
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142795 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 382

SOFTWARE & MANUAL TESTING
Abhishek Jain

Abstract- Software testing is an investigation
conducted to provide stakeholders with
information about the quality of the product or
service under test. Software testing can also
provide an objective, independent view of the
software to allow the business to appreciate and
understand the risks of software implementation.
Test techniques include the process of executing
a program or application with the intent of
finding software bugs . Software testing can be
conducted as soon as executable software (even if
partially complete) exists. The overall approach
to software development often determines when
and how testing is conducted. For example, in a
phased process, most testing occurs after system
requirements have been defined and then
implemented in testable programs. In contrast,
under an agile approach, requirements,
programming, and testing are often done
concurrently.

Introduction
A primary purpose of testing is to detect software
failures so that defects may be discovered and
corrected. Testing cannot establish that a product
functions properly under all conditions but can only
establish that it does not function properly under
specific conditions. The scope of software testing
often includes examination of code as well as
execution of that code in various environments and
conditions as well as examining the aspects of code:
does it do what it is supposed to do and do what it
needs to do. In the current culture of software
development, a testing organization may be separate
from the development team. There are various roles
for testing team members. Information derived from
software testing may be used to correct the process
by which software is developed.
Every software product has a target audience. For
example, the audience for video game software is
completely different from banking software.
Therefore, when an organization develops or
otherwise invests in a software product, it can assess
whether the software product will be acceptable to
its end users, its target audience, its purchasers and
other stakeholders. Software testing is the process of
attempting to make this assessment.

What is Software Testing?
Software testing is more than just error detection;
Testing software is operating the software under
controlled conditions, to (1) verify that it behaves
“as specified”; (2) to detect errors, and (3) to validate
that what has been specified is what the user actually
want
1. Verification is the checking or testing of items,
including software, for conformance and
consistency by evaluating the results against pre-
specified requirements. [Verification: Are we
building the system right?]
2. Error Detection: Testing should intentionally
attempt to make things go wrong to determine if
things happen when they shouldn‟t or things don‟t
happen when they should.
3. Validation looks at the system correctness – i.e.
is the process of checking that what has been
specified is what the user actually wanted

Basic Terminologies
1.failure: Actual deviation of the component or
system from its expected delivery, service or result.
2.Error-A human action that produces an incorrect
result. [After IEEE 610]
3.Defect: A flaw in a component or system that can
cause the component or system to fail to perform its
required function, e.g. an incorrect statement or data
definition. A defect, if encountered during
execution, may cause a failure of the component or
system.
4.software quality: The totality of functionality and
features of a software product that bear on its ability
to satisfy stated or implied needs. [After ISO 9126]
5.specification: A DOCUMENT that specifies,
ideally in a complete, precise and verifiable manner,
the requirements, design, behavior, or other
characteristics of a component or system, and, often,
the procedures for determining whether these
provisions have been satisfied. [After IEEE 610]

OBJECTIVES

1 .A good test case is one that has a probability of
finding an as yet undiscovered error.
2.A good test is not redundant.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142795 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 383

3.A successful test is one that uncovers a yet
undiscovered error.
4.A good test should be “best of breed”.
5.A good test should neither be too simple nor too

complex.
6.To check if the system does what it is expected to

do.
7.To check if the system is “Fit for purpose”.
8.To check if the system meets the requirements and

be executed successfully in the Intended
environment.
9.Executing a program with the intent of finding an

error.
Testing Levels
There are generally four recognized levels of tests:
unit testing, integration testing, component interface
testing, and system testing. Tests are frequently
grouped by where they are added in the software
development process, or by the level of specificity
of the test.
Unit testing
Unit testing, also known as component testing,
refers to tests that verify the functionality of a
specific section of code, usually at the function level.
In an object-oriented environment, this is usually at
the class level, and the minimal unit tests include the
constructors and destructors
These types of tests are usually written by
developers as they work on code (white-box style),
to ensure that the specific function is working as
expected. One function might have multiple tests, to
catch corner cases or other branches in the code.
Unit testing alone cannot verify the functionality of
a piece of software, but rather is used to ensure that
the building blocks of the software work
independently from each other.
Unit testing is a software development process that
involves synchronized application of a broad
spectrum of defect prevention and detection
strategies in order to reduce software development
risks, time, and costs. It is performed by the software
developer or engineer during the construction phase
of the software development lifecycle. Rather than
replace traditional QA focuses, it augments it. Unit
testing aims to eliminate construction errors before
code is promoted to QA; this strategy is intended to
increase the quality of the resulting software as well
as the efficiency of the overall development and QA
process.
Depending on the organization's expectations for
software development, unit testing might
include static code analysis, data flow analysis,

metrics analysis, peer code reviews, code coverage
analysis and other software verification practices.

Integration testing
Integration testing is any type of software testing
that seeks to verify the interfaces between
components against a software design. Software
components may be integrated in an iterative way or
all together ("big bang"). Normally the former is
considered a better practice since it allows interface
issues to be located more quickly and fixed.
Integration testing works to expose defects in the
interfaces and interaction between integrated
components (modules). Progressively larger groups
of tested software components corresponding to
elements of the architectural design are integrated
and tested until the software works as a system.[33]

System testing
System testing, or end-to-end testing, tests a
completely integrated system to verify that it meets
its requirements.[36] For example, a system test might
involve testing a logon interface, then creating and
editing an entry, plus sending or printing results,
followed by summary processing or deletion (or
archiving) of entries, then logoff.
Acceptance testing
Acceptance is used to conduct operational readiness
(pre-release) of a product, service or system as part
of a quality management system. OAT is a common
type of non-functional software testing, used mainly
in software development and software
maintenance projects. This type of testing focuses on
the operational readiness of the system to be
supported, and/or to become part of the production
environment. Hence, it is also known as operational
readiness testing (ORT) or Operations Readiness
and Assurance (OR&A) testing. Functional
testing within OAT is limited to those tests which
are required to verify the non-functional aspects of
the system.
In addition, the software testing should ensure that
the portability of the system, as well as working as
expected, does not also damage or partially corrupt
its operating environment or cause other processes
within that environment to become inoperative

A sample testing cycle
Although variations exist between organizations,
there is a typical cycle for testing.[47] The sample
below is common among organizations employing
the Waterfall development model. The same

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142795 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 384

practices are commonly found in other development
models, but might not be as clear or explicit.

 Requirements analysis: Testing should
begin in the requirements phase of
the software development life cycle.
During the design phase, testers work to
determine what aspects of a design are
testable and with what parameters those
tests work.

 Test planning: Test strategy, test
plan, testbed creation. Since many
activities will be carried out during testing,
a plan is needed.

 Test development: Test procedures, test
scenarios, test cases, test datasets, test
scripts to use in testing software.

 Test execution: Testers execute the
software based on the plans and test
documents then report any errors found to
the development team.

 Test reporting: Once testing is completed,
testers generate metrics and make final
reports on their test effort and whether or
not the software tested is ready for release.

 Test result analysis: Or Defect Analysis,
is done by the development team usually
along with the client, in order to decide
what defects should be assigned, fixed,
rejected (i.e. found software working
properly) or deferred to be dealt with later.

 Defect Retesting: Once a defect has been
dealt with by the development team, it is
retested by the testing team.
AKA Resolution testing.

 Regression testing: It is common to have a
small test program built of a subset of tests,
for each integration of new, modified, or
fixed software, in order to ensure that the
latest delivery has not ruined anything, and
that the software product as a whole is still
working correctly.

 Test Closure: Once the test meets the exit
criteria, the activities such as capturing the
key outputs, lessons learned, results, logs,
documents related to the project are
archived and used as a reference for future
projects.

Regression Testing
Test Plan
A] Purpose of preparing a Test Plan

 Validate the acceptability of a
software product.

 Help the people outside the test group
to understand „why‟ and „how‟ of
product validation.

 A Test Plan should be
-Thorough enough (Overall coverage of test to be
conducted)
-Useful and understandable by the people inside and
outside the test group.

B]. Scope
 The areas to be tested by the QA team.

 Specify the areas which are out of scope
(screens, database, mainframe processes
etc)

C]. Test Approach
 Details on how the testing is to be

performed.

 Any specific strategy is to be followed for
testing (including configuration
management).

Testing methodologies and testing
1. Black box testing
2. White box testing

1. BLACK BOX TESTING No knowledge of
internal design or code required Tests are based on
requirements and functionality
1.1 Black Box - Testing Technique Incorrect or

missing functions , Interface errors,Errors in data
structures or external database access, Performance
errors,Initialization and termination errors
1.2. Black box / Functional Testing- Based on
requirements and functionality Not based on any

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142795 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 385

knowledge of internal design or code Covers all
combined parts of a system Tests are data driven
2. WHITE BOX TESTING Knowledge of the
internal program design and code required.Tests are
based on coverage of code statements, branches,
paths, conditions.
2.1 White Box - Testing Technique All independent
paths within a module have been exercised at least
once Exercise all logical decisions on their true and
false sides Execute all loops at their boundaries and
within their operational bounds Exercise internal
data structures to ensure their validity
2.2 White box Testing / Structural Testing Based
on knowledge of internal logic of an application's
code Based on coverage of code statements,
branches, paths, conditions. Tests are logic driven
2.3 Other White Box Techniques Statement
Coverage – execute all statements at least once
Example :
A + B If (A = 3)

Then B = X + Y
End-If

While (A > 0) Do
Read (X)
A = A - 1
End-While-Do
Decision Coverage – execute each decision direction
at least once

Example:
If A< 10 or A > 20 Then
B = X + Y
End -if
Condition Coverage – execute each decision with

all possible outcomes at least once
Example: A = X

If (A > 3) or (A < B)
Then B = X + Y
End-If-Then
While (A > 0) and (Not EOF) Do
Read (X)
A = A – 1

End-While-Do
Conclusion
Testing can show the presence of faults in a system;
it cannot prove there are no remaining faults.
Component developers are responsible for
component testing; system testing is the
responsibility of a separate team Integration testing
is testing increments of the system; release testing
involves testing a system to be released to a
customer. Use experience and guidelines to design
test cases in defect testing. Interface testing is

designed to discover defects in the interfaces of
composite components. Equivalence partitioning is
a way of discovering test cases - all cases in a
partition should behave in the same way. Structural
analysis relies on analysing a program and deriving
tests from this analysis. Test automation reduces
testing costs by supporting the test process with a
range of software tools.
.Refrences
[1] Lessons Learned in Software Testing, by C.
Kaner, J. Bach, and B. Pettichord
[2]. Testing Computer Software, by C. Kaner, J.
Falk, and H. Nguyen
[3]. Effective Software Testing, by E. Dustin
[4]. Software testing, by Ron Patton
[5]. Software engineering, by Roger Pressman

[6].
http://people.engr.ncsu.edu/txie/testingresearchsurv
ey.htm
[7]. http://www.engpaper.com
[8].

http://www.people.engr.ncsu.edu/txie/testingresear
chsurvey.htm
[9].

www.cs.cmu.edu/luluo/Courses/17939Report.pdf
[10]. www.findwhitepapers.com
[11]. www.scribd.com

