
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002 

IJIRT 100432 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 908 
 

MICROSOFT FOUNDATION CLASS LIBRARY 

Manisha Yadav, Nisha Thakran 

IT DEPARTMENT 

DCE ,GURGAON 

Abstract - The paper is associated with   the 

MICROSOFT Foundation CLASS LIBRARY. It is 

a library  that  wraps  portions of the Windows API  

in  C++  classes, including functionality that enables 

them to use a default application framework. MFC 

was introduced with Microsoft's C/C++ 

7.0 compiler for use with 16-bit versions 

of Windows as an extremely thin object-oriented C++ 

wrapper for the Windows API.This paper also depicts 

the features ofhe visual c++ such as it provides 

C++ macros for Windows messages, exceptions, run-

time type dentification (RTTI), serialization and 

dynamic class instantiation. This paper also shows the 

versions of the visual c++. 

I. INTRODUCTION 

The Microsoft Foundation Class Library is an 

application framework for programming in 

Microsoft Windows. Written in C++, MFC 

provides much of the code necessary for managing 

windows, menus, and dialog boxes; performing 

basic input/output; storing collections of data 

objects; and so on. All you need to do is add your 

application-specific code into this framework. 

Given the nature of C++ class programming, it is 

easy to extend or override the basic functionality 

that the MFC framework supplies. 

The MFC framework is a powerful approach that 

lets you build upon the work of expert 

programmers for Windows. MFC shortens 

development time; makes code more portable; 

provides tremendous support without reducing 

programming freedom and flexibility; and gives 

easy access to "hard to program" user-interface 

elements and technologies, like Active technology, 

OLE, and Internet programming. Furthermore, 

MFC simplifies database programming through 

Data Access Objects (DAO) and Open Database 

Connectivity (ODBC), and network programming 

through Windows Sockets. MFC makes it easy to 

program features like property sheets ("tab 

dialogs"), print preview, and floating, customizable 

toolbars. 

II. FEATURES 

MFC provided C++ macros for Windows message-

handling, exceptions, run-time type 

identification (RTTI), serialization and dynamic 

class instantiation. 

The macros for message-handling aimed to reduce 

memory consumption by avoiding 

gratuitous virtual table use and also to provide a 

more concrete structure for various Visual C++-

supplied tools to edit and manipulate code without 

parsing the full language. The message-handling 

macros replaced the virtual functionmechanism 

provided by C++. 

The macros for serialization, exceptions, and RTTI 

predated availability of these features in Microsoft 

C++ by a number of years. 32-bit versions of MFC, 

forWindows NT 3.1 and later Windows operating 

systems, used compilers that implemented the 

language features and updated the macros to simply 

wrap the language features instead of providing 

customized implementations, realizing upward 

compatibility. 

III. MFC DESKTOP APPLICATIONS 

The Microsoft Foundation Class (MFC) Library 

provides an object-oriented wrapper over much of 

the Win32 and COM APIs. Although it can be used 

to create very simple desktop applications, it is 

most useful when you need to develop more 

complex user interfaces with multiple controls. The 

individual hierarchy charts included with each class 

are useful for locating base classes. The MFC 

Reference usually does not describe inherited 

member functions or inherited operators. For 

information on these functions, refer to the base 

classes depicted in the hierarchy diagrams. 

The documentation for each class includes a class 

overview, a member summary by category, and 

topics for the member functions, overloaded 

operators, and data members. 

Public and protected class members are 

documented only when they are normally used in 

application programs or derived classes. See the 

class header files for a complete listing of class 

members. 



© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002 

IJIRT 100432 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 909 
 

IV. MFC INTERNET PROGRAMMING 

BASICS 

Microsoft provides many APIs for programming 

both client and server applications. Many new 

applications are being written for the Internet, and 

as technologies, browser capabilities, and security 

options change, new types of applications will be 

written. Browsers run on client computers, 

providing access to the World Wide Web and 

displaying HTML pages that contain text, graphics, 

ActiveX controls, and documents. Servers provide 

FTP, HTTP, and gopher services, and run server 

extension applications using CGI. Your custom 

application can retrieve information and provide 

data on the Internet. 

 
MFC provides classes that support Internet 

programming. You can 

use COleControl and CDocObjectServer and 

related MFC classes to write ActiveX controls and 

Active documents. You can use MFC classes such 

as CInternetSession, CFtpConnection, 

and CAsyncMonikerFile to retrieve files and 

information using Internet protocols such as FTP, 

HTTP, and gopher 

V. MANAGING THE STATE DATA OF 

MFC MODULES 

The state data of MFC modules and how this state 

is updated when the flow of execution (the path 

code takes through an application when executing) 

enters and leaves a module. Switching module 

states with 

the AFX_MANAGE_STATE and METHOD_PR

OLOGUE macros is also discussed. 

 MFC has state data for each module used in an 

application. Examples of this data include 

Windows instance handles (used for loading 

resources), pointers to the 

current CWinApp and CWinThread objects of an 

application, OLE module reference counts, and a 

variety of maps that maintain the connections 

between Windows object handles and 

corresponding instances of MFC objects. However, 

when an application uses multiple modules, the 

state data of each module is not application wide. 

Rather, each module has its own private copy of the 

MFC's state data. 

State Data of a Single Module (Application) 

 

 
A module's state data is contained in a structure and 

is always available via a pointer to that structure. 

When the flow of execution enters a particular 

module, as shown in the following figure, that 

module's state must be the "current" or "effective" 

state. Therefore, each thread object has a pointer to 

the effective state structure of that application. 

Keeping this pointer updated at all times is vital to 

managing the application's global state and 

maintaining the integrity of each module's state. 

Incorrect management of the global state can lead 

to unpredictable application behavior. 

State Data of Multiple Modules 

 

 
In other words, each module is responsible for 

correctly switching between module states at all of 

its entry points. An "entry point" is any place where 

the flow of execution can enter the module's code.  

 

 



© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002 

IJIRT 100432 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 910 
 

VI. AUTOMATIC LINKING OF MFC 

LIBRARY VERSION 

In versions of MFC before version 3.0 (before 

Visual C++ version 2.0), you had to manually 

specify the correct version of the MFC library in 

the input list of libraries for the linker. With MFC 

version 3.0 and later, it is no longer necessary to 

manually specify the version of the MFC library. 

Instead, the MFC header files automatically 

determine the correct version of the MFC library, 

based on values defined with #define, such 

as _DEBUG or _UNICODE. The MFC header 

files add /defaultlib directives instructing the linker 

to link in a specific version of the MFC library. 

For example, the following code fragment from the 

AFX.H header file instructs the linker to link in 

either the NAFXCWD.LIB or NAFXCW.LIB 

version of MFC, depending on whether you are 

using the debug version of MFC: 

#ifndef _UNICODE 

#ifdef _DEBUG 

#pragma comment(lib, "nafxcwd.lib") 

#else 

#pragma comment(lib, "nafxcw.lib") 

#endif 

#else 

#ifdef _DEBUG 

#pragma comment(lib, "uafxcwd.lib") 

#else 

#pragma comment(lib, "uafxcw.lib") 

#endif 

#endif 

MFC header files also link in all required libraries, 

including MFC libraries, Win32 libraries, OLE 

libraries, OLE libraries built from samples, ODBC 

libraries, and so on. The Win32 libraries include 

Kernel32.Lib, User32.Lib, and GDI32.Lib. 

 

DLLS IN  MFCS 

MFC libraries (DLLs) for multibyte character 

encoding (MBCS) are no longer included in Visual 

Studio, but are available as an add-on that you can 

download and install on any machine that has 

Visual Studio Professional, Visual Studio 

Premium, or Visual Studio Ultimate. (In Visual 

Studio, MFC must be enabled.) The installation 

requires about 440 MB of disk space and includes 

the English (United States) and localized versions 

of the DLLs. 

You need this download in order to build an MFC 

project that has the Character Set property set 

to Use Multi-Byte Character Set or Not Set. 

REFERENCES 

[1] "Microsoft Visual Studio 2010 Service Pack 

1". Microsoft.com. Retrieved 2012-11-19. 

[2] "Microsoft Visual C++ 2010 Redistributable 

Package (x64". Microsoft.com. Retrieved 

2012-11-19. 

[3] "Microsoft Visual C++ 2010 SP1 

Redistributable Package (x86)". 

Microsoft.com. Retrieved 2012-11-19. 

[4] Visual C++ Express Overview 

[5] "Visual Studio Express Edition FAQ". 

Microsoft.com. Retrieved 6 January 2012. 

[6] "Microsoft Buys Into Inprise, Settles 

Disputes". Techweb.com. Retrieved 6 January 

2012. 

[7] Williams, Mickey; David Bennett. "Creating 

Your Own Message Maps". Inform IT. 

[8] "Visual C++ 2008 Feature Pack shipped". 

Blogs.msdn.com. Retrieved 26 April 2008. 

 

 

 

 

 

 

 

 


