
© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002

IJIRT 142621 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 46

Performance Tuning in Teradata

Jasmeet Singh Birgi
1
, Mahesh Khaire

2
, Sahil Hira

3

1
Teradata Data Analyst

2,3
BI Application Developer

Abstract- "Performance Tuning:- Increasing the

System's Performance without making any hardware

changes." Data is continuously increasing and most

systems will respond to increased load with some

degree of decreasing performance. A system's ability to

accept higher load or to increase maximum load can be

scaled up by inducing more nodes or by Improving

hardware type, but the Question remains is it really

What was required ? The most important question with

the business will be if the change we are doing is really

justified because adding additional hardware means

additional cost to company and if Issue is not of

Capacity/ Increasing Available CPU cycles that can be

used adding more hardware will only increase the

DWH cost for Organization. So the important thing

becomes, if we are using the System resources in an

Optimal way or something can be done to improve

the performance without causing any additional cost to

organization. Considering the Importance a lot of work

has been done all over the world on DWH performance

tuning, In this article we would like to share various

approaches or Levels at which Performance Tuning

can be done.

I. INTRODUCTION

First a Brief on various Concepts that were shared

earlier: Concept [1] various concepts that can be

used to achieve better performance, Establishing and

maintaining ongoing communication & training by

providing support services, this helps in resolving

issues before it becomes a serious problem. Help

Desk & Problem Management, Network

Management, Capacity Planning, Data Loading

Performance, Query Management, Problem

Management Process and Development, Software

and Hardware should be updated, Extract Transform

Load process form one effective system and should

accomplish efficient, maintainable and scalable

process.

Concept [2] DWH performance is considered at

these stages : Fetch data from source system, Data

processing through ETL Layer, Feeding data in to

DWH, Time involved in Fetching data from DWH

for reporting.

There are numerous factors that can impact Response

time starting from Tool selection to Physical Design.

Collecting Statistics is one strong approach that can

help us solve most of the performance related issues.

It basically provides optimizer with ready to use

pre-compiled information on the Data and can be

scheduled by DBA/ Architect to ensure smooth flow

of queries on the System. This stat information is

stored in System tables and format can vary

depending on Database/Software type. Proposed

solution has steps and they will proceed only if first

condition is satisfied.

a) IF Table is Populated

b) Data is Incremental of Truncate load

c) Making Sure Data of Base Table has

changes to significant amount.

d) Checking Age of stats and updating only if

required.

Using the approach can help us save a significant

amount of CPU getting wasted.

Additionally to above research papers, we would like to

take a deep dive and focus more on various Levels at

which performance tuning can be done in a DWH

environment (specifically teradata):

Level 1 - Physical Design Tuning

Level 2 - Query Level Tuning

Level 3 - System or APP Level Tuning

Level 4 - Workload Management

II. PHYSICAL DESIGN TUNING

[3] Physical design tuning deals with the database

design of storing business data in a normalized form.

The standard design is in a third normal form, which

means further breaking of Entity Relationship

Diagram such as :-

 Relations become tables

 Attributes becomes columns

© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002

IJIRT 142621 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 47

 Relationships become data references, For

ex, Primary Key and Foreign Key

Database Design for Teradata should be

implemented in as follows:-

 De-normalize where appropriate

 Partition tables where appropriate

 Group tables into databases where

appropriate.

 Determine use of Segments

 Determine use of devices

 Implement referential integrity of

constraints

Normalization: [3]Normalization is the technique,

where non-key columns depend in the key. A fully

normalized design may not provided with the best

performance, Therefore it is recommended to design

for the third normal form and then de-normalize it, if

performance issue arises.

There are various benefits of Normalization such as:

 Searching, Sorting, Creating Index much

faster way, since the tables are small and

compact.

 Index Searching is also more efficiently

 There are few index per tables, therefore

leads to data modification commands

executed in a faster way

 There are few NULL values and less

redundant data, making your database much

more compact.

 Triggers executed more quickly, if you are

not maintaining redundant data.

 DML anomalies are reduced.

In a nutshell, normalization is a cleaner and easier to

maintain the database.

Once the database design is created, we can also use

the method called de-normalization for improving

performance of a specific query or application. There

are various performance advantaged of

De-normalization:-

 Minimizing need of Joins

 Minimizing foreign keys on tables.

 Minimizing number of Index, which help in

saving space and reduces DML queries

execution time.

 Pre-computing aggregate values at data

modification time, rather than at select time.

There are various de-normalization techniques used:-

 Adding Redundant Columns:- helps in

eliminating frequent joins.

 Adding Derived Columns:- helps minimize

the use of Joins also will reduce the time

needed to produce aggregate values

 Collapsing Table:- If user wants full joined

data from two tables, we can simply

collapse the table to improve performance

by eliminating the join.

III. QUERY LEVEL TUNING

[4]SQL statements are used to retrieve data from

traditional RDBMS. Therefore it is necessary to use

the set of queries which uses minimal time and

System resources as they will help in improving the

overall performance. There are various methods

which help in achieving query tuning.

 Statistics :- Statistics information can be stored

in DWH, which will make sure pre availability

of required data to come up with effective

execution plan. With this available precompiled

information optimizer /database engine will use

this information rather than calculating or

estimating the same at run time and will also

take care in case data is skewed.

 [5][8]Primary Index Choice:- There are two

types of Primary Index.

 Unique Primary Index (UPI)

 Non Unique Primary Index (NUPI)

Unique Primary Index is the index which doesn’t

accepts duplicates values for the particular column, it

also accepts NULL values once.

For example in the above picture we are using

Emp_No as a Unique Primary Index, therefore it

won’t be containing any duplicate values.

© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002

IJIRT 142621 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 48

Whereas, Non unique primary Index as the name

suggests can contain duplicate values and also

accepts NULL values. As the example shows Last

Name as the example of Non Unique Primary Index,

which can accept duplicates value, As Jones comes

twice in the table.

Primary Index is the Index, according to which

Teradata distributes data to the AMP and while

retrieving, takes data from disc to the particular

AMP. Therefore to make an optimized query one

should make sure to use a Primary Index column in a

where condition and also in joins. Primary Index are

created at the time of table creation and can’t be

created later on, therefore if condition demands of

creation of a different primary index then one should

make use if a temporary table or a volatile table

which has the same structure and content like the

original table but a different primary index.

Therefore in a nutshell, PI is useful for

 Distribution of Data

 Retrieval of Data

 Join Operations

 [5][11]Teradata Indexing Techniques:- We can

also use secondary Index for query tuning in

situations where a particular columns is used

again and again in a where column. Using

Secondary Index increases the spool space and

reduces the I/O, which provides and alternate

path to the data. There can be around 32

secondary index created on the table, which can

be created or dropped at the run time, or even

after the table is populated. In SI a sub table is

created on each AMP. Similar to Primary Index,

there are two types of Secondary Index namely.

 Unique Secondary Index (USI)

 Non Unique Secondary Index (NUSI)

The definition of the USI and NUSI are similar to

UPI and NUPI, as USI doesn’t accepts duplicates,

whereas NUSI can accept duplicate values. Another

important aspect of Secondary Index is 2 Amp

Operation and All Amp Operation. 2-AMP

Operations occurs in case of USI, whereas All AMP

operation occurs in case of NUSI, It is always

suggested to collect stats on NUSI Index.

Above examples show a 2-AMP Operation and

FULL AMP Operation.

[12]Another technique would be use of partitioning,

which is nothing but another performance

enhancement procedure. By using partitioning, we

make sure that the table is not a full table scan and

only particular part of the AMP is scanned, As it is

done on AMP and not on the disk.

It can be done on any column and have to be defined

while creating a table. As volume of data of data is

increases, we move to partitioning rather than using

SI, as it used SPOOL whereas SI uses PERM space.

Also PPI (Partition Primary Index) is used, which is

nothing but partition applied on a Primary Index

column, to avoid full table scan.

© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002

IJIRT 142621 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 49

If we have to find out the order number in for 1

st

month then it will require the full table scan, whereas

in the second ex, we see that only that portion of the

AMP will be scanned which has the order number

from the 1
st
 month. Therefore, it is much more

efficient to use partitioning in large tables.

 Query Rewriting:- It is a process to deal with the

making changes in the SQL part which can

further improve the performance. It can be done

in various ways. For ex:-

 Using DISTINCT instead of GROUP BY in

columns having different values.

 Union statement should be used for

breaking large SQL statement, and can be

executed in parallel.

 Left table should be greater row count than

the right table in case of a join.

 For best results, PI columns of both the

tables should be in the join condition. Also

those columns should have same data type

and size of the data type.

 Also various other things depending on the

business logic, where we can use left join in

place of an Inner Join.

 Real Time Monitoring:- Real time monitoring is

nothing but making sure that how the query is

running on viewpoint or PMON. It can help

detect the problems which are causing skew. It

can be due to bad join used missing statistics

collection therefore it is necessary to have

statistic collection on the table. It is of basically

three types

 Low – Done on all the PI Columns

 Medium – Done on all the after where

columns

 High – Done on table level

 Comparison Of Resource Usage:- It a nothing

but measure of resource usage, we can get result

such as

 Total CPU Usage

 Spool Space needed

 The LHR (Ratio between CPU and I/O

usage)

 CPU Skew

 Skew impact on CPU

IV. SYSTEM OR APP LEVEL TUNING

[9]Application level Tuning can help companies save

a lot on there system resource and hence money.

All of us have seen queries that perform unnecessary

full-table scans or other operations that consume too

many system resources contrary to the amount of

data they process. Application tuning is a process to

identify and tune target such applications for

performance improvements and proactively prevent

application performance problems.

STEP 1: Identifying Problematic Queries and hence

area of Improvement.

Data warehouses can handle millions of queries a

day. However a suspect query is one that either

consumes too many system resources irrelevant of

the amount of data involved or is not taking

advantage of Teradata parallelism. While most

DBAs are aware of the problem queries that most

affect system performance, there are several ways to

help prioritize what to tackle first. One way is to

analyze Re Usage Data looking for the days or times

of the day when the system is running close to or at

100% busy. Amp Usage data can be used to identify a

particularly consumptive application or group of

users. When it gets down to the real tuning analysis,

though, DBQL data is the place to go.

STEP 2: Recording Similar Queries:

DBQL should be used to find specific incidents of

problem queries, it can also be used to examine the

frequency of a problem query. In this scenario, a

DBA might notice that a marketing manager runs a

problem query every Monday morning, and the same

problem query is run several times a day by various

users. Identifying and documenting the frequency of

© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002

IJIRT 142621 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 50

problem queries offers a more comprehensive view

of the queries affecting data warehouse performance

and helps prioritize tuning efforts.

STEP 3: Actually Tuning the Query:

Identifying problem queries and recording instances

of like queries is easy; the difficulty is analyzing and

tuning a specific query. There is lot of expertise, time

and attention to details required to tune such queries.

There are various techniques that can help us in that:

 Using Query Explain Plan.

 DBQLSTEP table details to pin point the

problematic step.

STEP 4: Translating gains to Business values

This is the most important step in System tuning .

Basically this is how IT will come to know how

valuable improvement is for them.

Determining business value can be broken into

calculations and sub-calculations. Check the impact

of making a tuning change: Monthly CPU saved =

Total old CPU for a month X the average

improvement percent.

STEP 5: Implementing and Tracking:

Once We have finalized and implemented the

solution we have to document it and track it for

couple of days so confirm if it works as per plan.

Following things can be documented:

 Query optimization process

 Options found and tested

 Best option

 Options discarded, and why

 Lists of what still needs testing

 Observations and recommendations

 Anticipated savings

Application tuning focuses on returning capacity to a

system by concentrating on query optimization.

Through application tuning, database administrators

(DBAs) look for queries wreaking havoc on the

system and then target and optimize those queries to

improve system performance and prevent application

performance problems.

V. WORKLOAD MANAGEMENT

[10]Activities performed by the user are nothing but

requests and workload is a group of similar requests

and to manage those requests in a way so that all

users can utilize it to the fullest is known as workload

management and this forms an important part of

current mixed workload environment. It is much

better to keep the request of similar types in a same

group so that instead of applying a setting for each

request, we can apply setting for the whole group.

For ex if a particular type of request is a high priority

and need to be resolved in an urgent basis. Therefore

instead of applying ad-hoc setting to that one, we can

just simply put it in a group which handles all ad-hoc

and high priority requests.

Also doing this provides us with the better overview

of how system is used and by which group in a

particular. We can change the group of the user

anytime we want. For example, if a user who

generally uses a complex queries and is given a high

priority group, we can change the group if we feel, its

taking more CPU or because other users are in queue

for long time due to this. Also we can create different

queues for different group which further helps us in

making it more efficient. For example there are two

types of users, one who uses complex queries and the

other who uses simple select queries, therefore the

one with simple queries might have to be queue for

long time, as the complex one will take time. So to

avoid these kind of cases, we create separate queues

for different groups.

There are priority assigned to the groups according to

the types of queries they execute. For examples,

 Very High Priority used for tactical queries

such as short select, where multiple tables

are joined. We used the concept of Join

Index in this.

 High Priority used for mini batch, such as

daily FASTLOAD, MLOAD.

 Medium Priority used in the strategic

Complex queries, such as joins, stored

procedure and macros

 Low Priority used in Batch Reports.

This whole workload management is done by priority

scheduler tool. It is basically used for sharing of

resources:-

 Resource partition is nothing but the groups we

create to distinguish between the users and types of

queries. Priority scheduler provides zero as default

value, and there can be more additional resource

partition. It is the resource partition, which carries

weight and compared with the other resource

partitions.

© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002

IJIRT 142621 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 51

 The relative weight is also calculated, which is

nothing but the total number of resources (in %)

consumed by the total user. Relative weight can be

calculated by (Individual workload/ total

workload)*100

 For example, there are 3 groups of resource

partition,

 RP1 : Weight 10

 RP2 : Weight 20

 RP3 : Weight 30

 If total workload is 60. Now, we will calculate the

relative weight of each of the resource partition.

 The relative weight for RP1 would be

(10/60)*100 = 16.66%

 The relative weight for RP2 would be

(20/60)*100 = 33.33%

 The relative weight for RP3 would be

(30/60)*100 = 50%

 The relative weight for RP1 would be 16 rather

than 17 as Teradata truncates functional values,

while calculates the functional weight.

 Performance Groups are defined within each

additional resource partitions.

 Performance period is connection between

performance group and allocation group, we can

have from 1-8 performance period.

 Allocation group weight is compared with the

weight of other allocation group, it can also limit

the amount of CPU used by sessions under it.

VI. CONCLUSION

Increasing System Capacity is not always a solution

to Improve System Performance. If we want to

improve our System’s performance and Utilize it to

the fullest we will have to make sure we follow all the

above levels continuously and keep the system tuned

as being perfect in one level also does not grantee the

System to be tuned.

ACKNOWLEDGMENTS

We would like to take this opportunity to thank &

express our special gratitude to Dr. Amresh

Nikam(Sinhgad Institutes) without which this work

would not have been successful.

REFERENCES

[1] http://citeseerx.ist.psu.edu/viewdoc/downlo

ad?doi=10.1.1.206.4483&rep=rep1&type=

pdf on oct 6
th

 2015

[2] http://research.ijcaonline.org/volume32/nu

mber1/pxc3875303.pdf on oct 6th 2015

[3] The Teradata Database-Implementation for

Performance by Brian R. Marshall

[4] The Teradata Database : Introduction and

SQL by Brian Marshall

[5] Teradata Database Index Essentials by

Alison M Torres

[6] Teradata Basics - Teradata 14 official

Certification Guide

[7] Teradata Architecture and SQL by Tom

Coffing and William Coffing

[8] http://www.teradatawiki.net/2013/08/Terad

ata-Primary-Index.html

[9] http://apps.teradata.com//TDMO/v07n04/F

actsandFun/Services/StrikeItRich.aspx

[10] http://docs.aws.amazon.com/redshift/latest/

dg/cm-c-implementing-workload-managem

ent.html

[11] http://www.teradatatech.com/?p=815

[12] http://www.teradatatech.com/?p=997

