through an improved platform parallelizing

decision-tree algorithm.

Data Classification

Classification is an important data mining problem.

Although classification is a well studied problem, most of

the current classification algorithms require that all or a

portion of the the entire dataset remain permanently in

memory. This limits their suitability for mining over large

databases. We present a new decision-tree-based

classification algorithm, called SPRINT that removes all of

the memory restrictions, and is fast and scalable. The

algorithm has also been designed to be easily parallelized,

allowing many processors to work together to build a single

consistent model. This parallelization, also presented here,

exhibits excellent scalability as well. The combination of

these characteristics makes the proposed algorithm an ideal

tool for data mining.

Challenges in Data Classification:

Classification is an important data mining problem.

Although classification is a well studied problem, most of

the current classification algorithms require that all or a

portion of the the entire dataset remain permanently in

memory. This limits their suitability for mining over large

databases. The new decision-tree-based classification

algorithm, called SPRINT that removes all of the memory

restrictions, and is fast and scalable. The algorithm has also

been designed to be easily parallelized, allowing many

processors to work together to build a single consistent

model. This parallelization, also presented here, exhibits

excellent scalability as well. The combination of these

characteristics makes the proposed algorithm an ideal tool

for data mining

Discussion of problem:

Decision-tree is one of the key Data Mining technologies

and categorization based on decision-tree has always been a

research focus. However, current researches on decision tree

mining algorithm mainly focus on improving the mining

algorithm which only improves the efficiency of the mining

system but not the data processing capability. With the rapid

development of computer and networking technology, the

mass of data increases exponentially, which makes the

single point data mining platform unsuitable for data

analysis? To solve this problem, cloud computing is

required. Cloud computing is the result of distributed

processing, parallel processing and grid computing.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100148 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 48

II. PROBLEM STATEMENT

Decision-tree is one of the key Data Mining technologies

and categorization based on decision-tree has always been

a research focus. However, current researches on

decisiontree mining algorithm mainly focus on improving

the mining algorithm which only improves the efficiency

of the mining system but not the data processing

capability. With the rapid development of computer and

networking technology, the mass of data increases

exponentially, which makes the single point data mining

platform unsuitable for data analysis? To solve this

problem, cloud computing is required. Cloud computing

is the result of distributed processing, parallel processing

and grid computing. Distributed and parallel massive data

computing and processing are the keys of cloud

computing. Thus, we can solve the massive data mining

problem by parallelizing traditional decision-tree

algorithms and then running them through cloud

computing. In this, taking into account the characteristic

of decision-tree, we propose a data mining platform based

on Hadoop. The effectiveness and efficiency of the

platform are then evaluated through an improved

parallelizing decision tree algorithm. Classification is an

important data mining problem. Although classification is

a well studied problem, most of the current classification

algorithms require that all or a portion of the the entire

dataset remain permanently in memory. This limits their

suitability for mining over large databases. We present a

new decision-tree-based classification algorithm, called

SPRINT that removes all of the memory restrictions, and

is fast and scalable. The algorithm has also been designed

to be easily parallelized, allowing many processors to

work together to build a single consistent model. This

parallelization, also presented here, exhibits excellent

scalability as well. The combination of these

characteristics makes the proposed algorithm an ideal tool

for data mining.

Classification has been identified as an important problem

in the emerging field of data mining. While classification

is a well-studied problem, only recently has there been

focus on algorithms that can handle large databases. The

intuition is that by classifying larger datasets, we will be

able to improve the accuracy of the classification model.

Classification is an important data mining

problem. Although classification is a well studied

problem, most of the current classification algorithms

require that all or a portion of the the entire dataset remain

permanently in memory. This limits their suitability for

mining over large databases. The new decision-tree-based

classification algorithm, called SPRINT that removes all of

the memory restrictions, and is fast and scalable. The

algorithm has also been designed to be easily parallelized,

allowing many processors to work together to build a single

consistent model. This parallelization, also presented here,

exhibits excellent scalability as well. The combination of

these characteristics makes the proposed algorithm an ideal

tool for data mining

III. SYSTEM DEVELOPMENT

Data Classification Algorithms:

 Classification is an important data mining problem.

Recent researches are on the data classification algorithms

that can handle large databases. The intuition is that by

classifying larger datasets, we will be able to improve the

accuracy of the classification model.

The Classification problem:-

The classification problem may be informally stated as

follows: We are given a training set consisting of many

training examples, taken by uniformly sampling the instance

space we wish to ‘classify’. Each training example consists

of a tuple with multiple attributes, one of which is the class

label. The aim of classification is to process the training set

and produce a classifier/model which ‘accurately’ describes

each class. This model can then be used to classify data

whose class label is unknown.

Decision-Tree Algorithm Designs

A decision tree classifier is usually built in two

phases: A construction phase and a pruning phase. The

construction phase is computationally more expensive than

the pruning phase, since it involves multiple scans over the

data, while the pruning phase only requires access to the

fully grown decision tree.

Decision-tree is one of the important branches of data

mining algorithms. Most of the decision-tree algorithms,

such as ID3, C4.5, CART, and etc, require that the training

sample datasets stay in memory, which is impractical for

data mining involving with thousands and millions datasets.

To address the problem of limited main memory, John

Shafer proposed SPRINT to apply to very large scale

training sets and create compact accurate decision-tree.

SPRINT has good expansibility and parallelizability, does

not limited by the size of memory, runs fast, and allows

multiple processors create a decision-tree model at

collaboratively. In this we take SPRINT as an example and

discuss the design of Hadoop based decision tree

algorithms.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100148 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 49

The SPRINT Algorithm:-

A decision tree based classifier called SPRINT

(acronym for Scalable Parallelizable Induction of decision

Trees) is presented, which, as the name suggests, is both

scalable w.r.t. size of dataset as well as parallelizable. Let

us look at some of the main ideas involved in this

algorithm.

Decision-tree is one of the important branches of data

mining algorithms. Most of the decision-tree algorithms,

such as ID3, C4.5, CART, and etc, require that the

training sample datasets stay in memory, which is

impractical for data mining involving with thousands and

millions datasets. To address the problem of limited main

memory, John Shafer proposed SPRINT to apply to very

large scale training sets and create compact accurate

decision-tree. SPRINT has good expansibility and

parallelizability, does not limited by the size of memory,

runs fast, and allows multiple processors create a

decision-tree model at collaboratively. In this we take

SPRINT as an example and discuss the design of Hadoop

based decision tree algorithms.

Overview of SPRINT:

A decision tree classifier is built in two phases

[3] [2]: a growth phase and a prune phase. In the growth

phase, the tree is built by recursively partitioning the data

until each partition is either “pure” (all members belong

to the same class) or sufficiently small (a parameter set by

the user). This process is shown in Figure 2. The form of

the split used to partition the data depends on the type of

the attribute used in the split. Splits for a continuous

attribute A are of the form value(A) < c where t is a value

in the domain of A. Splits for a categorical attribute A are

of the form value(A) E X where X C domain(A). We

consider only binary splits because they usually lead to

more accurate trees; however, our techniques can be

extended to handle multi-way splits. Once the tree has

been fully grown, it is pruned in the second phase to

generalize the tree by removing dependence on statistical

noise or variation that may be particular only to the

training set. The tree growth phase is computationally

much more expensive than pruning, since the data is

scanned multiple times in this part of the computation.

Pruning requires access only to the fully grown decision

tree. Our experience based on our previous work on SLIQ

has been that the pruning phase typically takes less than

1% of the total time needed to build a classifier. We

therefore focus only on the tree-growth phase. For

pruning, we use the algorithm used in SLIQ, which is based

on the Minimum Description Length principle.

Consider, for example, the credit rating problem,

wherein a credit rating company wishes to classify

customers based on a training database containing

information about them. The classi cation tree is generated

in a top down fashion as follows: The data is recursively

partitioned until either each partition is su ciently ‘pure’

(parameterized by a user specified confidence), or is too

small to yield statistically significant results. If neither of

the above two criteria hold, the best possible split is chosen

(For example, education level (e-level) at root node in and

data is partitioned according to that split. We shall see in

section 2.2.4 how the ‘goodness’ of a split is evaluated. As

shown in figure , only binary splits are performed. For a

continuous attribute A, it is of the form: value(A) < a, where

a is a value in domain(A), while for a categorical attribute

A, splits are of the form: value(A) 2 S, where S domain(A).

 E-level in

{graduate, postgraduate}

 Yes No

 Rating=good Salary > 60K

 Rating=good Rating=Poor

The Algorithm:-

The recursive algorithm is as given in Algorithm

above. Below explains how split points are evaluated and

how splits are performed.

Algorithm :-Flow of SPRINT algorithm

Partition(Data D)

begin

 if more than % (=confidence) of the elements in D

belong to the same class OR size

 of D < minsize then

 return;

 end if

 for each attribute A do

 evaluate splits on attribute A (Section 2.2.4)

 end for

 Use the best split to partition D into D 1 and D2

 Partition(D 1)

 Partition(D 2)

end

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100148 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 50

The well-known CART [3] and C4.5 [2] classifiers, for

example, grow trees depth-first and repeatedly sort the

data at every node of the tree to arrive at the best splits for

numeric attributes. SLIQ, on the other hand, replaces this

repeated sorting with one-time sort by using separate lists

for each attribute (see [5] for details). SLIQ uses a data

structure called a class list which must remain memory

resident at all times. The size of this structure is

proportional to the number of Figure 3: Example of

attribute lists input records, and this is what limits the

number of input records that SLIQ can handle. SPRINT

addresses the above two issues differently from previous

algorithms; it has no restriction on the size of input and

yet is a fast algorithm. It shares with SLIQ the advantage

of a one-time sort, but uses different- data structures. In

particular, there is no structure like the class list that

grows with the size of input and needs to be memory-

resident. We further discuss differences between SLIQ

and SPRINT in Section 2.4, after we have described

SPRINT.

Data Structures:-

 The two principal data structures used by

SPRINT are attribute lists and histograms. An attribute

list is a vertical projection of the training set, consisting of

three columns: An attribute value, the class label and the

id of the record from which these values were obtained.

At the root of the classification tree, the attribute lists are

got by projecting out the required attributes from the

training set. At each node of the tree, whenever a split is

performed, the attribute list corresponding to that node is

partitioned as per the split condition, and each partition is

associated with the corresponding child. The attribute lists

for numerical attributes are sorted initially, and continue

to remain sorted throughout the tree construction phase.

 For categorical attributes, the histogram (also

called count matrix) contains the class distribution for

each value of the attribute. For numerical attributes, two

histograms are associated: Cabove and Cbelow. These , as

the notation suggests, keep track of the class distributions

above and below certain values of the attribute.

IV. RELATED WORK

Data Placement and Workload Balancing

Recall that the main data structures used in SPRINT are

the attribute lists and the class histograms. SPRINT

achieves uniform data placement and workload balancing

by distributing the attribute lists evenly over N processors

of a shared-nothing machine.

This allows each processor to work on only l/N of the total

data. The partitioning is achieved by first distributing the

training-set examples equally among all the processors.

Each processor then generates its own attribute-list

partitions in parallel by projecting out each attribute from

training-set examples it was assigned. Lists for categorical

attributes are therefore evenly partitioned and require no

further processing. However, continuous attribute lists must

now be sorted and repartitioned into contiguous sorted

sections. For this, we use the parallel sorting algorithm

given in [8]. The result of this sorting operation is that each

processor gets fairly equal-sized sorted sections of each

attribute list.

Finding split points

Finding split points in parallel SPRINT is very similar to the

serial algorithm. In the serial version, processors scan the

attribute lists either evaluating split points for continuous

attributes or collecting distribution counts for categorical

attributes. This does not change in the parallel algorithm -

no extra work or communication is required while each

processor is scanning its attribute-list partitions. We get the

full advantage of having N processors simultaneously and

independently processing l/N of the total data. The

differences between the serial and parallel algorithms appear

only before and after the attribute-list partitions are scanned.

Continuous attributes

For continuous attributes, the parallel version of SPRINT

differs from the serial version in how it initializes the

C&low and C,,bove class-histograms. In a parallel

environment, each processor has a separate contiguous

section of a “global” attribute list. Thus, a processor’s

Cbelou, and Cabove histograms must be initialized to reflect

the fact that there are sections of the attribute list on other

processors. Specifically, C&l- must initially reflect the class

distribution of all sections of an attribute-list assigned to

processors of lower rank. The C&,,,Ve histograms must

likewise initially reflect the class distribution of the local

section as well as all sections assigned to processors of

higher rank. As in the serial version, these statistics are

gathered when attribute lists for new leaves are created.

After collecting statistics, the information is exchanged

between all the processors and stored with each leaf, where

it is later used to initialize that leaf’s C&we and Cb&vr

class histograms.

Categorical attributes

For categorical attributes, the difference between the serial

and parallel versions arises after an attribute-list section has

been scanned to build the count matrix for a leaf. Since the

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100148 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 51

count matrix built by each processor is based on “local”

information only, we must exchange these matrices to get

the “global” counts. This is done by choosing a

coordinator to collect the count matrices from each

processor. The coordinator process then sums the local

matrices to get the global count-matrix.

RESULTS

V. CONCLUSION

The parallelization of decision-tree algorithms is the

research focus of solving the classification problem for

huge size data sets. SPRINT algorithm is one of the

decision-tree algorithms with good parallelizability, but

finding the split point for continuous attributes is very

time consuming. During our study of parallelizing the

SPRINT algorithms, we propose the HF_SPRINT

algorithm based on Hadoop platform. The simulation

results show that compared to H_SPRINT, HF_SPRINT

has good parallel computing capability and significantly

reduces the computing time

REFERENCES

[1] Lei Wan-yun. Cloud computing technologies,

platforms and application cases[M].BeiJing. Tsinghua

University Press 2011.5:pp222~224

[2] Yang Chen-zhu. The Research of Data Mining Based on

HADOOP [D]. Chong Qing. Chongqing University

2010.11:pp42~43

[3] Zhu Min,Wan Jian-yi,Wang Ming-wen. Design and

implementation of parallel decision tree classification

algorithmbased on MR[J]. Journal of Guangxi Normal

University Natural Science.Vol.29 No.1 2011.3：pp84

[4] Peng Cheng,Luo Ke. Improving the Method Used by

SPRINT Algorithm to Find the Best Split Point of

Continuous Attribute[J]. Computer Engineering and

Applications 2006.27:pp155~156

[5] http://archive.ics.uci.edu/ml/datasets.html

[6] Li Ying-an. Research on Parallelization of Clustering

Algorithm Based on MapReduce[D]. Zhongshan University

2010:pp30~33

http://archive.ics.uci.edu/ml/datasets.html

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100148 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 52

AUTHOR DETAILS:

First Author: K. VeeraPrathap Reddy received B.Tech

Computer Science and Engineering from Abdul Kalam

Institute of Technological and Sciences, Kothagudem, in

the year 2011. He is currently M.Tech student in

Computer Science and Engineering Department from

MLR Institute of Technology. His research interested

areas are in the field of Cloud Computing, Mobile

Computing, Networking and Information Security.

Second Author: T. Chandra Sekhara Reddy working

as an Asst. Professor & Convener & Co-Ordinator for

Industry Institute Partnership (IIPC) in MLR Institute of

Technology. He has completed his M.Tech (S.E) from

JNTU, Hyderabad and he has 7 years of teaching

experience. His research interested areas are Wireless

Sensor Networks, Data Mining, Data base.

Third Author: G Kiran Kumar is working as Associate

Professor & HOD-CSE in MLR Institute of technology.

He did M.Tech from Osmania University, Hyderabad, and

submitted Ph.D from Nagarjuna University. His research

areas include Data Mining, Spatial data mining, Software

Engineering.

