
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142783 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 268

SOFTWARE TESTING
Aarti Singh

ABSTRACT:- Software testing is an investigation
conducted to provide stakeholders with
information about the quality of the product or
service under test Software testing can also
provide an objective, independent view of
thesoftware to allow the business to appreciate
and understand the risks of software
implementation.In this paper we will discuss
about testing levels suct as alpha testing , beta
testing, unit testing , integrity testing, testing
cycle and their requirement n comparison
between varius testing such as static and dynamic
testing.

INTRODUCTION:
Software testing involves the execution of a
software component or system component to
evaluate one or more properties of interest. In
general, these properties indicate the extent to which
the component or system under test:

 meets the requirements that guided its
design and development,

 responds correctly to all kinds of inputs,

 performs its functions within an acceptable
time,

 is sufficiently usable,

 can be installed and run in its
intended environments, and

 achieves the general result its stakeholders
desire.

Software testing can be conducted as soon as
executable software (even if partially complete)
exists. The overall approach to software
development often determines when and how testing
is conducted. For example, in a phased process, most
testing occurs after system requirements have been
defined and then implemented in testable programs.
HISTORY:
The separation of debugging from testing was
initially introduced by Glenford J. Myers in
1979.[] Although his attention was on breakage
testing ("a successful test is one that finds a bug) it
illustrated the desire of the software engineering
community to separate fundamental development
activities, such as debugging, from that of
verification. Dave Gelperin and William C.
Hetzel classified in 1988 the phases and goals in
software testing in the following stages:

 Until 1956 – Debugging oriented

 1957–1978 – Demonstration oriented

 1979–1982 – Destruction oriented

 1983–1987 – Evaluation oriented

 1988–2000 – Prevention oriented

TESTING METHODS:

Static vs. dynamic testing:

There are many approaches available in software
testing. Reviews, walkthroughs, or inspections are
referred to asstatic testing, whereas actually
executing programmed code with a given set of test
cases is referred to as dynamic testing. Static testing
is often implicit, as proofreading, plus when
programming tools/text editors check source code

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142783 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 269

structure or compilers (pre-compilers) check syntax
and data flow as static program analysis. Dynamic
testing takes place when the program itself is run.
Dynamic testing may begin before the program is
100% complete in order to test particular sections of
code and are applied to discrete functions or
modules. Typical techniques for this are either

using stubs/drivers or execution from
a debugger environment.
Static testing involves verification, whereas
dynamic testing involves validation. Together they
help improve software quality. Among the
techniques for static analysis, mutation testing can
be used to ensure the test-cases will detect errors
which are introduced by mutating the source code.

White-box testing
White-box testing (also known as clear box
testing, glass box testing, transparent box
testing and structural testing) tests internal
structures or workings of a program, as opposed to
the functionality exposed to the end-user. In white-
box testing an internal perspective of the system, as
well as programming skills, are used to design test
cases. The tester chooses inputs to exercise paths
through the code and determine the appropriate
outputs. This is analogous to testing nodes in a
circuit, e.g. in-circuit testing (ICT)
While white-box testing can be applied at
the unit, integration and system levels of the
software testing process, it is usually done at the unit
level. It can test paths within a unit, paths between
units during integration, and between subsystems
during a system–level test. Though this method of
test design can uncover many errors or problems, it
might not detect unimplemented parts of the
specification or missing requirements.
Techniques used in white-box testing include:

 API testing – testing of the application
using public and private APIs (application
programming interfaces)

 Code coverage – creating tests to satisfy
some criteria of code coverage (e.g., the
test designer can create tests to cause all

statements in the program to be executed at
least once)

 Fault injection methods – intentionally
introducing faults to gauge the efficacy of
testing strategies

 Mutation testing methods

 Static testing methods
Code coverage tools can evaluate the completeness
of a test suite that was created with any method,
including black-box testing. This allows the
software team to examine parts of a system that are
rarely tested and ensures that the most
important function points have been tested.[22] Code
coverage as a software metric can be reported as a
percentage for:

 Function coverage, which reports on
functions executed

 Statement coverage, which reports on the
number of lines executed to complete the
test

 Decision coverage, which reports on
whether both the True and the False branch
of a given test has been executed

100% statement coverage ensures that all code paths
or branches (in terms of control flow) are executed
at least once. This is helpful in ensuring correct
functionality, but not sufficient since the same code
may process different inputs correctly or incorrectly.
Black-box testing

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142783 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 270

Black box
diagram
Black-box testing treats the software as a "black
box", examining functionality without any
knowledge of internal implementation. The testers
are only aware of what the software is supposed to
do, not how it does it.[23] Black-box testing methods
include: equivalence partitioning, boundary value
analysis, all-pairs testing, state transition
tables, decision table testing, fuzz testing, model-
based testing, use case testing, exploratory
testing and specification-based testing.
Specification-based testing aims to test the
functionality of software according to the applicable
requirements.[24]This level of testing usually
requires thorough test cases to be provided to the
tester, who then can simply verify that for a given
input, the output value (or behavior), either "is" or
"is not" the same as the expected value specified in
the test case. Test cases are built around
specifications and requirements, i.e., what the
application is supposed to do. It uses external

descriptions of the software, including
specifications, requirements, and designs to derive
test cases. These tests can be functional or non-
functional, though usually functional.
Specification-based testing may be necessary to
assure correct functionality, but it is insufficient to
guard against complex or high-risk situations.[25]

One advantage of the black box technique is that no
programming knowledge is required. Whatever
biases the programmers may have had, the tester
likely has a different set and may emphasize
different areas of functionality. On the other hand,
black-box testing has been said to be "like a walk in
a dark labyrinth without a flashlight."[26]Because
they do not examine the source code, there are
situations when a tester writes many test cases to
check something that could have been tested by only
one test case, or leaves some parts of the program
untested.
This method of test can be applied to all levels of
software
testing: unit, integration, system and acceptance. It
typically comprises most if not all testing at higher
levels, but can also dominate unit testing as well.

Visual testing
The aim of visual testing is to provide developers
with the ability to examine what was happening at
the point of software failure by presenting the data
in such a way that the developer can easily find the
information she or he requires, and the information
is expressed clearly.[27][28]

At the core of visual testing is the idea that showing
someone a problem (or a test failure), rather than just
describing it, greatly increases clarity and
understanding. Visual testing therefore requires the

recording of the entire test process – capturing
everything that occurs on the test system in video
format. Output videos are supplemented by real-
time tester input via picture-in-a-picture webcam
and audio commentary from microphones.
Visual testing provides a number of advantages. The
quality of communication is increased drastically
because testers can show the problem (and the
events leading up to it) to the developer as opposed
to just describing it and the need to replicate test
failures will cease to exist in many cases. The
developer will have all the evidence he or she

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142783 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 271

requires of a test failure and can instead focus on the
cause of the fault and how it should be fixed.
Visual testing is particularly well-suited for
environments that deploy agile methods in their
development of software, since agile methods
require greater communication between testers and
developers and collaboration within small teams.[

Ad hoc testing and exploratory testing are important
methodologies for checking software integrity,
because they require less preparation time to
implement, while the important bugs can be found
quickly. In ad hoc testing, where testing takes place
in an improvised, impromptu way, the ability of a

test tool to visually record everything that occurs on
a system becomes very important in order to
document the steps taken to uncover the bug.[Visual
testing is gathering recognition in customer
acceptance and usability testing, because the test can
be used by many individuals involved in the
development process. For the customer, it becomes
easy to provide detailed bug reports and feedback,
and for program users, visual testing can record user
actions on screen, as well as their voice and image,
to provide a complete picture at the time of software
failure for the developers.
TESTING LEVELS:

There are generally four recognized levels of tests:
unit testing, integration testing, component interface
testing, and system testing.
Unit testing
Unit testing, also known as component testing,
refers to tests that verify the functionality of a
specific section of code, usually at the function level.
In an object-oriented environment, this is usually at
the class level, and the minimal unit tests include the
constructors and destructors.[32]

These types of tests are usually written by
developers as they work on code (white-box style),
to ensure that the specific function is working as
expected. One function might have multiple tests, to
catch corner cases or other branches in the code.
Unit testing alone cannot verify the functionality of
a piece of software, but rather is used to ensure that
the building blocks of the software work
independently from each other.
Unit testing is a software development process that
involves synchronized application of a broad
spectrum of defect prevention and detection
strategies in order to reduce software development
risks, time, and costs. It is performed by the software
developer or engineer during the construction phase

of the software development lifecycle. Rather than
replace traditional QA focuses, it augments it. Unit
testing aims to eliminate construction errors before
code is promoted to QA; this strategy is intended to
increase the quality of the resulting software as well
as the efficiency of the overall development and QA
process.
Depending on the organization's expectations for
software development, unit testing might
include static code analysis, data flow analysis,
metrics analysis, peer code reviews, code coverage
analysis and other software verification practices.
Integration testing
Integration testing is any type of software testing
that seeks to verify the interfaces between
components against a software design. Software
components may be integrated in an iterative way or
all together ("big bang"). Normally the former is
considered a better practice since it allows interface
issues to be located more quickly and fixed.
Integration testing works to expose defects in the
interfaces and interaction between integrated
components (modules). Progressively larger groups
of tested software components corresponding to
elements of the architectural design are integrated
and tested until the software works as a system.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142783 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 272

Component interface testing
The practice of component interface testing can be
used to check the handling of data passed between
various units, or subsystem components, beyond full
integration testing between those units.[34][35] The
data being passed can be considered as "message
packets" and the range or data types can be checked,
for data generated from one unit, and tested for
validity before being passed into another unit. One
option for interface testing is to keep a separate log
file of data items being passed, often with a
timestamp logged to allow analysis of thousands of
cases of data passed between units for days or
weeks. Tests can include checking the handling of
some extreme data values while other interface
variables are passed as normal values. Unusual data
values in an interface can help explain unexpected
performance in the next unit. Component interface
testing is a variation of black-box testing,

Alpha testing
Alpha testing is simulated or actual operational
testing by potential users/customers or an
independent test team at the developers' site. Alpha
testing is often employed for off-the-shelf software
as a form of internal acceptance testing, before the
software goes to beta testing.[39]

Beta testing
Beta testing comes after alpha testing and can be
considered a form of external user acceptance
testing. Versions of the software, known as beta
versions, are released to a limited audience outside
of the programming team known as beta testers. The
software is released to groups of people so that
further testing can ensure the product has few faults
or bugs. Beta versions can be made available to the
open public to increase the feedback field to a
maximal number of future users and to deliver value
earlier, for an extended or even infinite period of
time (perpetual beta).

Functional vs non-functional testing:

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142783 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 273

Functional testing refers to activities that verify a
specific action or function of the code. These are
usually found in the code requirements
documentation, although some development
methodologies work from use cases or user stories.
Functional tests tend to answer the question of "can
the user do this" or "does this particular feature
work."
Non-functional testing refers to aspects of the
software that may not be related to a specific
function or user action, such as scalability or
other performance, behavior under
certain constraints, or security. Testing will
determine the breaking point, the point at which
extremes of scalability or performance leads to
unstable execution. Non-functional requirements
tend to be those that reflect the quality of the
product, particularly in the context of the suitability
perspective of its users.
with the focus on the data values beyond just the

related actions of a subsystem component.
System testing
System testing, or end-to-end testing, tests a
completely integrated system to verify that it meets
its requirements.[36]For example, a system test might
involve testing a logon interface, then creating and
editing an entry, plus sending or printing results,
followed by summary processing or deletion (or
archiving) of entries, then logoff.
TESTING CYCLE:
Although variations exist between organizations,
there is a typical cycle for testing. The sample below
is common among organizations employing
the Waterfall development model. The same
practices are commonly found in other development
models, but might not be as clear or explicit.

 Requirements analysis: Testing should
begin in the requirements phase of
the software development life cycle.
During the design phase, testers work to
determine what aspects of a design are

testable and with what parameters those
tests work.

 Test planning: Test strategy, test
plan, testbed creation. Since many
activities will be carried out during testing,
a plan is needed.

 Test development: Test procedures, test
scenarios, test cases, test datasets, test
scripts to use in testing software.

 Test execution: Testers execute the
software based on the plans and test
documents then report any errors found to
the development team.

 Test reporting: Once testing is completed,
testers generate metrics and make final
reports on their test effort and whether or
not the software tested is ready for release.

 Test result analysis: Or Defect Analysis,
is done by the development team usually
along with the client, in order to decide
what defects should be assigned, fixed,
rejected (i.e. found software working
properly) or deferred to be dealt with later.

 Defect Retesting: Once a defect has been
dealt with by the development team, it is
retested by the testing team.
AKA Resolution testing.

 Regression testing: It is common to have a
small test program built of a subset of tests,
for each integration of new, modified, or
fixed software, in order to ensure that the
latest delivery has not ruined anything, and
that the software product as a whole is still
working correctly.

 Test Closure: Once the test meets the exit
criteria, the activities such as capturing the
key outputs, lessons learned, results, logs,
documents related to the project are
archived and used as a reference for future
projects.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142783 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 274

REFERNCES
1. McConnell, Steve (2004). Code Complete (2nd

ed.). Microsoft Press. p.
2. Jump up^ Bossavit, Laurent (2013-11-20). The

Leprechauns of Software Engineering--How
folklore turns into fact and what to do about it.
Chapter 10: leanpub.

3. Jump up^ see D. Gelperin and W.C. Hetzel
4. ^ Jump up to:a b Myers, Glenford J. (1979). The

Art of Software Testing. John Wiley and Sons.
5. Jump up^ Company, People's Computer

(1987). "Dr. Dobb's journal of software tools
for the professional programmer". Dr. Dobb's
journal of software tools for the professional
programmer (M&T Pub)

6. Software Testing by Jiantao Pan, Carnegie
Mellon University

7. Jump up^ Leitner, A., Ciupa, I., Oriol, M.,
Meyer, B., Fiva, A., "Contract Driven
Development = Test Driven Development –
Writing Test Cases", Proceedings of
ESEC/FSE'07: European Software Engineering
Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering 2007, (Dubrovnik, Croatia),
September 2007

