
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 312

ARRAYS: REVIEW
MonikaYadav

Student, departnment computer science engineering
Dronacharya college of engineering, gurgoan

ABSTRACT:- This paper contains a description
of the array data type and some discussion as to
how we Allocate memory space to arrays.
The value of defining arrays as an abstract data
type is primarily for systems programmers, Who
work behind the scenes and bring you all the
wonderful software that comes with an
Operatingsystem, such as compilers, linkers, files
managers, text editors, etc. For most of us Mortal
people, we simply use arrays in our programming
languages without thought of the more Abstract
nature of arrays.The theory of arrays is
ubiquitous in the context of software and
hardware verification and symbolic analysis. The
basic array theory was introduced by McCarthy
and allows to symbolically representing array
updates.

INTRODUCTION

This paper will give us a small brief review about
array that is used in the data structure.
This will also tell us how they are useful.Array is a
collection mainly using similar data types that are
stored into a common variable, forming (at least
conceptually that may even be replicated into the
memory hardware) a linear data structure.An array
is a particular method of storing elements of indexed
data. Elements of data are logically stored
sequentially in blocks within the array. Each element
is referenced by an index, or subscripts.Arrays can
hold primitives as well as references.

DISSCUSSION
Array is a collection mainly using similar data types
that are stored into a common variable, forming (at
least conceptually that may even be replicated into
the memory hardware) a linear data structure.
An array is a particular method of storing elements
of indexed data. Elements of data are logically
stored sequentially in blocks within the array. Each
element is referenced by an index, or
subscripts.Arrays can hold primitives as well as
references.

Array stores similar type of object. Array can be
classified into three categories.

1. One dimension array
2. Two dimension array
3. Three dimension array

Example :
Consider a multi-set of discrete domains Di = [li; ui],
i 2 f1; 2; : : : ;Ng where each domain Di contains
integers between li and ui. An N-dimensional array
with M attributes Aj , j 2 f1; 2; : : : ;Mg, can be
thought of as a function defined over dimensions and
taking values attribute tuples ,i.e.,:

Array: D1 _ D2 _ _ _ _ _ DN 7�!
(A1;A2; : : : ;AM) (1)
where the type of the attributes can be any simple
data type encountered in the relational data model.
Using the same ideas behind extended data types, or
user-defined data types, it is possible to have
attributes with composite types, e.g., array, case in
which we have nested arrays.

Some mostimportant array features

 copying and cloning

 insertion and deletion

 searching and sorting
An array is not a primitive data type - it has a field
(and only one), called length. One of the major
differences between references and primitives is that
you cannot copy arrays by assigning one to another:
int[] a = {9, 5, 4};
int[] b = a;

Class in arrays
This class is a set of static methods that are all useful
for working with arrays. The code below
demonstrates a proper invocation of equals:
int[] a = {1,2,3};
int[] b = {1,2,3};
if(Arrays.equals(a, b))
System.out.println("arrays with identical contents");
Copying arrays
There are four ways to copy arrays

(1) using a loop structure

int[] a = {1, 2, 3};

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 313

int[] b = new int[a.length];
for(inti = 0; i ‹ a.length; i++) b[i] = a[i];

(2) Arrays.copyOf()
int[] a = {1, 2, 3};
int[] b = Arrays.copyOf(a, a.length);

(3) The most efficient copying data between
arrays is provided by System.arraycopy()
method.

public static void arraycopy(Object source,
intsrcIndex,

Object destination,
intdestIndex,
int length)
(4) The clone() method is defined in the Object class
and its invocation is demonstrated by this code
segment
int[] a = {1, 2, 3};
int[] b = (int[]) a.clone();
Insertion and Deletion
We allocate the array with a different size and
copy the contents of the old array to the new
array. This code example demonstrates deletion
from an array of primitives
public char[] delete(char[] data, intpos)
{

if(pos>= 0 &&pos<data.length)
{

char[] tmp = new
char[data.length-1];

System.arraycopy(data, 0, tmp, 0,
pos);

System.arraycopy(data, pos+1,
tmp, pos, data.length-pos-1);

returntmp;
}
else

return data;
}
Multi-dimensional arrays
In many practical application there is a need to use
two- or multi-dimensional arrays. A two-
dimensional array can be thought of as a table of
rows and columns. This creates a table of 2 rows and
4 columns:
int[][] ar1 = new int[2][4];
we can create and initialize an array by using nested
curcly braces. For example, this creates a table of 3
rows and 2 columns:
int[][] ar2 = {{1,2},{3,4},{5,6}};
A two-dimensional array is not exactly a table - each
row in such array can have a different length.
Consider this code fragment

Object[][] obj = {{new Integer(1),new Integer(2)},
{new Integer(10), "bozo", new

Double(1.95)}};
obj has two elements obj[0] and obj[1] that are
arrays of length 2 and 3 respectively.
Cloning 2D arrays
The procedure is even more confusing and less
expected. Consider the following code segment
Object[][] obj = {{new Integer(1),new Integer(2)},

{new Integer(10), "bozo", new
Double(1.95)}};

Object[][] twin = (Object[][]) obj.clone();

The procedure of cloning 2d arrays is virtually the
same as cloning an array of references.
Unfortunately, built-in clone() method does not
actually clone each row, but rather creates references
to them.

CONCLUSION

There is also a lack of a unified resourcethat
summarizes and analyzes array processing research
over its long existence. In this survey, we
providethis missing resource as a guide for current
and new research in array processing. We present
the problem from a database perspective, thus we
focus our attention on clarifying the subtle
differences between the relational data model and
ordered arrays.We will create data structures of
immutable objects; therefore implementing the
clone method will require copying a structure (a
shape) and sharing its internal data.

REFERANCES

[1] http://www.eecs.yorku.ca/course_archive/
2008-09/F/2011/slides/06-ArrayADT.pdf

[2] http://iss.ices.utexas.edu/Publications/Pape
rs/TOPLAS1989.pdf

[3] http://www.cs.cmu.edu/~adamchik/15-
121/lectures/Arrays/arrays.html

[4] http://www.haskell.org/haskellwiki/Resear
ch_papers/Data_structures

[5] http://en.wikipedia.org/wiki/Array_data_st
ructure

