
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100598 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 476

MACH KERNEL

Pranshu Sharma , Satish Anand Arjunan

I. INTRODUCTION

Mach is an operating system kernel developed at

Carnegie Mellon University to support operating

system research, primarily distributed and parallel

computation. It is one of the earliest examples of a

microkernel. Its derivatives are the basis of the

modern operating system kernels in Mac OS X and

GNU Hurd.

The project at Carnegie Mellon ran from 1985 to

1994, ending with Mach 3.0. Mach was developed

as a replacement for the kernel in the BSD version

of UNIX, so no new operating system would have

to be designed around it. Today further

experimental research on Mach appears to have

ended, although Mach and its derivatives are in use

in a number of commercial operating systems, such

as NeXTSTEP and OPENSTEP, and most notably

Mac OS X using the XNU operating system kernel

which incorporates Mach as a major component.

The Mach virtual memory management system was

also adopted by the BSD developers at CSRG, and

appears in modern BSD-derived UNIX systems,

such as FreeBSD. Neither Mac OS X nor FreeBSD

maintain the microkernel structure pioneered in

Mach, although Mac OS X continues to offer

microkernel inter-process communication and

control primitives for use directly by applications.

Mach is the logical successor to Carnegie Mellon's

Accent kernel. The lead developer on the Mach

project, Richard Rashid, has been working at

Microsoft since 1991 in various top-level positions

revolving around the Microsoft Research division.

Another of the original Mach developers, Avie

Tevanian, was formerly head of software at NeXT,

then Chief Software Technology Officer at Apple

Computer until March 2006.

II. DEVELOPMENT

Mach was initially hosted as additional code

written directly into the existing 4.2BSD kernel,

allowing the team to work on the system long

before it was complete. Work started with the

already functional Accent IPC/port system, and

moved on to the other key portions of the OS, tasks

and threads and virtual memory. As portions were

completed various parts of the BSD system were

re-written to call into Mach, and a change to

4.3BSD was also made during this process.

By 1986 the system was complete to the point of

being able to run on its own on the DEC VAX.

Although doing little of practical value, the goal of

making a microkernel was realized. This was soon

followed by versions on the IBM PC/RT and for

Sun Microsystems 68030-based workstations,

proving the system's portability. By 1987 the list

included the Encore Multimax and Sequent

Balance machines, testing Mach's ability to run on

multiprocessor systems. A public Release 1 was

made that year, and Release 2 followed the next

year.

Throughout this time the promise of a "true"

microkernel was not yet being delivered. These

early Mach versions included the majority of

4.3BSD in the kernel, a system known as POE

Server, resulting in a kernel that was actually larger

than the UNIX it was based on. The idea, however,

was to move the UNIX layer out of the kernel into

user-space, where it could be more easily worked

on and even replaced outright. Unfortunately

performance proved to be a major problem, and a

number of architectural changes were made in

order to solve this problem. Unwieldy UNIX

licensing issues were also plaguing researchers, so

this early effort to provide a non-licensed UNIX-

like system environment continued to find use, well

into the further development of Mach.

The resulting Mach 3 was released in 1990, and

generated intense interest. A small team had built

Mach and ported it to a number of platforms,

including complex multiprocessor systems which

were causing serious problems for older-style

kernels. This generated considerable interest in the

commercial market, where a number of companies

were in the midst of considering changing

hardware platforms. If the existing system could be

ported to run on Mach, it would seem it would then

be easy to change the platform underneath.

Mach received a major boost in visibility when the

Open Software Foundation (OSF) announced they

would be hosting future versions of OSF/1 on

Mach 2.5, and were investigating Mach 3 as well.

Mach 2.5 was also selected for the NeXTSTEP

system and a number of commercial multiprocessor

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100598 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 477

vendors. Mach 3 led to a number of efforts to port

other operating systems parts for the microkernel,

including IBM's Workplace OS and several efforts

by Apple Computer to build a cross-platform

version of the Mac OS.

III. PERFORMANCE PROBLEMS

Mach was originally intended to be a replacement

for classical monolithic UNIX, and for this reason

contained many UNIX-like ideas. For instance,

Mach used a permissioning and security system

patterned on UNIX's file system. Since the kernel

was privileged (running in kernel-space) over other

OS servers and software, it was possible for

malfunctioning or malicious programs to send it

commands that would cause damage to the system,

and for this reason the kernel checked every

message for validity. Additionally most of the

operating system functionality was to be located in

user-space programs, so this meant there needed to

be some way for the kernel to grant these programs

additional privileges, to operate on hardware for

instance.

Some of Mach's more esoteric features were also

based on this same IPC mechanism. For instance,

Mach was able to support multi-processor

machines with ease. In a traditional kernel

extensive work needs to be carried out to make it

reentrant or interruptible, as programs running on

different processors could call into the kernel at the

same time. Under Mach, the bits of the operating

system are isolated in servers, which are able to

run, like any other program, on any processor.

Although in theory the Mach kernel would also

have to be reentrant, in practice this isn't an issue

because its response times are so fast it can simply

wait and serve requests in turn. Mach also included

a server that could forward messages not just

between programs, but even over the network,

which was an area of intense development in the

late 1980s and early 1990s.

Unfortunately, the use of IPC for almost all tasks

turned out to have serious performance impact.

Benchmarks on 1997 hardware showed that Mach

3.0-based UNIX single-server implementations

were about 50% slower than native UNIX.

Studies showed the vast majority of this

performance hit, 73% by one measure, was due to

the overhead of the IPC. And this was measured on

a system with a single large server providing the

operating system; breaking the operating system

down further into smaller servers would only make

the problem worse. It appeared the goal of a

collection-of-servers was simply not possible.

Many attempts were made to improve the

performance of Mach and Mach-like microkernels,

but by the mid-1990s much of the early intense

interest had died. The concept of an operating

system based on IPC appeared to be dead, the idea

itself flawed.

In fact, further study of the exact nature of the

performance problems turned up a number of

interesting facts. One was that the IPC itself was

not the problem: there was some overhead

associated with the memory mapping needed to

support it, but this added only a small amount of

time to making a call. The rest, 80% of the time

being spent, was due to additional tasks the kernel

was running on the messages. Primary among these

was the port rights checking and message validity.

In benchmarks on an 486DX-50, a standard UNIX

system call took an average of 21μs to complete,

while the equivalent operation with Mach IPC

averaged 114μs. Only 18μs of this was hardware

related; the rest was the Mach kernel running

various routines on the message. Given a syscall

that does nothing, a full round-trip under BSD

would require about 40μs, whereas on a user-space

Mach system it would take just under 500μs.

When Mach was first being seriously used in the

2.x versions, performance was slower than

traditional monolithic operating systems, perhaps

as much as 25%. This cost was not considered

particularly worrying, however, because the system

was also offering multi-processor support and easy

portability. Many felt this was an expected and

acceptable cost to pay. When Mach 3 attempted to

move most of the operating system into user-space,

the overhead became higher still: benchmarks

between Mach and Ultrix on a MIPS R3000

showed a performance hit as great as 67% on some

workloads.

For example, getting the system time involves an

IPC call to the user-space server maintaining

system clock. The caller first traps into the kernel,

causing a context switch and memory mapping.

The kernel then checks that the caller has required

access rights and that the message is valid. If it

does, there is another context switch and memory

mapping to complete the call into the user-space

server. The process must then be repeated to return

the results, adding up to a total of four context

switches and memory mappings, plus two message

verifications. This overhead rapidly compounds

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100598 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 478

with more complex services, where there are often

code paths passing through many servers.

This was not the only source of performance

problems. Another centered on the problems of

trying to handle memory properly when physical

memory ran low and paging had to occur. In the

traditional monolithic operating systems the

authors had direct experience with which parts of

the kernel called which others, allowing them to

fine tune their pager to avoid paging out code that

was about to be used. Under Mach this wasn't

possible because the kernel had no real idea what

the operating system consisted of. Instead they had

to use a single one-size-fits-all solution that added

to the performance problems. Mach 3 attempted to

address this problem by providing a simple pager,

relying on user-space pagers for better

specialization. But this turned out to have little

effect. In practice, any benefits it had were wiped

out by the expensive IPC needed to call it in.

Other performance problems were related to

Mach's support for multiprocessor systems. From

the mid-1980s to the early 1990s, commodity CPUs

grew in performance at a rate of about 60% a year,

but the speed of memory access grew at only 7% a

year. This meant that the cost of accessing memory

grew tremendously over this period, and since

Mach was based on mapping memory around

between programs, any "cache miss" made IPC

calls slow.

Regardless of the advantages of the Mach

approach, these sorts of real-world performance

hits were simply not acceptable. As other teams

found the same sorts of results, the early Mach

enthusiasm quickly disappeared. After a short time

many in the development community seemed to

conclude that the entire concept of using IPC as the

basis of an operating system was inherently flawed.

IV. OPERATING SYSTEMS AND

KERNELS BASED ON MACH

 GNU/Hurd

 Lites

 MkLinux

 mtXinu

 MachTen

 MacMach

 NeXTSTEP

 OSF/1

 Workplace OS

 UNICOS MAX

 Kylin

 XNU and Darwin, the basis of Mac OS X

and IOS

REFERENCES

[1] Apple Inc. (February 26, 2013), Kernel and

Device Drivers Layer, Apple Inc. (February 26,

2013), Mach Overview

^[2] Al Saracevic (March 27, 2006). "Adios Avie".

The Technology Chronicles. Retrieved 23 January

2010.

[3] Singh, Amit (2006-07-28). "A Technical

History of Apple's Operating Systems".

osxbook.com. p. 103. Retrieved 18 March 2011.

[4] Tevanian, Avadis; Rashid, Richard F.; Golub,

David B.; Black, David L.; Cooper, Eric; Young,

Michael W. (1987). "Mach Threads and the Unix

Kernel: The Battle for Control". "Proceedings of

the USENIX Summer Conference, USENIX

Association". pp. 185–197. CiteSeerX:

10.1.1.41.3458.

[5] Accetta, Mike; Baron, Robert; Bolosky,

William; Golub, David; Rashid, Richard; Tevanian,

Avadis; Young, Michael (1986). "Mach: A New

Kernel Foundation for UNIX Development".

"Technical Conference - USENIX".

[6] M. Condict, D. Bolinger, E. McManus, D.

Mitchell, S. Lewontin (April 1994). "Microkernel

modularity with integrated kernel performance".

Technical report, OSF Research Institute,

Cambridge, MA.

[7] Hermann Härtig, Michael Hohmuth, Jochen

Liedtke, Sebastian Schönberg, Jean Wolter

(October 1997). "The performance of μ-kernel-

based systems". Proceedings of the 16th ACM

symposium on Operating systems principles

(SOSP), Saint-Malo, France 31 (5): 67.

doi:10.1145/269005.266660. ISBN 0-89791-916-5.

url2

[8] www.princeton.edu

[9] Jochen Liedtke (1993). "Improving IPC by

Kernel Design". Proceedings of the 14th ACM

Symposium on Operating System Principles

(SOSP). ISBN 0-89791-632-8.

[10] Chen, J B; Bershad, B N (1993). "The impact

of operating system structure on memory system

performance". ACM SIGOPS Operating Systems

Review (Association for Computing Machinery) 27

(5): 133. CiteSeerX: 10.1.1.52.4651.

