
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142698 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 140

POINTERS IN C

Rahul Deshwal

Department of Computer Science and Engineering,

Dronacharya College of Engineering, Gurgaon

Abstract- This paper consists of all the basic

information regarding usage of pointers in C

language; its usage and implementation.

I. INTRODUCTION

Pointers

 Pointer are a fundamental part of C. If you cannot

use pointers properly then you have basically lost

all the power and flexibility that C allows. The

secret to C is in its use of pointers.

C uses pointers a lot.

 It is the only way to express some

computations.

 It produces compact and efficient

code.

 It provides a very powerful tool.

C uses pointers explicitly with:

 Arrays,

 Structures,

 Functions.

NOTE: Pointers are perhaps the most difficult part

of C to understand. C's implementation is slightly

different DIFFERENT from other languages.

What is a Pointer?

A pointer is a variable which contains the address

in memory of another variable. We can have a

pointer to any variable type.

The unary or monadic operator & gives the

``address of a variable''.

The indirection or dereference operator * gives the

``contents of an object pointed to by a pointer''.

To declare a pointer to a variable do:

 int *pointer;

Consider the effect of the following code:

 int x = 1, y = 2;

 int *ip;

 ip = &x;

y = *ip;

x = ip;

 *ip = 3;

It is worth considering what is going on at

the machine level in memory to fully understand

how pointer work. Consider Fig. 9.1. Assume for

the sake of this discussion that variable x resides at

memory location 100, y at 200 and ip at

1000. Note A pointer is a variable and thus its

values need to be stored somewhere. It is the nature

of the pointers value that is new.

Fig. 9.1 Pointer, Variables and Memory Now the

assignments x = 1 and y = 2 obviously load these

values into the variables. ip is declared to be

a pointer to an integer and is assigned to the

address of x(&x). So ip gets loaded with the value

100.

Next y gets assigned to the contents of ip. In this

example ip currently points to memory location

100 -- the location of x. So y gets assigned to the

values of x -- which is 1.

We have already seen that C is not too fussy about

assigning values of different type. Thus it is

perfectly legal (although not all that common) to

assign the current value of ip to x. The value

of ip at this instant is 100.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142698 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 141

Finally we can assign a value to the contents of a

pointer (*ip).

II. POINTER AND FUNCTIONS

Let us now examine the close relationship between

pointers and C's other major parts. We will start

with functions.

When C passes arguments to functions it passes

them by value.

There are many cases when we may want to alter a

passed argument in the function and receive the

new value back once to function has finished.

Other languages do this (e.g. var parameters in

PASCAL). C uses pointers explicitly to do this.

Other languages mask the fact that pointers also

underpin the implementation of this.

The best way to study this is to look at an example

where we must be able to receive changed

parameters.

Let us try and write a function to swap variables

around?

The usual function call:

 swap(a, b) WON'T WORK.

Pointers provide the solution: Pass the address of

the variables to the functions and access address

of function.

Thus our function call in our program would look

like this:

 swap(&a, &b)

The Code to swap is fairly straightforward:

 void swap(int *px, int *py)

 { int temp;

 temp = *px;

 /* contents of pointer */

 *px = *py;

 *py = temp;

 }

We can return pointer from functions. A common

example is when passing back structures. e.g.:

typedef struct {float x,y,z;} COORD;

 main()

 { COORD p1,

*coord_fn();

 /* declare fn to return ptr of

 COORD type */

 p1 = *coord_fn(...);

 /* assign contents of

address returned */

 }

 COORD *coord_fn(...)

 { COORD p;

 p =;

 /* assign structure values */

 return &p;

 /* return address of p */

 }

Here we return a pointer whose contents are

immediately unwrapped into a variable. We must

do this straight away as the variable we pointed to

was local to a function that has now finished. This

means that the address space is free and can be

overwritten. It will not have been overwritten

straight after the function ha squit though so this is

perfectly safe.

III. POINTERS AND ARRAYS

Pointers and arrays are very closely linked in C.

Hint: think of array elements arranged in

consecutive memory locations.

Consider the following:

 int a[10], x;

 int *pa;

 pa = &a[0]; /* pa pointer to

address of a[0] */

 x = *pa;

 /* x = contents of pa (a[0]

in this case) */

Fig. 9.3 Arrays and Pointers

To get somewhere in the array (Fig. 9.3) using a

pointer we could do:

 pa + i a[i]

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142698 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 142

Arrays of Pointers

We can have arrays of pointers since pointers are

variables.

Example use:

Sort lines of text of different length.

Arrays of Pointers are a data representation that

will cope efficiently and conveniently with variable

length text lines.

How can we do this?:

 Store lines end-to-end in one

big char array (Fig. 9.4). \n will delimit

lines.

 Store pointers in a different array

where each pointer points to 1st char of

each new line.

 Compare two lines

using strcmp() standard library function.

 If 2 lines are out of order -- swap

pointer in pointer array (not text).

Fig. 9.4 Arrays of Pointers (String Sorting

Example)

This eliminates:

 complicated storage

management.

 high overheads of moving lines.

Multidimensional arrays and pointers

We should think of multidimensional arrays in a

different way in C:

A 2D array is really a 1D array, each of whose

elements is itself an array

Hence

 a[n][m] notation.

Array elements are stored row by row.

When we pass a 2D array to a function we must

specify the number of columns -- the number of

rows is irrelevant.

The reason for this is pointers again. C needs to

know how many columns in order that it can jump

from row to row in memory.

Considerint a[5][35] to be passed in a function:

We can do:

 f(int a[][35]) {.....}

or even:

 f(int (*a)[35]) {.....}

We need parenthesis (*a) since [] have a higher

precedence than *

So:

 int (*a)[35]; declares a pointer to an array of

35 ints.

 int *a[35]; declares an array of 35 pointers

to ints.

Now lets look at the (subtle) difference between

pointers and arrays. Strings are a common

application of this.

Consider:

 char *name[10];

 char Aname[10][20];

We can legally do name[3][4] and Aname[3][4] in

C.

However

 Aname is a true 200 element 2D

char array.

 access elements via

 20*row + col + base_address

in memory.

 name has 10 pointer elements.

REFERENCE

Let us c – yashvant p.kanetkar

