
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100248 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 397

ADDRESSING MODE

Aarti Singh, Ananya Anikesh

Abstract- Addressing mode is the way of addressing a

memory location in instruction. Microcontroller

needs data or operands on which the operation is to

be performed. The method of specifying source of

operand and output of result in an instruction is

known as addressing In this paper we explain types

of addressing mode getting familiar with 8085

addressing mode, explain 8086 addressing mode

Index Terms- addressing mode, 8086 addressing

mode,8085 addressing mode etc

I. INTRODUCTION

Addressing mode is the way of addressing a

memory location in instruction. Microcontroller

needs data or operands on which the operation is to

be performed. The method of specifying source of

operand and output of result in an instruction is

known as addressing mode. One of a set of

 methods for specifying the operand(s) for a

machinecode instruction.Differentprocessors vary g

reatly in the number of addressingmodes they provi

de. The more complex modes described belowcan

usually be replaced with a short sequence of

instructions using only simpler modes. The most

common modes are "register" the operand is stored

in a specified register; "absolute" the operand is sto

red at a specified memory address; and

"immediate" - the operand is contained within the

instruction. Most processors also have indirect

addressing modes, e.g. "register indirect", "memory

indirect" where the specified register or memory

location does not contain the operand but contains

its address, known as the "effective address". For

an absolute addressing mode, the effective

 address is contained within the instruction.

Indirect addressing modes often have options for pr

e- or post- increment or decrement, meaning

that the register ormemory location containing

 the effective address is incremented or

decremented by some amount (either fixed or

alsospecified in the instruction),

either before or after the instruction is executed.

 These are very useful for stacks and for accessing

blocks of data. Other variations form the effective

address by adding together one or more registers an

d oneor more constants which may

themselves be direct or indirect. Such complex

addressing modes are designed tosupport access

to multidimensional arrays and arrays of data struct

ures. The addressing mode may be "implicit" - the

location of the operand is obvious from the

particular instruction. This would be the case for

an instruction that modified a particular control

register in the CPU or, in a stack based processor

where operands are always on the top of the stack.

II. NUMBER OF ADDRESSING MODE

Different computer architectures vary greatly as to

the number of addressing modes they provide in

hardware. There are some benefits to eliminating

complex addressing modes and using only one or a

few simpler addressing modes, even though it

requires a few extra instructions, and perhaps an

extra register.[1] It has proven[2] [3] [4] much easier to

designpipelined CPUs if the only addressing modes

available are simple ones.

Most RISC machines have only about five simple

addressing modes, while CISC machines such as

the DEC VAX supermini have over a dozen

addressing modes, some of which are quite

complicated. The IBM System/360 mainframe had

only three addressing modes; a few more have been

added for the System/390.When there are only a

few addressing modes, the particular addressing

mode required is usually encoded within the

instruction code (e.g. IBM System/360 and

successors, most RISC). But when there are lots of

addressing modes, a specific field is often set aside

in the instruction to specify the addressing mode.

The DEC VAX allowed multiple memory operands

for almost all instructions, and so reserved the first

few bits of each operand specifier to indicate the

addressing mode for that particular operand.

Keeping the addressing mode specifier bits

separate from the opcode operation bits produces

an orthogonal instruction set.

Even on a computer with many addressing modes,

measurements of actual programs[5] indicate that

the simple addressing modes listed below account

for some 90% or more of all addressing modes

used. Since most such measurements are based on

code generated from high-level languages by

compilers, this reflects to some extent the

limitations of the compilers being used.[6]

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100248 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 398

III. TYPES OF ADDRESSING MODE

 The common addressing modes are:

▪ Immediate

▪ Direct

▪ Indirect

▪ Register

▪ Register indirect

▪ Displacement (Indexed)

▪ Stack

▪

Immediate Addressing:

 Instruction

▪ operand is a part of instruction

▪ operand = address field

▪ e.g. ADD 5

—Add 5 to contents of accumulator

—5 is operand

▪ No memory reference to fetch data

▪ Fast

▪ Limited range

Direct Addressing:

▪ Address field contains address of operand

▪ Effective address (EA) = address field (A)

▪ e.g. ADD A

—Add contents of cell A to accumulator

—Look in memory at address A for operand

▪ Single memory reference to access data

▪ No additional calculations to work out

effective address

▪ Limited address space

Indirect Addresssing:

▪ Memory cell pointed to by address field

contains the address of (pointer to) the operand

▪ EA = (A)

—Look in A, find address (A) and look there

for operand

▪ e.g. ADD (A)

—Add contents of cell pointed to by contents

of A to accumulator

▪ Large address space

▪ 2n where n = word length

▪ May be nested, multilevel, cascaded

—e.g. EA = (((A)))

▪ Multiple memory accesses to find operand

▪ Hence slower

Register Addressing:

▪ Operand is held in register named in address

filed

▪ EA = R

▪ Limited number of registers

▪ Very small address field needed

—Shorter instructions

—Faster instruction fetch

▪ No memory access

▪ Very fast execution

▪ Very limited address space

▪ Multiple registers helps performance

—Requires good assembly programming or

compiler writing

—N.B. C programming

–register int a;

Register Indirect Addressing:

▪ C.f. indirect addressing

▪ EA = (R)

▪ Operand is in memory cell pointed to by

contents of register R

▪ Large address space (2n)

▪ One fewer memory access than indirect

addressing

Displacement Addressing:

▪ EA = A + (R)

▪ Address field hold two values

—A = base value

—R = register that holds displacement

—or vice versa

Stack Addressing:

▪ Operand is (implicitly) on top of stack

▪ e.g.

—ADD Pop top two items from stack and

add

▪ The stack mode of addressing is a form of

implied addressing

▪ the machine instructions need not include a

memory reference but implicitly operate on top

of stack.

(30930)

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100248 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 399

Getting Familiar with the 8051’s Addressing

Modes

You don’t need to know a lot about the 8051’s

addressing; we use most modes, of its modest set,

but not

all. When you are learning assembly language, it’s

good news that the 8051 isn’t very versatile (in

contrast,

say, to Motorola’s 68000, which we used some

years ago; it offered fourteen addressing modes).

There’s

less to learn than for a more complex machine. On

the other hand, when you’re trying to write code to

get

something done, the 8051’s restrictions are less

pleasing. Many addressing modes that make perfect

sense—

such as “MOVX @DPTR, #012h” or “CLR R5” or

“MOV R3, R4”—just aren’t available

ADDRESSING MODE ON 8086

The x86 instructions use five different operand

types: registers, constants, and three memory

addressing schemes. Each form is called

an addressing mode. The x86 processors support

 the register addressing mode ,

 the immediate addressing mode,

 the direct addressing mode,

 the indirect addressing mode,

the base plus index addressing mode,

the register relative addressing mode,

The most

common names

for addressing

mode

Addressing

modes
Example

Instruction
Meaning When used

Register Add R4,R3 R4 <- R4 + R3 When a value is in a register

Immediate Add R4, #3 R4 <- R4 + 3 For constants

Displacement
Add R4,

100(R1)
R4 <- R4 + M[100+R1] Accessing local variables

Register

deffered
Add R4,(R1) R4 <- R4 + M[R1]

Accessing using a pointer or a

computed address

Indexed
Add R3, (R1 +

R2)
R3 <- R3 + M[R1+R2]

Useful in array addressing:

R1 - base of array

R2 - index amount

Direct Add R1, (1001) R1 <- R1 + M[1001] Useful in accessing static data

Memory

deferred

Add R1,

@(R3)
R1 <- R1 + M[M[R3]]

If R3 is the address of a pointer p,

then mode yields *p

Auto-

increment
Add R1, (R2)+

R1 <- R1 +M[R2]

R2 <- R2 + d

Useful for stepping through arrays

in a loop.

R2 - start of array

d - size of an element

Auto-

decrement
Add R1,-(R2)

R2 <-R2-d

R1 <- R1 + M[R2]

Same as autoincrement.

Both can also be used to implement

a stack as push and pop

Scaled
Add R1,

100(R2)[R3]

R1<-

R1+M[100+R2+R3*d]

Used to index arrays. May be

applied to any base addressing mode

in some machines.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100248 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 400

and the base relative plus index addressing mode.

Register operands are the easiest to understand.

Consider the following forms of

the mov instruction:

mov ax, ax

mov ax, bx

mov ax, cx

mov ax, dx

The first instruction accomplishes absolutely

nothing. It copies the value from the ax register

back into the ax register. The remaining three

instructions copy the value of bx, cx and dx into ax.

Note that the original values of bx, cx,

and dx remain the same. The first operand

(the destination) is not limited to ax; you can move

values to any of these registers.

Constants are also pretty easy to deal with.

Consider the following instructions:

mov ax, 25

mov bx, 195

mov cx, 2056

mov dx, 1000

These instructions are all pretty straightforward;

they load their respective registers with the

specified hexadecimal constant.

There are three addressing modes which deal with

accessing data in memory. These addressing modes

take the following forms:

mov ax, [1000]

mov ax, [bx]

mov ax, [1000+bx]

The first instruction above uses

the direct addressing mode to load ax with the 16

bit value stored in memory starting at location 1000

hex.

The mov ax, [bx] instruction loads ax from the

memory location specified by the contents of

the bx register. This is an indirect addressing mode.

Rather than using the value in bx, this instruction

accesses to the memory location whose address

appears in bx.

Note that the following two instructions:

mov bx, 1000

mov ax, [bx]

are equivalent to the single instruction:

mov ax, [1000]

Of course, the second sequence is preferable.

However, there are many cases where the use of

indirection is faster, shorter, and better.

Another addressing mode is the base

plus index addressing mode. An example of this

memory addressing mode is

mov ax, [1000+bx]

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100248 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 401

IV. CONCLUSION

The term addressing modes refers to the way in

which the operand of an instruction is specified.

Information contained in the instruction code is the

value of the operand or the address of the

result/operand. The type of addressing mode we

have explain above.

REFERNCES

[1] "How many addressing modes are

enough?" by F. Chow, S. Correll, M.

Himelstein, E. Killian, L. Weber, all from

MIPS Computer Systems, Inc. 1987 "An

Overview of the MIPS-X-MP Project" by John

L. Hennessy and Mark A. Horowitz 1986:

"MIPS-X uses a single addressing mode: base

register plus offset. This simple addressing

mode allows the computation of the effective

address to begin very early"

[2] http://www.csee.umbc.edu/~squire/cs411_l19.

html

[3] http://hpc.serc.iisc.ernet.in/~govind/hpc/L10-

Pipeline.txt

[4] John Paul Shen, Mikko H. Lipasti

(2004). Modern Processor Design. McGraw-

Hill Professional.

[5] Reference Manual IBM 7090 Data Processing

System. IBM. 1962. pp. 9–10.

[6] Jones, Douglas, Reference Instructions on the

PDP-8, retrieved 1 July 2013

[7] Friend, Carl, Data General NOVA Instruction

Set Summary, retrieved 1 July 2013

[8] "C Reference: function malloc()"

[9] Dave Brooks. "Some Old Computers".

[10] Bill Purvis. "Some details of the Elliott 803B

hardware"

