
© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143676 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 217

Reducing Testing Cost using Stochastic evolutionary Technique

Ankita Vashisth1, Marender Singh Dagar2
1M.Tech (CS), SRCEM Palwal, INDIA

2Asst.Prof, SRCEM Palwal,INDIA

Abstract- Software testing is an inevitable activity in software

development. It is a critical determinant of software quality and

consumes approximately 50% of software development costs.

Test case generation is a vital component of software testing and

greatly influences the efficiency and effectiveness of any software

test hence; it has been extensively studied and is regarded as an

important subject area in software testing. Any guarantee of high

software quality requires maximum test adequacy coverage using

test cases during software testing. This paper presents a

comparative study of the methods used for the automatic

generation of test cases during software testing and explores the

limitations of each method.

Index Terms- Software testing; Test case generation; automatic

test case generation methods

I. INTRODUCTION

Software testing is a necessary and an integral section of

software engineering development [1]. However, testing is an

intensive work and costly. It is often account greater than 50%

of total cost of the development. Therefore, it is important to

decrease the cost and improve the software testing

effectiveness by automate the process of testing [2]. Among

the different testing activities, test case generation is one of the

most mentally overwork and most critical, because it can have

a powerful effect on the effectiveness and efficiency of total

testing process [3][4]. It is not amazing that most of researches

effort in the last decades has been expend on the automatic test

case generation.

A perfect set of test cases is one that has high chance of

discovering the previous unknown errors and a successful test

run, which discovers these errors. To uncover all potential

errors in program, detailed testing is required to examine all

possible input and logical execution paths but it is neither

possible nor economically feasible. Thus, the actual goal for

software testing is to increase the finding errors probability

using a limited number of test cases that perform in less time

with less effort [5].

Various metrics have appeared, and applied, to evaluate the

test cases generated quality like the cost, time, effort, and

generation complexity as well as coverage criteria. Optimizing

or even improving test cases quality can be intend of several

researchers [6][7][8]. It can take many forms, like minimizing

time or effort testing, minimizing the complexity or the

generation algorithms cost, maximizing the coverage function

as well as another reliability and quality matters. Also

decreasing the test cases or test data generation can be an

optimization form[9].

A test adequacy criterion provides a measurement of test suite

quality and can be used to guide test generation. There are

three widely applied kinds of coverage criteria namely

mutation coverage (which evaluates the fault- revealing

capability of a test suite) code coverage (which describes the

extent to which source code program has been examined) and

specification based coverage (which specify the percentage of

testing requirements identified in a specification that have

been covered by the test suite). Code coverage has branches

which includes branch coverage, statement coverage and path

coverage while specification

based coverage includes types like requirements coverage, test

data adequacy, boundary value analysis [10].

The present test case generation methods can be categorized

into black-box testing and white-box testing depends on type

of testing. Black-box test cases are specified from the

description of the software under test [11]. White-box test

cases are obtained from the inner software structure [12].

However, in both the cases it is difficult to achieve complete

automation of the test case design [13].

This paper discusses an overview of different approaches that

is used in generated test cases automatically which is the

critical part in software testing process and the types of

coverage that is used in these methods.

This comparative evaluation study helps the researchers to

choose the suitable method that generate appropriate test cases

with minimum test suite size and maximum coverage criteria

as well as in minimum execution time. We described how to

evaluate generated test cases, and introduce a classification of

evaluation approaches.

II. RELATED WORK

Several algorithms based on genetic algorithm [14,15] and

swarm intelligence [16,17] ie.ant colony optimizations and bee

colony optimizations have been proposed for test case

selection and prioritization from a large test suite. Sthamer[18]

and Pargas et al [19] applied GA for automatic testdata

generation in his thesis. A Strategy for using GA to automate

branch and

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143676 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 218

fault-based Testing [20] and automatic structural testing using

genetic algorithms [21] is done by Jones et al. Lin and Yeh

worked on GA for automatic test data generation based on

path based testing [22]. An evolutionary approach is

developed to dynamic test data generation by Anastasis and

Andreas [23]. Harman et al proposed an approach to reduce

the input domain using search based technique [24]. In fact,

the genetic algorithm is also used to generate test data

automatically [25].A lot of work is done by researchers on

optimization of test cases. Mala et al has developed a hybrid

genetic algorithm based approach for quality improvement and

optimization of test cases[26] and Eric et al analyzed the effect

of fault detection of test set when its size is minimized [27].

The concept of Artificial Bee Colony algorithm was

introduced by Karaboga [28,29]. Chong et al [30] applied

honey bees foraging behavior model to the job scheduling

problem. McCaffrey et al [31] generates pair wise test sets

using a simulated bee colony algorithm. Mala et al [32]

presented a new, non pheromonen based test suite

optimization approach inspired by the behavior of biological

bees. Dahiya et al [33] presented an ABC algorithm based

approach for automatic generation of structural software tests.

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population based

stochastic optimization technique developed by Dr.

Eberhart and Dr. Kennedy in 1995, inspired by social

behavior of bird flocking or fish schooling.

In PSO, each single solution is a "bird" in the search space.

We call it "particle". All of particles have fitness values which

are evaluated by the fitness function to be optimized, and have

velocities which direct the flying of the particles. The particles

fly through the problem space by following the current

optimum particles.

PSO is initialized with a group of random particles (solutions)

and then searches for optima by updating generations. In every

iteration, each particle is updated by following two "best"

values. The first one is the best solution (fitness) it has

achieved so far. (The fitness value is also stored.) This value is

called pbest. Another "best" value that is tracked by the

particle swarm optimizer is the best value, obtained so far by

any particle in the population. This best value is a global best

and called gbest. When a particle takes part of the population

as its topological neighbors, the best value is a local best and

is called lbest.

After finding the two best values, the particle updates its

velocity and positions with following equations[34]:

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() *

(gbest[] - present[]) ……. (a)

present[] = persent[] + v[] ……..(b)

v[] is the particle velocity, persent[] is the current particle

(solution). pbest[] and gbest[] are defined as stated before.

rand () is a random number between (0,1). c1, c2 are learning

factors. Usually c1 = c2 = 2.

IV. PROPOSED WORK

In this paper, we proposed a new approach to reduce the cost

of testing by test case suite reduction. The proposed technique

is based on concepts of Swarm Intelligence. The technique

selects the set of test case from the available test suite that will

cover all the faults detected earlier in minimum execution

time. Here particles are used as agents who explore the

minimum set of test cases. The particles start flying from their

current position following the current optimal path. After each

iteration, Each particle updates its velocity and position. This

updation is done according to the two optimal values attained

by some particle. The process is repeated till any of the

particle has discovered a set of test cases that covers nearly all

faults detection. The prerequisite for the proposed algorithm is

a test suite ’T’ of ‘n’ test cases. The result is subset ’S’, which

consists of m test cases(m<=n),such that the test cases are

selected on the basis of maximum fault coverage capacity in

minimum execution time.

The assumptions taken for the proposed algorithm is as

follows:

 Given the original test suite, T={t1,t2……tn}.

 Set of all faults, F={f1,f2,…….fk}.

 Each test case {t1,t2,…tn} in the original test suite

covers some or all the faults from ‘F’.

 Each test case will be represented in binary form.

Each test case is of ‘k’ bits (k is the total number of

faults).Each bit of the test case depends upon the

capacity of detecting that fault. Starting from the

leftmost bit, the bit is 1 if it detects Fault fk else 0

and so on.

 Number of particles to search through the test case

space is n (number of test cases).

For each particle

 Initialize particle

END

Do

 For each particle

 Calculate fitness value

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143676 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 219

 If the fitness value is better than the best fitness value

(pBest) in history

 set current value as the new pBest

 End

 Choose the particle with the best fitness value of all the

particles as the gBest

 For each particle

 Calculate particle velocity according equation (a)

 Update particle position according equation (b)

 End

While maximum iterations or minimum error criteria is

not attained

Particles' velocities on each dimension are clamped to a

maximum velocity Vmax. If the sum of accelerations would

cause the velocity on that dimension to exceed Vmax, which is

a parameter specified by the user. Then the velocity on that

dimension is limited to Vmax.

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 X X X X

T2 X X X X X

T3 X X X X X

T4 X X X

T5 X X X

T6 X X X

T7 X X

T8 X X X X

T9 X X X X

T10 X X X X

 Table1: Test Case and Fault Coverage

Test

Case

Binary Form

T1 0100100110

T2 1010011001

T3 0101001101

T4 0010010010

T5 1001100000

T6 0010000101

T7 0001001000

T8 1000100101

T9 0110010010

T10 1001001001

 Table2: Binary Representation of Test Cases

V. RESULT ANALYSIS

The technique was implemented using matlab tool.

Table 3 shows the reduced number of test cases and Test 4

shows their fault coverage as well.

Test

Case

Binary Form

T1 0010111101

T2 1001101110

T3 1111111010

T4 1101101011

 Table 3:Reduced Test Cases

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 X X X X X X

T2 X X X X X X

T3 X X X X X X X X

T4 X X X X X X X

 Table 4:Reduced Test Cases Fault Coverage

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143676 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 220

 Figure: Initial v/s Final Fitness

VI. CONCLUSION AND FUTURE SCOPE

We have proposed test case selection approach from a large

test suite using technique based on Particle Swarm

Optimizations. The technique was implemented and tested for

a sample data of 10 test cases. The technique developed using

this approach was able to identify and reduce the test data. The

reduced test cases were having higher fault coverage.

Issues of future research include automation of the technique

and applying it on large and complex software. We also aim to

compare it to ant colony optimizations algorithms and genetic

algorithms.

REFERENCES

[1] Young, M. (2008). Software testing and analysis: process,

principles, and techniques.John Wiley & Sons.

[2] Anand, S., Burke, E., Chen, T. Y., Clark, J., Cohen, M. B.,

Grieskamp, W., & Zhu, H. (2013). An Orchestrated Survey on

Automated Software Test Case Generation. Journal of

Systems and Software.

[3] Bertolino, A. (2007, May). Software testing research:

Achievements, challenges, dreams.

In Future of Software Engineering, 2007. FOSE'07 (pp. 85-

103). IEEE.

[4] Pezz`e, M. and Young, M., 2007. Software Testing and

Analysis - Process, Principles and

Techniques. Wiley.

[5] Devasena, M. G., & Valarmathi, M. L. (2012). Search

based Software Testing Technique

for Structural Test Case Generation. International Journal of

Applied Information Systems (IJAIS), 1(6).

[6] Farooq, U., & Lam, C. P. (2009, April). Evolving the

Quality of a Model Based Test Suite.In Software Testing,

Verification and Validation Workshops, 2009. ICSTW'09.

International Conference on (pp. 141-149). IEEE. 1st

Technology, Education, and Science International Conference

(TESIC) 201373

[7] Kosindrdecha, N., & Daengdej, J. (2010). A Black-Box

Test Case Generation Method.

International Journal of Computer Science and Information

Security (IJCSIS).

[8] Harman, M., Kim, S. G., Lakhotia, K., McMinn, P., &

Yoo, S. (2010, April). Optimizing for the number of tests

generated in search based test data generation with an

application to the oracle cost problem. In Software Testing,

Verification, and Validation Workshops (ICSTW), 2010 Third

International Conference on (pp. 182-191). IEEE.

[9] Boghdady, P. N., Badr, N., Hashem, M., & Tolba, M. F.

(2011). Test Case Generation and Test Data Extraction

Techniques. Inter. J. Electr. Comput. Sci, 11(3), 87-94.

[10] ZHENG, W. (2011). Automatic Software Testing Via

Mining Software Data, PhD thesis, The Chinese University of

Hong Kong.

[11] Parnami, S., Sharma, K. S., & Chande, S. V. (2012). A

Survey on Generation of Test Cases and Test Data Using

Artificial Intelligence Techniques , UACEE International

Journal of Advances in Computer Networks and its Security,

pp. 16-18.

[12] Singh, K., & Kumar, R. (2010). Optimization of

Functional Testing using Genetic Algorithms. International

Journal of Innovation, Management and Technology, 1(1),

2010-0248.

[13] Geetha Devasena, M. S., & Valarmathi, M. L.

(2012).Meta Heuristic Search Technique for Dynamic Test

Case Generation. International Journal of Computer

Applications. 39 (12)

[14] M.J.Harrold, R.Gupta, and M.L. Soffa,“ A methodology

for controlling the size of the test suite, ” ACM Transaction on

Software Engineering and Methodology, pages 270-285, July

1993.

[15] H.Agrawal ,J.R. Horgan, and E.W. , Krauser,

“Incremental regression testing,” In: Proc.

Conference on Software Maintenance, pages 348-357,1993.

[16] R.Bahsoon, N. Mansour, “Methods and metrics for

selective regression testing,” In Computer Systems and

Applications, ACS/IEEE International Conference, pages 463-

465, 2001.

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

Fitness Initial Population

Fitness Final Population

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143676 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 221

[17] G. Rothermel, R.H. Untch, C. Chu, and M.J.Harrold,

“Prioritizing Test Cases for Regression Testing,” IEEE Trans.

Software Eng., vol. 27, no.10, pages 929-948, Oct. 2001.

[18] S.Elbaum, Alexey G. Malishevsky, andG.Rothermel,

“Test case prioritization: A family

of empirical studies,” IEEE Transactions on Software

Engineering, vol. 28, NO.2, pages 159-

182, Feb.2002.

[19] K. K. Aggrawal, Y. Singh, A. Kaur, “ Code coverage

based technique for prioritizing test cases for regression

testing ,” ACM SIGSOFT Software Engineering Notes , vol

29 Issue 5 September 2004.

[20] J.Holland, “Adaption in Natural and Artificial Systems”,

Ann Arbor, MI: University of

Michigan Press,1975.

[21] D. Goldberg, “Genetic Algorithms in Search

Optimization and Machine Learning”, New

York,Addision Wesely, 1989.

[22] Wikipedia; http://en.wikipedia.org/wiki/

Swarm_intelligence.

[23]

Scholarpedia;http://www.scholarpedia.org/article/Artificial_be

e_colony_algorithm.

[24] H.H. Sthamer, “The automatic generation of software test

data using genetic algorithms, Ph.D thesis, University of

Glamorgan 1996.

[25] R.P Paragas, M. Harrolg and R.Peck , “Test data

generations using genetic algorithms”, Software testing

verification and reliability, vol.9, no4, pp263-282,1999.

[26] B .Jones, D.Eyres and H .Sthamer ,”A strategy for using

genetic algorithms to automate branch and fault based

testing”, the computer journal ,vol 41, no.2pp. 98-107,1998.

[27] B.F Jones, H.H Sthamer and D.Eyres,“Automatic

structural testing using genetic algorithms”, Software

engineering journal,vol.11,no.5,pp.229-306, 1996.

[28] J.C. Lin, P.L. Yeh,” Automatic test data generation for

path testing using Gas”, Department of Computer Science and

Engineering, Tatung University,1999.

[29] A.Anastasis, A. S. Andreou,” Automatic, evolutionary

test data generation for dynamic

software testing”, Journal of Systems andSoftware Volume 81,

Issue 11, Pages 1883-1898, November 2008.

[30]

M.Harman,Y.Hassoun,K.Lakhotia,P.McMinn,J.Wegener,”

The impact of input domain

reduction on search-based test data generation”,in the

proceedings of ACM SIGSOFT, ISBN: 978-1-59593-811-

4,2007.

[31] Marc Roper, Iain Maclean, Andrew Brooks,James Miller

and Murray Wood. Genetic Algorithms and the Automatic

Generation of Test data,1995.

[32] D.J.Mala , V.Mohan, “Quality Improvement and

Optimization of Test Cases-A Hybrid Genetic Algorithm

Based Approach”, ACM SIGSOFT ,May 2010.

[33] W.W.Eric, ,R.H.Joseph, L.Saul and Aditya

P.Mathur,”Effect of Test Case Minimization of Fault

Detection Effectiveness”,Software pPractice and

Experience,Vol.28,No.4, pp. 347-

369, 1998.

[34] http://www.swarmintelligence.org/tutorials.php

