
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1211

Using Simulation and modeling to visualize Object-

Oriented Software

Parul Malhan, Sweta Singh

Student, B.Tech, Electronics and Computers Engineering

Dronacharya College of Engineering, Gurgaon

Abstract- The paper describes a system, Imsovision, for

visualizing object-oriented software in a Virtual Reality

Environment. A visualization language (COOL) is defined

that maps C++ source code to a visual representation. Our

aim is to develop a language with few metaphors and

constructs, but with the ability to represent a variety of

elements with no ambiguity or loss of meaning. In addition,

the visualization has to maximally use the potential of the

used media. The design of the OO software system and its

attributes are represented in the visualization. Class

information, relationships between classes, and metric

information is displayed. VRML is used for the visualization

and it is rendered in the CAVE environment.

I. INTRODUCTION

Visual representations, both simple and complex, are

important for the comprehension and development of

large software systems. Notations such as UML are

becoming widely popular for the simple fact that they are

visual in nature and support quick understanding of long

natural language (or source code) passages. While these

types of notations allow for an abstraction of an existing

software system, they do not scale up well with respect to

comprehension. That is, it is quite difficult to “see” an

entire software system with these notations. They suffer

from the same cognitive related problems as source code.
The work here presents a software visualization system

that represents object-oriented software in a virtual reality

environment. The work is motivated by some of the

recent advances in the field of information visualization.

Our goal is to develop visualization tools that assist

software developers and maintainers to comprehend

software systems.

1.1. Background

Software visualization is the graphical display of

information about a software system. Software structure,

runtime behavior, and the code itself are properties of

software that is visualized. While there have been many

software visualization efforts, these have been limited in

both scope and application because the amount of

information to be included is far larger than can be

displayed. Visualization tools and environments display

information at various degrees of abstraction, from the

statement level to architecture of the system level. Many

of the existing software visualization systems concentrate

on program/algorithm animation and graph-based

visualization of static and dynamic relations between

software components. In addition, these tools concentrate

on representing various aspects of the source code (e.g.,

control flow, data flow, layout). In general, they are not

concerned with design and architecture aspects. A good

review of existing software visualization tools is

presented in [10].
Practical software visualization must provide tools to

select and display just the information of interest. It must

provide a quality visual display that is intuitive, has a

powerful abstraction capacity, and avoids information

(cognitive) overload. A practical software visualization

system can be achieved by focusing on abstractions.
In general, a software visualization system should

determine the abstraction level of the information it

depicts about the software system. It should use a visual

language or mapping to translate source code (and

possibly external documentation) into a visual

representation. The semantics of the language should be

unambiguous, natural, and learnable by the user. The

choice of mapping depends on the type of information it

represents and the media used in the representation. The

user tasks (i.e., manipulation, navigation, etc.) that the

system supports, including program comprehension tasks

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1212

Since our system takes advantage of virtual reality

(VR), we now describe the differences between VR and

2D/3D display models.

1.2. Virtual Reality versus 3D and 2D

One has to make distinction between 3D and VR. A

user immersed in a Virtual Reality Environment (VE) can

always access external information (e.g., the actual source

code) without leaving the environment and the context of

the representation (e.g., using a palmtop or laptop).
While both representations offer the perception of

depth, only VEs allow the user to immerse oneself into

the representation. Also, this immersion allows the user to

take advantage of their stereoscopic vision. Stereopsis can

be a great benefit in disambiguating complex abstract

representations. It also helps the viewer to judge relative

size of objects and distances between objects. In 3D, you

have to move the view around to understand the diagram.
The work of Hubona, Shirah and Fout [11] suggests

that users' understanding of a 3D structure improves when

they can manipulate the structure. One of the defining

features of VR representations is the ability of the user to

manipulate the visualization, by being immersed in the

environment. The work of Ware and Franck [24] indicates

that displaying data in three dimensions instead of two

can make it easier for users to understand the data. In

addition the error rate in identifying routes in 3D graphs is

much smaller than 2D [23, 26]. They also show that

motion cues combined with stereo viewing can

substantially increase the size of the graph that can be

perceived [25]. VR combines stereopsis and motion. The

CyberNet system [8] shows that mapping large amount of

(dynamic) information to 3D representation is beneficial,

regardless of the type of metaphors (real or virtual) used.

CyberNet is used to map network services and

workstation information to a city landscape metaphor or

allows for a natural representation of certain source code

level complexity metrics. COOL maps heterogeneous

data (classes, entities, relationships, and quantitative

information) to the visual metaphors. Metric information,

in this case, lines of code measures, is also incorporated

into the visualization. The size of the visual objects

represents the physical (or metric) sizes of the entities

they correspond to in the source code.
Currently, we do a large part of the mapping from

source code and documentation to VRML manually,

though some steps are partially automated. We are

currently constructing an automatic translation system

that given source code, generates the VRML source for

the visualization.
The remainder of this section describes the details of

our mapping language and the underlying concepts we

used in its design. The current features of Imsovision are

also described.

Source Code & Design Documents

Compute Parse
Metrics Code

to a solar system metaphor, and geographical data to a
building metaphor. Real-life based metaphors have
advantages (using preexisting knowledge) but also
disadvantages (information overload and natural

The user

Virtual Reality
Environment

limitations).

II. IMSOVISION

Imsovision (IMmersive SOftware VISualizatION) is a

system that supports program understanding and

development through software visualization (see figure

1). It uses a VE as the medium for visualization. Thus, it

makes use of all the special features of such environments

(e.g., 3D navigation, collaborative problem solving, etc.).
Also, it uses a specially designed visualization

language that maps source code into the VE. This

language, COOL, (Language for Comprehending OO

software) incorporates some of the features of UML and

Figure 1. Architecture of Imsovision

2.1. Mapping raw data to visualization

Mackinlay [18] defined two criteria to evaluate the

mapping of data to a visual metaphor: expressiveness and

effectiveness. These criteria were used in 2D mappings,

but can also be applied for 3D mappings.
Expressiveness refers to the capability of the metaphor

of visually representing all the information we desire to

visualize. For instance, if the number of visual parameters

available in the metaphor for displaying information is

fewer than the number of data values we

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1213

wish to visualize, the metaphor will not be able to meet

the expressiveness criterion.
The relationship between data values and visual

parameters has to be a univocal relationship; otherwise, if

more than one data value is mapped onto the same visual

parameter, and then it will be impossible to distinguish

one value’s influence from the other. On the other hand,

there can always be visual parameters that are not used to

map information, as long as there is no need for them to

be utilized.
The second criterion, effectiveness, relates to the

efficacy of the metaphor as a means of representing the

information. Along the effectiveness dimension we can

further distinguish several criteria: effectiveness regarding

the information passing as visually perceived, regarding

aesthetic concerns, regarding optimization (e.g., number

of polygons needed to render the world).
In the case of quantitative data, not only the number of

visual parameters has to be sufficient to map all the data,

but also, they must be able to map the right data (i.e.,

there are visual parameters that are not able to map a

specific category of data; for instance, shape is not useful

for mapping quantitative data, while the size of a

metaphor is).
The second criterion is, as in the case above, the one of

effectiveness. This criterion implies the categorization of

the visual parameters according to its capabilities of

encoding the different types of information. Moreover,

this also implies categorizing the information according to

its importance so that information that is more important

can be encoded more efficiently when options must be

taken. This categorization of the importance of the

information has two expressions: one is an assigned

importance of the information in the context of a software

system; the other is a preference of the user. Nonetheless,

the user may choose to override this and define his own

importance of the data, according to his priorities when

visualizing a software system. For example, COOL gives

preference by default to the public members of a class,

versus the private ones.
In order to satisfy these criteria for the mapping, one

must have a solid data characterization. Data

characterization is usually the first step to understand a

phenomenon or system. Developing a taxonomy helps to

make sense of large amounts of information. This is why

COOL is based on the UML as it is well known and

widely used in the software community.
Although these characteristics of data apply mostly to

data visualization, they must be taken into consideration

in software visualization as well. The metaphors of

COOL are designed such that they maximize the amount

of data that can be represented with an accent on the

user’s information seeking goals.
The power of a visualization language is derived from

its semantic richness, simplicity, and level of abstraction.

Our aim is to develop a language with few metaphors and

constructs, but with the ability to represent a variety of

elements with no ambiguity or loss of meaning. In

addition, the visualization has to maximally use the

potential of the used media. Therefore, a good VR

representation will make use of all the navigation

possibilities in a 3D landscape and the fact that the user is

immersed in the environment, while maintaining a natural

feeling of the representation, and avoiding the information

overload.
An important aspect to be considered in defining a

visual language is the nature of its users. Our language is

designed for use by software developers with solid

knowledge of programming, program designs, and system

architecture; also, they must possess a reasonable ability

to abstract. Therefore, the metaphors in the language

should be simple, having a familiar form and

straightforward mapping to the source code.
The media type for the visual representation is also an

important factor to consider. In the case of VEs, there is

often a trade-off between levels of detail (i.e., resolution,

accuracy) and speed of navigation and/or the ability to

support collaborative work (i.e., network of two or more

VEs). We consider of primary importance the easy and

fast navigation ability, and the support for collaborative

work. If the metaphors are carefully chosen, the lack of

detail and accuracy of representation causes aesthetic

discomfort rather than loss of information and meaning.

Existing visualizations often lack in one or more of these

areas. They are either too complex to navigate, learn, or

they lose essential information by abstracting too much.

2.2. Visualizing object-oriented software

To view software systems in VR we have developed a

visual representation language. Version 1.0 of COOL is

summarized in tables 1 and 2. This language defines a

formal mapping from an Object Oriented language, such

as C++ or Java, to a visualization in VR. Currently, the

language only supports syntactic and other static features

of a program. We plan to incorporate semantic and

dynamic information in future versions of the

representation language. But, along with visualizing the

syntactic constructs of the program, metric information,

that gives clues to code complexity, is also represented in

the display language.
The basic construct in an OO language is the class; this

is realized as a platform in our visualizations. Platform

size is proportional to the size of the class (i.e., number of

methods and attributes). Thus, the platform size gives an

overall visual measure of the complexity of the class (in a

particular dimension) . Attributes of a class are viewed as

spheres and member functions viewed as columns. The

height or size represents either lines of code or memory

size, respectively.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1214

The different types of member functions are also color-

coded, white for constructors, green for accessors, and

purple for modifiers. The placement of the different types

of member functions reflect their usage, constructors are

grouped in the center, accessors are placed around these,

and modifiers are placed on the outer edges of the class

platform. The coloring and placement support quick

identification of the different concepts.

Table 1. Depicting entities in COOL. The size of

the entities reflects a metric size value.

Name Visualization Meaning

Platform Class

 Number of

Platform Size
 methods plus

 the number of

 attributes

Sphere Attribute

Sphere Size
 Type of

Attribute

White Column
 Constructor

 Member

 Function

Green Column
 Accessor

 Member

 Function

 Modifier

Purple Column Member

 Function

Column Size
 Logical Lines

 of Code per

 Method

Sphere/
Information

Column

Hiding

Location

To depict information hiding (public versus private),

private items are positioned on the bottom side of the

class (platform). This type of natural representation

reduces the cognitive overhead of the visualization. We

are also experimenting with using semi-transparent class

platforms. This allows one to see the private items and

also get a feel of what is directly below the class in the

overall landscape.

Table 2. Depicting relationships in COOL.

Name Visualization Meaning

Adjacency with
Inheritance

Shading

Yellow Stacks
 Overloaded

Element

Aqua Flat Link
 Dependency

Relationship

White Flat Link
 Aggregation

Relationship

Relationships between classes are visualized in a

simple and natural manner. Class adjacency represents

inheritance. We view this as analogous to a metropolitan

area. There is a main city (Chicago) surrounded by a

number of suburbs (Evanston, Oak Park). The main city is

analogous to a base class and the suburbs are much like

derived classes. The shading of the derived classes is

lighter in color then the base class. Multiple-inheritance is

simply represented by having a derived class adjacent to

more then one base class, much like there are suburbs that

are adjacent to both St. Paul and Minneapolis.
Overloaded attributes and member functions have a

yellow top. This allows for quick inspection of the

amount of overloading done in a derived class.

Aggregation is represented as an aqua link, and

dependency is a white link, analogous to roads between

cities.
COOL is a multi-layered visualization language. The

first layer of abstraction is based on the idea of a class

diagram. Platforms represent classes, and links and

adjacency represent relationships between the classes.

This level is based directly on UML notation. The second

layer of abstraction is based on the metrics of size and

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1215

lines of code per function. The final level of abstraction,

dealing with functions, is the ability to drill down into the

source code from the visualization.

2.3. Navigation

In Imsovision, the visualizations are marked up in

VRML 1.0 [4], and therefore take advantage of the

navigation functionality that is incorporated into the

particular VE that renders the VRML source.
Imsovision is designed to use the CAVE (originally in

[7] and more recently described in [17]) as the primary

representation medium. The CAVE is a virtual reality

system where the display is a 10 foot-cubed room that is

rear-projected with stereoscopic images, creating the

illusion that 3D objects appear to co-exist with the user in

the room. A user dons a pair of lightweight liquid crystal

shutter glasses to resolve the stereoscopic imagery, and

holds a three-button ‘wand’ for three-dimensional

interaction with the virtual environment. An

electromagnetic tracking system attached to the shutter

glasses and the wand allows the CAVE to determine the

location and orientation of the user's head and hand at any

given moment in time. This information is used to instruct

the graphic drivers of the CAVE to render the imagery

from the point of view of the viewer. This way, the user

can physically walk around an object that appears to exist

in 3D in the middle of the CAVE. If the viewer wants to

look behind a virtual object, he walks around to the back.

If the viewer wants to look under an object in the CAVE,

they crouch down and physically look under the virtual

object. The wand contains three buttons and a joystick

that can be programmed for different features depending

on the application. Typically, the joystick is used to

navigate through environments that are larger than the

CAVE itself, such as in architectural walk-throughs. The

buttons can be used to change modes, or bring up menus

in the CAVE, or to ‘grab’ a virtual object.
A `fish tank' desktop system [1] would probably be the

best alternative for those wanting a currently affordable

hardware platform, allowing the user to see stereoscopic

images using a computer monitor and stereo shutter

glasses.
However, since the visualization is written using

VRML, a simple desktop computer can also be used as a

low-cost, non-immersive alternative to the CAVE. There

are a number of exiting VRML viewers that can be

utilized, such as Cosmo Player [6]. Such viewers are very

easy to use and come as plug-ins to existing html

browsers or as stand-alone applications. They offer a set

of easy-to-use navigation tools. Table 3 gives a summary

of these navigation tools. These tools allow the user to

move in different directions (X, Y, and Z).

Table 3. Navigation functions in VRML viewer.
Name Function

Go Move forward in z direction
Slide Move in the xy plane
Tilt Tilts the world

Rotate Rotates world in any direction
Zoom Allows zooming to a particular position
Pan Change position of the world
Seek Select and zoom to one item

By using these navigation tools that are inherent to

VEs that support VRML, we have complete navigation

inside the visualization. We can move into, back away

form, and turn left or right inside the world. We can also

move up or down, but more than that we can move the

world while keeping ourselves stationary, thus allowing

us to look at the private attributes of a system, and simply

move the mouse or wand to look at the public features of

the software system. Thus, the system allows us full

freedom of movement inside the virtual world. The user

can explore the subsystems that make up the complete

system, look at the system from different angles, and find

aspects of the system that would be hidden in a UML or

source code representation. Also, if the user gets

disoriented while traveling through the world, there are a

number of fixed camera positions that allow the user to go

to known positions in the world.
An immersive VE such as the CAVE offers even more

flexibility in navigation. If the user navigates through the

visualization, he/she can always look back or around to

see the part of the visualization that was traversed. With

the desktop viewer, the traversed part of the visualization

practically disappears from the perspective of the user.
It is common to have several people standing in the

CAVE at the same time. While only one person has the

correct stereo viewpoint and the ability to interact with

the environment, the other viewers can still see the virtual

world in 3D. In software development, collaboration and

teamwork are essential for the success of a project. All of

us have found that the ability to talk with co-workers who

are standing next to you is very important, and since the

CAVE does not isolate the user from the real world, it is

convenient to have these interactions. Current research on

tele-immersion [17], focuses on making remote

collaboration just as easy, or even better than standing

next to your collaborator. It allows each user to stand

within the shared virtual environment seeing a view of

that environment that is customized to their interests and

experience (see figure 2).

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1216

Figure 2. A remote user immersed in the VE

investigating a visualization of a software

system.

2.4. Support for user tasks

When creating an information visualization

application, it is important to identify primary tasks

before choosing an information visualization language

[27].
Our task analysis is based on Shneiderman [19], who

presents seven high level tasks that an information

visualization application should support. For evaluation

purposes, we must refine these into lower-level tasks as

done by Wiss, Carr, and Jonsson [27].
Overview: Gain an overview of the entire collection of

data that is represented. This is in fact one of the strong

features of COOL. It allows an overview of the entire

software system that is represented because it makes use

of all the dimensions in the VE. Its abstraction power

allows making better use of space than UML, for

example. The VE practically offers to the user unlimited

space for visualization. The lack of details on the

metaphors also is a feature that permits the user to zoom

out and see the entire system in a single view (see figure

4).
Zoom: Zoom in on items of interest. The VRML

viewer has zoom in and zoom out features, which allow

the user to see any part of the system in detail (see figure

6). The seek function also allows selection of a single

item in the visualization, and the system automatically

zooms in to that element. In addition, the user can

navigate through the visualization from one part of the

system to another at any zoom level. When zooming, it is

important that global context can be retained. Because in

the VE the user is immersed into the visualization and

he/she can look in any direction (up, down, back, and

forward) the global context is not lost. The VRML

browser allows for definition of fixed views of the entire

(or parts) of the visualizations. When zooming in on a

part of the system, it takes just one click to zoom out and

have the global view.
Filter: Filter out uninteresting items. Filtering by

removing parts of the visualization will necessarily

disturb the global context. Therefore, it is important to see

whether the design supports some kind of abstraction of

the removed parts. At this point COOL does not directly

support filtering. However, the design of COOL is such

that it emphasizes the most accessed features (e.g., public

attributes and methods) by placing them in the most

natural positions on the visualization (e.g., on the upper

part of the platforms) . The less accessed elements (e.g.,

private attributes and methods) are placed in less natural

places (e.g., under the platforms). The navigation power

of the VE allows the user to switch the natural orientation

of the visualization, thus at any time, change a less natural

positioning into a more natural. Since the size of the

visual elements directly reflect some measure of the

complexity of the represented objects, the larger ones will

thus emphasize the most complex elements.
Details-on-demand: Select an item or group and get

details when needed. Getting details on a selected item is

usually implemented by the embedding application. As

mentioned before, the detail representation is of less

importance in COOL, priority was given to easy and fast

navigation and rendering. The visual metaphors are

designed such that there is no loss of meaning while

zooming in or out. In its current version, COOL supports

two types of detail-on-demand features. By placing the

cursor over a method that overloads another one in a

parent class, the overloaded method is highlighted.

Maintaining a constant link between these types of item

pairs would make the visualization too complex.
In addition, by right clicking on the mouse, we can

open up, in a new window, the source code that is behind

the visualization. This allows the user to look through the

software system and find the parts they want to look at

and when they comprehend the functionality of the

system, they can go and look at the source code directly.

Also, if a user activates (by clicking a mouse button) the

overloaded function (denoted by yellow) it will change

color, and the function that it overloaded will also

highlight letting the user map the overloaded function to

its parent function.
Relate: View relationships among items. For a

hierarchical data structure, it is necessary that the

visualization show parent-child relationships. This is one

of the most important features of COOL. Currently,

COOL supports three kinds of static relationships

between classes (i.e., dependency, aggregation,

inheritance - see table 2) and overloading between

methods.
History: Keep a history of actions to support undo,

replay, and progressive refinement. A visitation path

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1217

MailSystem AdminMailbox

InputReader Mailbox

MessageQueue
String

StringError Message

NegativeLen LinkedList

OutOfBounds Node

is a has part using

Figure 3. UML Class Diagram of

MailSystem.

should be supported. The VRML viewer allows for

definitions of viewpoints. That is a set of attributes, which

describe the position of the camera, the light, and the

zoom level. These viewpoints can be saved and reviewed.

A sequence of such viewpoints can be played, thus

representing a path within the visualization, which could

represent the history.
Extract: Allow extraction of sub-collections and of

query parameters. This task concerns saving the current

state of the visualization. This is related only to the

application and the underlying data set. How the data is

visualized does not affect this. The extract task is

therefore excluded from our evaluation.

III. AN EXAMPLE VISUALIZATION

Figure 3 gives the UML class diagram for a simple

mail system. It represents an implementation for a voice

Figure 4. Visualization of a
MailSystem in Imsovision.

Figure 5. Another view of the

MailSystem looking from the

opposite direction as figure 4.

mail system to an internal phone system. There are twelve

classes that make up the system. The basic types of

relationships between classes are represented in this

system. The MailSystem has a number of Mailboxes and

also has an AdminMailbox. Mailsystem uses an

InputReader. Also, AdminMailbox is a specialization of

Mailbox.
Figures 4 and 5 are a visualization of this same

software system in Imsovision using a VRML browser.

The first thing one sees in this view is the large class at

the bottom. Its size tells us that it is larger, in terms of

methods and attributes, than any of the other classes. This

happens to be the String class. One may think this

unusual, but the class is very well developed and

overloads all the relational operators that are shown as a

clustering of green columns – (accessor functions). Notice

also that the string class mainly consists of accessor

functions rather than modifier functions (purple

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1218

columns on the outside edges). Another thing that is

easily seen in these view are the relative sizes of the

member functions and that large member functions are

easily discerned.
In figure 6, we see the simple class hierarchy of

Mailbox (center) and AdminMailbox (bottom right). Part

of the String class is seen below Mailbox. The yellow

shading on the tops of the member function in

AdminMailbox represents operator overloading.
As seen in the example, even in its current version,

Imsovision offers more information (e.g., size metrics,

methods and attribute types) to the user than the UML

diagram; it is more than just placing an UML diagram

into a 3D space. In addition, the VE allows for

representation of much more complex systems. A

software system with around 50 classes with similar

complexity level as the Mailbox system presented here, is

impossible to represent in a one-page UML diagram.

IV. USES OF IMSOVISION

The primary function of Imsovision is for program

understanding in software development, maintenance, or

reengineering. A COOL visualization is built based on the

source code and provides to the developer insight in the

OO design of the software system. By understanding the

relationships between classes and the complexity of them,

the developer can decide where to concentrate the

development effort in the next step. In the case of

reengineering, Imsovision helps the user understand how

classes relate to each other and thus make it easier to map

source code to elements in the problem or solution

domain. In addition, the size metrics combined with the

coupling information will indicate to the software

engineer which classes need possible attention.
In addition to class information, Imsovision offers

information at the method and class attribute level. The

developer can easily assess the size/complexity of

attributes and methods. Different types of member

functions (e.g., constructors, accessors, modifiers) are

very easy to identify in the visualization. Also, with a

simple click, the user can see an entire chain of

overloaded function in a class hierarchy. The user can

also see all the accessible methods and attributes to a

particular object, by simply considering the public side of

the current plane in the VE. Usually it is not an easy task

to infer such information, which is extremely useful in the

development or in the usage of a class.
Much like UML, Imsovision is intended for use in the

design phase of the software development process. The

COOL visualization at this phase represents the

envisioned class diagram of the system, with the

relationship between classes, member functions of

different type (e.g., public, private, constructors,

destructors, accessors, modifiers, etc.), and attributes. As

the system is implemented, additional metric information

is incorporated into the visualization (e.g., size of

attributes, methods, and classes).
Imsovision can be used not only for program

understanding, but also for process management. In its

current version, Imsovision is able to capture the

development of the represented software system. One can

capture two representations of the system at two different

moments in time. By overlapping the two visualizations,

one could highlight the differences that describe the

evolution of the system. The columns associated with the

methods will be increased in size, showing the status of

their implementation. Newly added elements into the

visualization indicate design changes. After the source

code is written, a new visualization can be generated from

the source code and compared to the one created in the

design phase, thus observing if the mapping from design

to the source code was preserved or not.

Figure 6. The Mailbox and AdminMailbox

classes.

Figure 7. An inverted view of the LinkedList and

Node classes. The private data elements are

seen along with a private member function in

LinkedList. The class platform is also semi-

transparent in figure.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1219

Since the COOL visualization is a “map” of the

software system, it also shows areas that are under

development, or need to be developed further. Additional

color information can be included to highlight such

aspects of the system.
In essence, Imsovision combines the advantages of

using UML diagrams and software metrics in one. As

mentioned, its design allows for inclusion of additional,

dynamic information about the system. Once that is

accomplished, Imsovision could successfully replace the

UML diagrams, the debugger, and the system dependency

graph. All these tools and the user tasks associated with

them will be integrated into the VE, were the developer

has noted advantages over traditional media (i.e., paper,

desktop).

V. RELATED WORK

Much of the work on software visualization is referred

to in a recent collection of papers put together by Stasko

[20]. This collection reflects the different categories of

software visualization including visual programming,

algorithm animation, program visualization, and

information visualization. Our work concentrates on

visualizing an entire software system for the purposes of

comprehending the systems design and architecture.
Closely related research to what is presented here is by

Knight [12-15] and Young [28]. This work involves using

virtual reality and 3D graphics to visualize software

systems. Knight’s work, Software City, uses a city

metaphor for visualization. The world is the entire

software system, a country is the directory structure, cities

are files, and so on. The Software World is a semantically

rich environment designed to be familiar to humans.

However, this feature comes at the expense of

underutilizing the 3D navigation features (e.g., it does not

consider navigation “under ground” or “in the sky”) and

at the expense of complexity (e.g., a building has too

many elements that represent detailed information, which

in fact decreases the level of abstraction and increases the

complexity of the visualization). In general, the

resemblance between a VE and a real world environment

makes the user feel more “at home”, but the complexity

increases too much and, if the VE represents some

abstract elements (e.g., source code), the mapping is

usually unnatural.
Other work that addresses the problems of visualizing

entire software systems to support program

comprehension and maintenance include SeeSoft [2, 3, 9],

VOGUE [16], Rigi [21, 22]] and InfoBUG [5]. The

SoftArch environment [10] has the power to represent

static and dynamic aspects of the software system at

various degrees of abstraction. It is one of the few

systems that allows for visualization at system

architecture level. As many other software visualization

systems suffers from the limitation of 2D media. The

GraphVisualizer3D [26] uses Graph Definition Language

to represent object-oriented software in 3D, using the

same underlying methods: modules of source code are

shown as atomic units, and relationships between modules

are depicted by connecting lines [23]. These approaches

do not make use of virtual reality environments and their

representations are in 2D and 3D forms.

VI. FUTURE WORK

As mentioned earlier, we are currently working on a

translator system that fully automates the conversion of

source code into a visualization. Our current prototype is

only partially automated. We are also working to fully

support differing syntactic features of the source code.

Integrating this with existing UML class diagrams is also

a major goal.
The long-term goals of this project are to build

additional features to support the following:
 Static visualization
 Dynamic visualization

 Collaborative problem solving (remote)

 Visualization of system evolution

 Support for representing reusable

components and design patterns

 Process and resource management

A number of new features that support static view of

the system are planned. Filtering, labeling, and various

additional drilldown features will be added. A number of

layout algorithms are being examined to best support the

display of the classes.
A number of features to support dynamic aspects of

the source code are planned. Data flow and control flow

aspects will be integrated into the visualization.

Highlighting parts of the system that are active over a

slow motion run of this system is envisioned. This will act

much like a debugger trace, but at a much higher level of

abstraction.
Features to support collaborative problems solving

within the VE will be of great benefit to large-scale

software development. Multiple developers can enter the

VE from the same or remote sites to address problems of

design, maintenance, or error correction. This type of

environment will also prove useful for explaining the

complexities of a software system to new team members.
The future version of Imsovision will be further

integrated into the software development process. The

representation of the software system will be updated as

each line of code is written or changed and saved.

Imsovision will be used not only as an understanding tool,

but also as a management tool. In a collaborative

environment (such as the CAVE), the project manager

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1220

will be able to see each developer at work. The manager

will be able to monitor what component the developer

working on, how much each component is complete, or

how much it has changed from the last version.

REFERENCES

[1] Arthur, K. W., Booth, K. S., and Ware, C.,

"Evaluating 3D task performance for fish tank

virtual worlds", ACM Transactions on

Information Systems, vol. 11, no. 3, July 1993,

pp. 239-265.
[2] Ball, T. and Eick, S., "Visualizing Program

Slices", in Proceedings of IEEE

Symposium on Visual Languages, St.

Louis, MO, 1994, pp. 288-295.
[3] Ball, T. and Eick, S., "Software Visualization in the

Large", Computer, vol. 19, no. 4, 1996, pp. 33-

43.
[4] Bell, G., Parisi, A., and Pesce, M., "The Virtual

Reality Modeling Language Version 1.0

Specification", Webpage,

http://www.vrml.org/VRML1.0/vrml10c.html,

1996.
[5] Chuah, M. C. and Eick, S., "Glyphs for Software

Visualization", in Proceedings of 5th

International Workshop on Program

Comprehension, Dearborn, MI, 1997, pp. 183-

191.
[6] CosmoPlayer, "Cosmo Software", Computer

Associates, Webpage, Date Accessed:

8/2000, http://www.cai.com/cosmo/, 2000.
[7] Crus-Neira, C., Sandin, D., and Defanti, T.,

"Surround-Screen Projection-Based Virtual

Reality: The Desing and Implementation of

CAVE", in Proceedings of SIGGRAPH93,

1993, pp. 135-142.
[8] Dos Santos, C. R., Gros, P., Abel, P., Loisel, D.,

Trichaud, N., and Paris, J. P., "Mapping

Information onto 3D Virtual Worlds", in

Proceedings of IEEE International Conference

on Information Visualization, London, England,

July 19-21 2000.
[9] Eick, S., "Graphically Displaying Text", Journal of

Computational and Graphical Statistics, vol. 3,

no. 2, 1994, pp. 127-142.
[10] Grundy, J. and Hosking, J. G., "High-level Static

and Dynamic Visualisation of Software

Architectures", in Proceedings of IEEE

Symposium on Visual Languages, Seattle,

Washington, September, 10-14 2000.
[11] Hubona, G. S., Shirah, G. W., and Fout, D. G., "3D

Object Recognition with Motion", in

Proceedings of CHI'97, 1997, pp. 345-346.

[12] Knight, C. and Munro, M., "Comprehension with[in]

Virtual Environment Visualisations", in

Proceedings of Seventh International Workshop

on Program Comprehension, Pittsburgh, PA, 5-

7 May 1999, pp. 4-11.
[13] Knight, C. and Munro, M., "Visualising Software -

A Key Research Area", in Proceedings of

International Conference on Software

Maintenance (ICSM99), Oxford, England,

1999.
[14] Knight, C. and Munro, M., "Virtual but Visible

Software", in Proceedings of International

Conference on Information Visualisation (IV00), London, England,
July 19-21 2000.

[15] Knight, C., Munro, M., "Should Users Inhabit

Visualisations?", in Proceedings of

Knowledge Management Networking

Workshop of WET ICE 2000, Washington,

DC, 2000.
[16] Koike, H., "The Role of Another Spatial

Dimension in Software Visualization", ACM

Transactions on Information Systems, vol.

11, no. 3, 1993, pp. 266-286.
[17] Leigh, J., Johnson, A. E., Brown, M., Sandin,

D., and Defanti, T. A., "Visualization in

Teleimmersive Environments", IEEE

Computer,, vol. 32, no. 12, December 1999,

pp. 66-73.
[18] Mackinlay, J., "Automating the design of graphical

presentation of relational information", ACM

Transaction on Graphics, vol. 5, no. 2, April

1986, pp. 110-141.
[19] Shneiderman, B., "The Eyes Have It: A Task by

Data Type Taxonomy for Information

Visualizations", in Proceedings of IEEE Visual

Languages, 1996, pp. 336-343.
[20] Stasko, J., Dominque, J., Brown, M., and Price, B.,

Software Visualization, MIT Press, 1998.
[21] Storey, M.-A. D., Fracchia, F. D., and Mueller,

H. A., "Cognitive Design Elements to

Support the Construction of a Mental Model

during Software Visualization", in

Proceedings of 5th International Workshop

on Program Comprehension, 1997.
[22] Storey, M.-A. D., Wong, K., and Muller, H. A.,

"On Integrating Visualization Techniques for

Effective Software Exploration", in

Proceedings of IEEE Symposium on

Information Visualization, Phoenix, AR,

1997.
[23] Ware, C. and Franck, G., "Representing Nodes and

Arcs in 3D Networks", in Proceedings of IEEE

Conference on Visual Languages, St. Louis,

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 100859 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1221

October 1994, pp. 189-190.
[24] Ware, C. and Franck, G., "Viewing a Graph in a

Virtual Reality Display is Three Times as Good

as a 2D Diagram", in Proceedings of IEEE

Visual Languages, 1994, pp. 182-183.
[25] Ware, C. and Franck, G., "Evaluating stereo and

motion cues for visualizing information nets in

three dimensions", ACM Transaction on

Graphics, vol. 15, no. 2, April 1996, pp. 121-

140.
[26] Ware, C., Hui, D., and Franck, G., "Visualizing

Object Oriented Software in Three

Dimensions", in Proceedings of

CASCON'93, Toronto, Ontario, Canada,

October 1993, pp. 612-620.
[27] Wiss, U., Carr, D., and Jonsson, H., "Evaluating

Three-Dimensional Information

Visualization Designs A Case Study of

Three Designs", in Proceedings of

International Conference on Information

Visualisation, London, England, July 29-31

1998.
[28] Young, P. and Munro, M., "Visualising Software in

Virtual Reality", in Proceedings of 6th

International Workshop on Program

Comprehension, Ischia, Italy, 1998, pp. 17-24.

