
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142789 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 375

JAVA_ MULTITHREADING SYSTEM
Kritika Chadha

Dronacharya College of Engineering, Gurgaon

Abstract- Java is becoming more and more
important in various communities. It is widely
used for developing classical, dis-tributed and
real time applications. One of its key features in
these domains is its multithreading system.

Although a specification exists, it is informally
written in the English language. Therefore, an
additional formaliza-tion effort is required. This
paper focuses on that point.

Our aim is to provide a model that can be reused
and help in the processes of: using Java threads
to gain deep knowledge of their behavior;
designing new threading sys-tems taking the best
out of Java threads still avoiding their main
drawbacks; proving properties – this is for
instance what we need in other research projects
carried out in our team on automatic distribution
of objects.
The model that we have set up uses transition
systems. To check that it corresponds to the
informal specification, we use the MEC model
checker. Also, we use MEC to au-tomatically
check the properties we are interested in. For
example, we use it to exhibit a known problem of
the Java threading system: the handling of long
and double vari-ables.

1. Introduction

The work presented in this paper takes place in the
framework of a project carried out at the Laboratoire
Borde-lais de Recherche en Informatique (LaBRI),
Université Bor-deaux I. The aim of this project is to
provide a distributed platform that offers
homogeneous access to hetero-geneous resources of
a network. This platform is based on Java, RMI and
CORBA. The basic execution unit that we provide
to the programmer is the thread. A thread is a flow
of execution within a process. Multithreaded sys-
tems offer multiple flows of execution, i.e. multiple
threads, within the same process. Java is
multithreaded[20].

The specification of the Java Virtual Machine as
pub-lished by Sun in [21] covers all the aspects of
the execution of a Java application on that platform.
Since they are pro-vided in the English language, not
using a formal notation, these specifications are not
always quite clear and straight-forward to
understand. Therefore, a formalization effort is
required if we want to come with unambiguous,
widely un-derstood specification of the Java
multithreading system.

In this paper, our aim is to explain how we build a
for-mal model of the Java threading system as it is
defined at the level of the virtual machine. It is a
crucial issue, because is it important for both
network and parallel and distributed computing
communities. Multithreading sys-tems are used
intensively, for instance, to achieve compu-
tation/communication overlapping. A chapter in the
spec-ifications of Java is dedicated to threads. Our
goal is to serve four main purposes. First the model
we build will be available for other projects. Second,
this will serve for ed-ucational purpose. Third, we
hope that it will help in the design of new – better –
threading systems. Fourth, this model will be used
for other research activities carried out in our team,
especially the work that is being done on auto-matic
distribution of objects. This last activity requires
he proof of some properties on objects making up
the ap-plication, properties that involve threads.

The rest of this paper is organized as follows. In
section 2 we present related work in the domain of
Java modeling. We then describe Java threads from
a practical point of view in section 3, still remaining
at a high level of abstraction. In section 4 we
comment on the specifications as given by Sun. In
section 5 we explain and show, on some examples,
how we translate these informal specifications to our
model. We then use the MEC transition system
based software tool to check the validity of our
model in section 6. We eventually conclude and
consider future uses and evolutions of the research
results presented in this paper.
3. High level view of Java threads

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142789 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 376

3.1. Implementation of the Java multithreading
sys-tem

In this section we show a possible implementation
of the Java multithreading system that satisfies the
specifica-tions that Sun Microsystems publishes for
the Java Virtual Machine. The first specification of
the JVM was pub-lished in 1996. It has hardly
changed since then and still supports the Java
language[18] that is available today. In-deed, this
specification supports the different releases that
have been designed till now, i.e. 1.02 and 1.1, as well
as the most recent Java 2 – formally called Java 1.2
or 1.3 –.

The effective implementation of threads in the Java
Vir-tual Machine is not far from the
implementations that have been adopted by other
systems. Figure 1 illustrates the dif-ferent data areas
that take part in the execution of a thread in the Java
Virtual Machine. Here is a short description of them:

The program counter. The Java Virtual Machine
can manage several threads executing in a
concurrent man-ner. Each thread has its own
program counter. At

Figure 1. Implementation of the threads in the
Java Virtual Machine

any given time, a thread executes the code of a sin-
gle method. The program counter contains the
address of the instruction of the method that is being
executed. The Java language makes it possible to
invoke methods written in different languages.
These are called native methods. If the method that
is being executed is native, then the value of the
program counter is undefined.

The stack. Each thread has its own private stack that
is cre-ated when the thread is created. This stack is
structured in frames. Entering a new method causes
a new frame to be pushed on the stack. The way the
stack is used is basically equivalent to the way the
stack of a classi-cal process is used (pushing local
variables, the return values of the methods, etc.).

The heap. This is a memory area that is shared by
all the threads. It contains all the class instances and
hence the variables shared by all the threads. This
area is managed by the garbage collector.

Methods area. This memory area is shared by all
the threads. It contains the definition of the different
classes, as well as the code of the methods.

The native stack. This is the private stack used to
execute the native methods of a thread.

3.2. Threads and the Java bytecode

To be executed by the Java Virtual Machine the Java
code is compiled to a binary format into a .class file.
This binary

4. Informal Java threads specification

Now that we have explained the basic operations of
Java threads, we explain and clarify the
specifications of the Java multithreading system as
described in The Java Virtual Ma-chine
Specification by Tim Linholm and Franck
Yellin[21]. The model that we propose in section 5
is based on these specifications.

4.1. Overall model of the Java threading system

In this section we describe the approach adopted in
[21]. We illustrate the components involved in this
infor-mal model by means of the schema presented
figure 2.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142789 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 377

Figure 2. Global model of the Java multi-
threading system

The system of threads is defined as a set of two kinds
of communicating processes: the main memory and
the threads that share it.

A set of low level actions is defined. These actions
can be used to explain the interactions between
threads and the main memory.

A set of constraints is defined. These constraints
must be obeyed in order to ensure the integrity of
data. They set up an order among the actions
generated by threads.

The operations that transfer a value (read or
write) between the main memory and the local
memory of the thread are split in two phases. So that
a read or write operation is effectively achieved, it
must first have been val-idated by the thread and by
the main memory. Therefore the operation takes
place in two phases, with some sort of intermediate
transfer area (see figure 2). This makes it pos-sible
to relax the synchronization constraints between the
different components of the system. This could be
used to implement optimizations in a virtual
machine or in a com-piler. Some research activities
in the domain[14] have al-ready shown the
usefulness of this model in a distributed framework.

4.2. Constraints on the behavior of Java threads

The execution of threads is directed by a set of rules
that are given in the specification provided by Sun
in . There are mainly three kinds of constraints that
control:

1. the basic behavior of the system;

2. the relationships between instructions
executed by a thread;

3. the relationship of threads with their
environment, mainly the main memory.

From a formal point of view, although expressed in
the English language, some of these constraints let
the reader guess the underlying intrinsic automaton.
This is unfortu-nately not the case for all of them.
Nevertheless, this is one of the reasons why we
chose the model of transition systems for our model.

4.3. Virtual instruction set

The behavior of individual Java threads is described
by means of a set of virtual instructions that
represent basic op-erations that threads can achieve.
These instructions make it possible to describe the
basic operations of the main mem-ory, the
interactions of threads with memory and the lock on
variables. These operations are not necessarily those
of-fered by a real Java Virtual Machine
implementation but are used only for a descriptive
purpose.
These operations are:

use

reads the contents of a local variable from local
mem-ory;
assign

assigns a value to a variable in local memory;

load

gets the value of a variable as transfered by the main
memory and assigns it to its corresponding copy in
lo-cal memory;

store

transfers the value of a variable in local memory to
the global memory;

read

the main memory transfers the value of a variable to
the thread;

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142789 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 378

write

stores the value of a variable transfered by the thread
in main memory;

lock, unlock

although dealt with in our work, operations on locks
will not be detailed here.

For instance, the bytecode instruction getfield – see
section 3.2 – can be implemented using the load and
the read virtual instructions.
5. Effective construction of the model

To achieve our goal we considered several different
de-scription languages: Petri nets, Milner’s CCS,
finite transition systems. For the reasons explained
above, we eventually chose finite transition systems.

5.1. Components of the system

The Java threading system basically contains within
its specification a set of entities. Among these are
the threads, local memories and global memory.

We have added components that do not directly
appear in the specifications. We use these entities to
carry the se-mantics of the synchronizations. This
will be explained in section 5.4.

5.2. Basic constraints

The basic constraints are those that are mandatory
when describing the behavior of any system in terms
of states and transitions. There are four of these
constraints. Here is one of them as given in :

"The actions performed by any one thread are totally
ordered; that is, for any two actions performed by a
thread, one action precedes the other."

5.3. Local constraints

Local constraints are those that specify the order in
which a thread can achieve its own operations. There
are 8 of them. These constraints do not take
relationships be-tween threads into account. Form a
practical point of view, the aim of local constraints
is mainly to avoid threads use-less work. For
instance the aim of the constraint expressed as
follows in:

! "A store operation by [a thread] T on [a
variable] V must intervene between an
assign by T of V and a subsequent load by
T of V."

is mainly to ensure that there is no useless local
memory assignment carried out by a thread. This is
illustrated in figure 3.

Figure 3. Illustration of one of the constraints
that enforce useful uses of variables by a thread

Such a constraint can directly be coded to a
regular ex-pression and then to an automaton. We
model this con-straint as the automaton shown
figure 4. The notation ^instruction means all but
instruction.

5.4. Synchronization constraints

We call synchronization constraints, those
constraints that define the relationships between
operations carried out

^assign
^store

^lo
ad

assign

assign

load
stor
e

^load^assign

Figure 4. Automaton modeling one of the con-
straints that enforce useful uses of variables by
a thread

This constraint says that the main memory must
be ready to write the value of a memory location
when this is re-quired by a thread, and that it cannot
write any value with-out a thread requiring it.

To handle that kind of synchronization constraint,

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142789 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 379

we in-troduce new entities that do not exist as such
in the speci-fications, and that obey a set of rules
expressed by means of a transition system. For
instance, the constraint consid-ered here is modeled
by a process that we have introduced, and that we
call a variable, since it is used to model the usage of
memory locations, i.e. of variables. The resulting
automaton is shown figure 5. It models not only the
con-straint given above but also all the constraints
that deal with memory transfers.

This variable is the formalization of the transfer
area that we introduced to explain the informal
specifications in sec-tion 4.1.

Figure 5. Behavior of a variable

by different threads. Since all the information that are
shared between threads are exchanged through the main
memory, all of these synchronization constraints are ex-
Load pressed as relations between threads and the main
memory. There are 7 of these constraints.

To illustrate our approach we consider one of these con-
straints as given in :

! "Each store action by a thread is uniquely
paired with a write action by the main memory such that
the write action follows the store action."

5.5. Global system

We have set up a global model of the system by syn-
chronizing all of the automaton previously defined.
Fig-ure 6 shows all the components of this global
model and the synchronizations that have to be
applied between them. The synchronizations are
carried by the links between en-tities; these links
represent the synchronization vectors be-tween
processes. In order to keep this model tractable, we
have applied a set of simplifications regarding the
number of threads, of variables and locks – that have
not been de-tailed in this paper –. Nevertheless, it
remains significant regarding the behavior of a
system of any size for the prop-erties that we want
to show.

Figure 6. Global system

6. Using the MEC software tool to verify the
model

The aim of this section is to show how we prove
expected properties or exhibit failures that are
already known in order to check the model that we
have set up.

We remind the reader that we intend to provide a
formal model that first describes the informal
specification of the Java Virtual Machine, and
second offers a formal support that can be used to
check behavioral properties. Therefore, what we
want to check here, is the fact that our model effec-
tively models the informal specifications, with their
known properties and their possible problems.

Once the model is available as a transition system,
we use a software tool called MEC to automatically
check the properties we are interested in.

6.1. Overview of MEC

MEC[3] is a model checker that implements the so
called Arnold-Nivat[4] model and Dicky’s logic. It
makes it possible to build and analyze a model of a
system of pro-cesses. To do that, it computes the
synchronized product of a transition system. The
reader can refer to for a com-plete description of
MEC, of its operators and functions.

Once specified within MEC, the model we have set
up leads to a transition system that is made up of
209.464 states and 4.608.048 transitions. The
creation of the system inside MEC on a Sun Ultra
Sparc with 384 Mo of RAM takes around 12

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142789 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 380

minutes.

6.2. Deadlock freeness

The first property to establish is either the absence
of deadlocks, or if there are deadlocks, the delayed
deadlock situations, i.e. states that inevitably lead to
a deadlock.

This request is easily described using basic operators
and functions that are provided by MEC. For
instance, the states that represent a system that
cannot evolve any longer are computed from the
following formula:

dead := _ ; src(_)

where src(T) are the source states of the set of transi-
tions T . After this formula has been evaluated, the
set dead contains all the states of the system but
those that are the source of at least one transition. In
other words, dead con-tains all the states from which
the system cannot evolve any longer.

Applied to our model, the result is the empty set,
show-ing there is no deadlock, as expected

6.3. Checking of the model

In order to check in a more significant manner that
the model corresponds to the specification as given
by Sun in [21] , we tried to exhibit a known problem
of the Java threading system. The problem we
consider is related to long and double variables. The
instructions used to handle these variables work on
32 bits, although they are 64 bits long.

Figure 7 shows two threads executing concurrently.
This execution exhibits a behaviour that can be
considered faulty
in that although it obeys the specification, the result
can be different from what is basically expected. The
first thread, called Thread Zero clears all the bits of
the _field variable. The second, called Thread One
sets all the bits of the same variable to 1. The 64 bits
long variable is shown as two 32 bits parts, that we
call A and B. The operation on A and B are atomic.
The figure shows the transitions that make up the
shortest path from the initial state to a faulty state.
This state is considered faulty – at least problematic
– because, if the variable _field is read at that point,
it neither contains the value 0 nor the value 1, i.e.
none of the values written either by Thread Zero or
Thread one

Figure 7. An example of the 64 bits
variables problem

The path shown figure 7 is a result provided by MEC
based on the following call sequence, given here for
illus-trative purpose – for further details see and –:

/* transitions identifying faulty situations */
errors:=!label[1]=’verifyER’;

/* sources of transitions in errors */
faulty_states:=src(errors);

/* transitions that make up a shortest */ /* path to a
faulty state */

min_faulty_path:=trace(initial,*,faulty_states);

The fact that our model exhibits this behavior that is
also contained within the informal specifications is
an other val-idation of our results.

6.4. Additional properties

One of the other basic properties of the Java
multithread-ing system is the statement that says that
any two threads can communicate by means of a
shared variable and that, in

such a case, the consistency of the local copies and
the in-tegrity of the variable can be guaranteed by
using the avail-able system of locks.

This property which is more difficult to show and
that requires space to explain will not be detailed
here. We have shown in [29] that this property holds.

7. Conclusion

In the current state of the research described here,
we have a formal model of the Java multithreading
system. We have shown that it closely sticks to the
specifications given by Sun in . We have shown that
it carries known prob-lems that the informal
specification also carries. This is a first validation of
our work.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142789 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 381

Our model also has some limitations in that it is
purely a formalization of the informal specification
of the multi-threading system of the Java language.
It does not describe an abstract, perfect,
multithreading system, but describes a specific one,
with known properties, either good or bad. The
limitations of our model are those of the effective
Java multithreading system.

To get back to the purpose of this research as we
intro-duced it at the beginning of this paper, we can
say that this model is now available both for research
projects and for ed-ucational purpose. We also hope
that it will help in the de-sign and implementation of
future multithreading systems.

Eventually, it will support other research carried out
in our team, regarding automatic distribution of
objects[16]. This work requires the verification of
some complex prop-erties on objects, and especially
on objects that are shared by threads.

References

[1] The Spin Model Checker. IEEE Trans. on
Software Engi-neering, 23(5):279–295,
1997.

[2] A. Arnold. Systèmes de transitions finis et
sémantique des processus communicants.
Masson, 1992. ISBN : 2-225-82746-X.

[3] S. Chaumette. Du parallélisme massif aux
objets distribués, janvier 2000. Université
Bordeaux I. Rapport scientifique pour
obtenir l’habilitation à diriger des
recherché

[4] J. Siegel. CORBA, Fundamental and
Programming. Wiley, 1996

[5] L. Gong. Inside Java 2 Platform Security:
Architecture, API Design, and
Implementation. Addison-Wesley, June
1999. ISBN: 0-20131-000-7

