
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142731 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 294

FILE MANAGEMENT IN C
Ria Arora

Computer Science and Engineering Department
Dronacharya College of Engineering,

Gurgaon, Haryana
ABSTRACT:- : In real life we deal with large
volume of data and therefore the concept of file
management is necessary. Dealing with a huge
amount of data is very cumbersome and time
consuming. If we turn off the computer or if the
program is terminated incorrectly, the entire
data is lost.
Due to these major problems it was very much
essential to rely on file management where the
data can be stored on the discs and read
whenever required. Also, this does not destroy
the data in any way.

File management in C involves the following:

 Naming a file
 Opening a file
 Writing a file
 Reading a file
 Closing a file

INTRODUCTION

What is basically a file? It is a collection of bytes on
secondary storage device. This storage device is
generally a disc of some kind. In a file, the collection
of bytes are sometimes interpreted, like, characters,
words, line, paragraphs and pages from a document.
Also, fields and reports of a database may mingle or
it may simply be the pixels of a graphical image. The
data structures and the operations used by a program
to process the file determine meaning attached to a
particular file. Sometimes, the program designed to
process textual data reads and displays a graphics
file. As a result, a meaningless output is what we get.
This is not what the user expects. In a file programs
and data are stored for machine usage as it is simply
a machine decipherable storage media.

OVERVIEW

A programmer deals with two types of files:
 Text files
 Binary files

BINARY FILES
A Binary file is similar to a text file. This file is a
collection of bytes. A byte and a character are
equivalent in a C programming file. A character
stream is what a file is referred to as. But, there are
two main differences:

 The data is not processed in any special way and
every byte of data is transferred to or from the
disc unprocessed.

 The file can be read or written in any manner
desired by the programmer as the C language
has no restrictions regarding this. Depending on
the needs of the application, binary files can be
either processed sequentially or, they can be
processed using random access techniques.
Moving the current file position to an
appropriate place in the file before reading or
writing data in C Programming Language, is
done by processing a file using random access
techniques. This is the second characteristic of
binary files.

After opening a binary file, the user can seek a
specific position in the file or read and write a
structure of the file. When the file is opened, a file
position indicator points to record 0. The file
position indicator points at a specific position and at
this position the read operation reads the structure.
The pointer is moved to point at the next structure
after reading it. The currently pointed structure
allows to write at its location using write operation.
The file position indicator is moved to point at the
next structure after the user is done with the write
operation. The file position indicator is moved to the
record that is requested by the seek function.

The user need to remember to keep track of things,
because not only the beginning of a structure, but
can also any byte in the file can be pointed by the
position indicator.
Four parameters are taken care of by the fread and

fwrite functions:

 A memory address

 Number of bytes to read per block

 Number of blocks to read

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142731 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 295

 A file variable

ASCII TEXT FILES
A computer can process sequentially a text file
which is considered to be a stream of characters. It
is processed sequentially as well as in forward
direction. At any given time a text file is generally
opened for only one kind of operation (reading,
writing, or appending).

In the same way, only one character at a time can be
read by the text files since they only process
characters. A special kind of file is a text stream in
C. Depending on whether data is being written to, or
read from, the file newline characters may be
converted to or from carriage-return/linefeed
combinations as per the needs of the operating
system. To satisfy the storage requirements of the
operating system other character conversions may
also occur. These translations occur because the
programmer has signaled the intention to process a
text file and they occur transparently.

METHODOLOGY

Console oriented Input/Output
Console oriented input/output makes use of
terminals like keyboard and screen. The command
scanf is used to take input from user through
keyboard and the printf command is used to display
output on the screen. It is suitable for small amount
of data. Also, the data is lost when program is
terminated.

Real Life Applications
Large data input is what we come across in real life.
For example, physical experiments, human genome,
population records, academic records etc. There is
need for flexible approach to store and retrieve data.
Therefore the concept of files evolved.

Files
File is a place on disc where a group of related data
is stored. High level programming languages which
support file operations are:

 Naming

 Opening

 Reading

 Writing

 Closing

Defining and Opening a File
To store data file in secondary memory (disc) must
specify to the operating system.

 Filename (e.g. sort.c, input.data)

 Data structure (e.g. FILE)

 Purpose (e.g. reading, writing, appending)

Filename
A string of characters make up a valid filename for
the operating system. It may contain two part
namely: Primary and optional period with extension.
For example: prog.c, a.out, temp, text.out etc.

General Format for Opening a File
FILE *fp; /*variable fp is pointer to type FILE*/
fp = fopen(“filename”, “mode”);
/*opens file with name filename , assigns identifier
to fp */

fp:

 It contains all the information about the
file.

 It also serves as a communication link
between system and program.

Mode can be:

 r- open file for reading only

 w- open file for writing only

 a- open a file for appending(adding) data

Different Modes
I. Writing Mode

 If file already exists then contents are
deleted.

 Else a new file with specific name is
created

II. Appending mode

 If file already exists then file opened with
contents safe

 Else new file created
III. Reading mode

 If file already exists then opened with
contents safe

 Else error occurs.

Closing a File

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142731 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 296

The file must be closed as soon as all operations on
it are completed. It ensures that-

 All outstanding information associated
with file flushed out from buffers

 All links to file broken

 Accidental misuse of file prevented

 For changing the mode of file, first close it
and then open again. Also, the pointer can
be reused after closing

Syntax: fclose(file_pointer);
Example:
FILE *p1, *p2;
p1 = fopen(“INPUT.txt”, “r”);
p2 =fopen(“OUTPUT.txt”, “w”);
fclose(p1);
fclose(p2);

File Management functions in C:

 getc()-to read a character from a file

 putc()-to write a character to a file

 fopen()-to create a new file for use

 fclose()-to close a file which was opened
for use

 getw()-to read an integer from a file

 putw()-to write an integer to a file

 fprintf()-to write a set of data values from a
file

 fscanf()-to read a set of data values from a
file

 rewind()-to set the position to the
beginning of the file

 fseek()-to set the position at a desired point
in the file

 ftell()-to give the current position in the file

Errors that occur during I/O Operations
Typical errors that occur are:

 Trying to read beyond end-of-file

 Trying to use a file that has not been opened

 Perform operation on file not permitted by
‘fopen’ mode

 Open file with invalid filename

 Write to write-protected file
Error handling

 given file-pointer, check if EOF reached,
errors while handling file, problems
opening file etc.

 check if EOF reached: feof()

 feof() takes file-pointer as input, returns
nonzero if all data read and zero otherwise

if(feof(fp))
printf(“End of data\n”);

 ferror() takes file-pointer as input, returns
nonzero integer if error detected else
returns zero

 if(ferror(fp) !=0)

 printf(“An error has occurred\n”);

CONCLUSION

 File management is the new way of dealing
with large amount of data.

 The data can be retrieve whenever require
as it is stored on the disk.

 The disk may store output of the data.

 We have a wide range of functions in C
which deal with file handling.

REFERENCES
 https://en.wikipedia.org/wiki/C_file_input/

output

 http://www.thegeekstuff.com/2012/07/c-
file-handling/

 http://www.sanfoundry.com/c-
programming-examples-file-handling/

 http://www.peoi.org/Courses/Coursesen/c
prog/frame13.html

 http://www.tutorialspoint.com/cprogramm
ing/c_file_io.htm

 http://www.dailyfreecode.com/code/file-
management-2767.aspx

