
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142686 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 326

DATA FILE HANDLING IN C++
Kripashanker Yadav

Department Of Computer Science and Engineering,
Dronacharya College of Engineering, Gurgaon

ABSTRACT:- In today’s generation, millions are
spent on developing softwares, and a number of
them are made on c/c++ language. In c/c++, data
file handling has a very vital role. This is because
files help in storing data permanently as well
modifying or deleting data from the files. This
paper contains introduction to data files, opening
and closing files using constructors and open()
function, sequential I/O with files, detecting EOF,
file pointers and random access and basic binary
operations on files (including searching,
appending data, inserting data, deleting data and
modifying data) with error handling during file
I/O.
Index Terms:- softwares; data file handling;
constructors; pointers; error handling.

I. INTRODUCTION
Files are used widely in computer programs; this is
because they help in storing information
permanently. Word processors create document
files, database programs create files of information
and compilers read source files and generate
executable files. Here you see, it is the files that are
mostly worked out with. A file itself is a bunch of
bytes stored on CD’s, HDD’s etc. In C++, the
input/output operations on file are executed with the
usage of a header file name fstream.h. At the lowest
level, a file in C++ is interpreted simply as a
sequence of bytes. The notion of the data is absent at
this level. While, at the user level, a file may
possibly consists of intermixed data types-
arithmetic values, characters, class objects. The
fstream.h header file includes the classes and
functions to perform all the necessary input and
output operations that are performed on files in C++.
ifstream is used for input operations and ofstream is
used for output operations. We can modify all the
contents of the data stored in the file according to the
user’s need with the help of binary operations.
File: The information/data stored under a specific
name on a storage device, is called a file.
Stream: It refers to a sequence of bytes.
Text file: It is a file that stores information in ASCII
characters. In text files, each line of text is
terminated with a special character known as EOL

(End of Line) character or delimiter character. When
this EOL character is read or written, certain internal
translations take place.
Binary file: It is a file that contains information in
the same format as it is held in memory. In binary
files, no delimiters are used for a line and no
translations occur here.

II. CLASSES FOR FILE STREAM
OPERATIONS

ofstream: Stream class to write on files
ifstream: Stream class to read from files
fstream: Stream class to both read and write from/to
files.

III. OPENING A FILE

OPENING FILE USING CONSTRUCTOR
ofstream outFile("sample.txt"); //output only
ifstream inFile(“sample.txt”); //input only
OPENING FILE USING open()
Stream-object.open(“filename”, mode)
ofstream outFile;
outFile.open("sample.txt");
ifstream inFile;
inFile.open("sample.txt");

File mode parameter
Meaning

ios::app
Append to end of file

ios::ate
go to end of file on opening

ios::binary
file open in binary mode

ios::in
open file for reading only

ios::out
open file for writing only

ios::nocreate
open fails if the file does not exist

ios::noreplace
open fails if the file already exist

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142686 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 327

ios::trunc
delete the contents of the file if it

exist
All these flags can be combined using the bitwise
operator OR (|). For example, if we want to open the
file example.bin in binary mode to add data we could
do it by the following call to member function
open():
fstream file;
file.open ("example.bin", ios::out | ios::app |
ios::binary);

4. Closing File
outFile.close();
inFile.close();

V. INPUT AND OUTPUT OPERATION

put() and get() function
the function put() writes a single character to the
associated stream. Similarly, the function get() reads
a single character form the associated stream.
example :
file.get(ch);
file.put(ch);
write() and read() function
write() and read() functions write and read blocks of
binary data.
example:
file.read((char *)&obj, sizeof(obj));
file.write((char *)&obj, sizeof(obj));

VI. ERROR HANDLING FUNCTION

FUNCTION RETURN
VALUE AND MEANING
eof() returns true (non-zero) if end of file is
encountered while reading;
otherwise return false(zero)
fail() return true
when an input or output operation has failed
bad() returns true if an invalid operation is
attempted or any unrecoverable error has occurred.
good() returns true if
no error has occurred.

VII. FILE POINTERS AND THEIR
MANIPULATIONS

All i/o streams objects have, at least, one internal
stream pointer:

ifstream: like istream, has a pointer known as the get
pointer that points to the element to be read in the
next input operation.
ofstream: like ostream, has a pointer known as the
put pointer that points to the location where the next
element has to be written.
Finally, fstream, inherits both, the get and the put
pointers, from iostream (which is itself derived from
both istream and ostream).

These internal stream pointers that point to the
reading or writing locations within a stream can be
manipulated using the following member functions:

seekg() moves get pointer(input) to a specified
location
seekp() moves put pointer (output) to a specified
location
tellg() gives the current position of the get pointer
tellp() gives the current position of the put pointer

The other prototype for these functions is:
seekg(offset, refposition);
seekp(offset, refposition);
The parameter offset represents the number of bytes
the file pointer is to be moved from the location
specified by the parameter refposition. The
reposition takes one of the following three constants
defined in the ios class.

ios::beg start of the file
ios::cur current position of the pointer
ios::end end of the file

example:
file.seekg(-10, ios::cur);

VII. BASIC OPERATIONS ON TEXT FILE IN
C++

File I/O is a five-step process:
1. Include the header file fstream in the program.
2. Declare file stream object.
3. Open the file with the file stream object.
4. Use the file stream object with >>, <<, or other
input/output functions.
5. Close the files.

IX. BASIC OPERATIONS ON BINARY FILES IN
C++

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142686 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 328

When data is stored in a file in the binary format,
reading and writing
data is faster because no time is lost in converting
the data from one format to another format. Such
files are called binary files. This following program
explains how to create binary files and also how to
read, write, search, delete and modify data from
binary files.
#include<iostream>
#include<fstream>
#include<cstdio>
using namespace std;
class Student
{
int admno;
char name[50];
public:
void setData()
{
cout << "\nEnter admission no. ";
cin >> admno;
cout << "Enter name of student ";
cin.getline(name,50);
}
void showData()
{
cout << "\nAdmission no. : " << admno;
cout << "\nStudent Name : " << name;
}
int retAdmno()
{
return admno;
}
};
void write_record()/*function to write in binary
file*/
{
ofstream outFile;
outFile.open("student.dat", ios::binary | ios::app);
Student obj;
obj.setData();
outFile.write((char*)&obj, sizeof(obj));
outFile.close();
}
void display() /*function to display records of file*/
{
ifstream inFile;
inFile.open("student.dat", ios::binary);
Student obj;
while(inFile.read((char*)&obj, sizeof(obj)))
{
obj.showData();

}
inFile.close();
}
void search(int n) /* function to search and display
from binary file*/
{
ifstream inFile;
inFile.open("student.dat", ios::binary);
Student obj;
while(inFile.read((char*)&obj, sizeof(obj)))
{
if(obj.retAdmno() == n)
{
obj.showData();
}
}
inFile.close();
}
void delete_record(int n) /*function to delete a
record*/
{
Student obj;
ifstream inFile;
inFile.open("student.dat", ios::binary);
ofstream outFile;
outFile.open("temp.dat", ios::out | ios::binary);
while(inFile.read((char*)&obj, sizeof(obj)))
{
if(obj.retAdmno() != n)
{
outFile.write((char*)&obj, sizeof(obj));
}
}
inFile.close();
outFile.close();
remove("student.dat");
rename("temp.dat", "student.dat");
}
void modify_record(int n) /*function to modify a
record*/
{
fstream file;
file.open("student.dat",ios::in | ios::out);
Student obj;
while(file.read((char*)&obj, sizeof(obj)))
{
if(obj.retAdmno() == n)
{
cout << "\nEnter the new details of student";
obj.setData();
int pos = -1 * sizeof(obj);
file.seekp(pos, ios::cur);

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142686 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 329

file.write((char*)&obj, sizeof(obj));
}
}
file.close();
}
int main()
{
for(int i = 1; i <= 4; i++) //Store 4 records in file
write_record();
cout << "\nList of records"; //Display all records
display();
cout << "\nSearch result"; //Search record
search(100);
delete_record(100); //Delete record
cout << "\nRecord Deleted";
cout << "\nModify Record 101 "; //Modify record
modify_record(101);
return 0;
}

X. CONCLUSION

Data file handling is a wide concept in c++ and for a
good programmer it is necessary to get the sufficient
knowledge about handling files in c++. This paper
provides sufficient basic knowledge for a
programmer at a beginner stage to start with data file
handling.

XI. REFERENCES

[1]Assessing programming language: a study on C
and C++ by Pamela Bhattacharya and Iulian
Neamtiu, University of California, Riverside, CA,
USA.
[2]Computer Science with C++ by Sumita Arora.
[3]www.soundfry.com.
[4]www.myplus.com/tutorials/file-handling.com
[5]repository.readscheme.org
[6]www.cs.ucr.edu

