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Abstract- Software testing is an inevitable activity in software 

development. It is a critical determinant of software quality and 

consumes approximately 50% of software development costs Test 

case prioritization involves scheduling test cases in an order that 

increases the effectiveness in achieving some performance goals. 

One of the most important performance goals is the rate of fault 

detection. Test cases should run in an order that increases the 

possibility of fault detection and also that detects the most severe 

faults at the earliest in its testing life cycle. Regression Testing is 

an usual and a very costly activity to be performed, often in a 

time and resource constrained environment. Thus we use 

techniques like Test Case Selection and Prioritization, to select 

and prioritize a subset from the complete test suite, fulfilling 

some chosen criteria. Present paper gives the approach into 

existing single objective test cases prioritization and optimization 

using techniques such as Genetic Algorithms, Ant Colony 

Optimization. This paper presents a comparative study of the 

methods used for the automatic generation of test cases during 

software testing and explores the limitations of each method. 

Index Terms- Software testing; Test case generation; automatic 

test case generation methods 

I. INTRODUCTION 

As any software system is developed changes are made to 

the software. Changes are done to introduce new features and 

functionalities. So after upgradation it is necessary to test the 

software to make sure that the system is working as intended. 

Hence, during regression testing the new test cases along with 

the old ones are executed to certify the functionality of the 

software. So, it becomes a tough task to carry out regression 

testing as size of test suite grows.[1] 

 

In order to assist the software engineer in regression testing, 

test suite minimization techniques can be used 

 

Test Suite Minimization Approach: Initially, a test suite T 

is given with all the possible test cases to test the software 

completely. Then use some algorithm to reduce T to get the 

test suite reduction T '. 

 

T ' is not redundant, meaning that if any of the test cases is 

removed from T ' , the rest of the test case does not meet all 

the requirements.[3] 

 

Test suite can be optimized based on fault detection, execution 

time and coverage.  
The NP-completeness nature of test suite minimization 

problem inspired many researchers to experiment with 

different heuristics for its solution. 

 

In recent years, biological intelligent heuristic optimization 

algorithms have become one of the mainstream methods to 

solve the non-linear, non- 

 

differential, multi-peak and complex problems. Many different 

bionic algorithms have been introduced by scholars from 

different countries, inspired from the foraging behaviors in the 

nature creature. Dorigo M et al. proposed the Ant Colony 

Optimization (ACO) [4] in 1991; Eberhart and Kennedy 

proposed the Particle Swarm Optimization (PSO) [5] in 1995; 

Passino et al proposed the 

 

Bacterial Foraging Optimization (BFO) [6] in 2002. Because 

of the advantages of parallel searching, jumping out of local 

minimum easily and so on, BFO is becoming a hot spot of 

bionic algorithm. Since the researching work of this algorithm 

in China is at the beginning stage and the randomness of 

bacterial chemotaxis in the algorithm, it leads to the slow 

chemotaxis speed and inefficient. So that, combining some 

common mechanisms 

 

and principles of intelligent bionic algorithm with the 

differences in the internal operation mechanism becomes a 

natural way to optimize the algorithm.[7]  

II. OPTIMIZATION TECHNIQUES 

The optimization algorithms are explained below : 

 

A. Genetic Algorithm  

 

Genetic Algorithms are population-based general purpose 

algorithms used to find accurate or estimated solutions to 
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optimization and search problem. 

 

They are stochastic search techniques based on the 

phenomenon of natural selection and genetics.GA begins with 

an initial population which is a random set of solutions. Each 

individual solution in the population is called a Chromosome. 

A chromosome can be a binary digit or any other data 

structure. The chromosomes evolve through successive 

iterations, called generations. During each generation, the 

chromosomes are evaluated, using some measure of fitness. 

 

Selection, Crossover and Mutation are three basic operators 

responsible for GA and these are described below: 

1. Selection : A new generation is formed by selecting those 

chromosomes that satisfy the fitness value criteria. 

Suitable chromosomes with higher probability are 

selected. Some parents and offsprings are retained while 

others are rejected so as to keep the population size 

constant. After several generations the algorithm 

converge to optimal or near optimal solution.  

 

2. Crossover : the exchange of parents’ information 

produces an offspring. 

 

3. Mutation : Randomly change one or more digits in the 

string representing an individual. 

 

B. Particle Swarm Optimization 

 

Particle Swarm Optimization (PSO) is a population-based 

meta-heuristic algorithm developed from the simulation of 

social models of bird flocking, fish schooling, and swarming 

able to find best possible solution(s) to the non-linear numeric 

problems. PSO was first introduced in 1995 by Eberhart and 

Kennedy. However, PSO can easily be trapped in local 

optimal point when dealing with some complex and 

multimodal functions. 

 

PSO involves a number of particles, which are initialized 

randomly in the space of the design variables. These particles 

fly through the search space and their positions are updated 

based on the best positions of individual particles and the best 

position among all particles in the search space which in truss 

sizing problems corresponds to a particle with the smallest 

weight[5]. In PSO, a swarm consists of N particles moving 

around in a D-dimensional search space. The position of the 

jth particle at the kth iteration is used to evaluate the quality of 

the particle and represents candidate solution(s) for the search 

or optimization problems. PSO’s exploration ability, the 

inertia weight is now modified during the optimization 

process.  

 

PSO is initialized with a group of random particles (solutions) 

and then searches for optima by updating generations. In every 

iteration, each particle is updated by following two "best" 

values. The first one is the best solution (fitness) it has 

achieved so far. (The fitness value is also stored.) This value is 

called pbest. Another "best" value that is tracked by the 

particle swarm optimizer is the best value, obtained so far by 

any particle in the population. This best value is a global best 

and called gbest. When a particle takes part of the population 

as its topological neighbors, the best value is a local best and 

is called lbest. 

 

After finding the two best values, the particle updates its 

velocity and positions with following equations[34]:  

 

 

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * 

(gbest[] - present[])  ……. (a) 

present[] = persent[] + v[] ……..(b) 

 

v[] is the particle velocity, persent[] is the current particle 

(solution). pbest[] and gbest[] are defined as stated before. 

rand () is a random number between (0,1). c1, c2 are learning 

factors. Usually c1 = c2 = 2. 

 

Unlike GA there are no selection, crossover and variation 

operation in PSO. So its algorithm is very simple and has a 

high execution speed. 

 

However if some particle finds a present optimal point then 

other particle will be closed to it rapidly. Hence the diversity 

of whole swarm and its global searching ability will be 

weakened obviously. [17] 

 

C. Ant Colony Optimization 

 

Ant Colony Optimization(ACO) algorithm was proposed by 

Marico Dorigo in 2005.[8] ACO is a probabilistic technique 

for solving computational problems which can be used for 

searching shortest paths.[9] 

 

ACO deals with two important processes, namely: 

Pheromone deposition and trail pheromone evaporation. 

Pheromone deposition is the phenomenon of ants adding the 

pheromone on all paths they follow. Pheromone trail 

evaporation means decreasing the amount of pheromone 
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deposited on every path with respect to time. Updating the 

trail is performed when ants either complete their search or get 

the shortest path to reach the food source.[16] 

 

Basic Principle of the algorithm is that Ants always find a 

shortest path between the nest to food source, which mainly 

depends on a hormone-pheromones. The shorter path contains 

more pheromone, the probability of choosing that path by ants 

is greater and finally ants colony will find a shortest path.[3] 

 

ACO technique has been already used in solving various 

combinatorial problem such as knapsack problem, travelling 

salesman problem, distributed network, telecommunication 

network, vehicle routing, test data generation.[9] 

 

Though ACO is next generation technique for optimization 

problems but it is not providing good solutions of problems 

like multiple objectives optimization, Dynamic Optimization 

Problems, the Stochastic Optimization Problems, continuous 

optimization and Parallel Implementations of the 

constraints.[10] 

 

Most ant colony optimization algorithms use this algorithm 

demonstrated below :[11] 

 

Initiation of the parameters which determines the 

pheromone trail 

 

While (until result conditions supplied) 

 do Generate Solutions 

 

                       Apply Local Search  

                      Update Pheromone Trail  

     End 

 
D. BFO Algorithm 

 

Bacteria Foraging Optimization Algorithm (BFOA), given 

by Passino in 2002 , belongs to nature-inspired optimization 

algorithms. Main idea behind the algorithm is group foraging 

strategy of E.Coli. bacteria in order to maximize energy 

obtained per unit time. Communication also occurs between 

individual bacterium to improve the searching strategy. This 

algorithm consists of four prime steps[13] : 

 

1. Chemotaxis: Here, swimming and tumbling are the 

two prime ways which define the manner in which 

bacteria search for food. Swimming means moving in 

a pre-specified direction. Tumbling means moving in 

a completely new direction. Mathematically, tumble 

of any bacterium can be given by multiplication of 

ɸ(j) and C(i),where ɸ(j) is unit length in random 

direction and C(i) is step length. In case of 

swimming, C(i) is constant.  

 

2. Swarming: For the algorithm to converge at the 

optimal solution, it is required that the optimum 

bacteria attract other bacteria so that together they 

converge at the solution point quickly. To achieve 

this, a penalty function is added to the original cost 

function on the basis of relative distances of each 

bacterium from the fittest one. Penalty function 

becomes zero when all the bacteria have reached to 

the solution point.  

 

3. Reproduction: Here, the fittest bacteria are divided 

into two groups. The weaker set of bacteria are 

replaced by other more fit set of bacteria. This keeps 

the population of bacteria constant throughout the 

evolution process. 

 

Elimination and Dispersal: Because of changes in environment 

some bacteria may be killed or may be dispersed to a new 

place. In BFOA, this phenomenon is simulated by liquidating 

some bacteria and initialing new replacements randomly in the 

search space. It helps in reducing the probability of being 

trapped in pre-mature solution point.[12] 

III. RELATED WORK 

Several algorithms based on genetic algorithm [14,15] and 

swarm intelligennce [16,17] ie.ant colony optimizations and 

bee colony optimizations have been proposed for test case 

selection and prioritization from a large test suite. Sthamer[18] 

and Pargas et al [19] applied GA for automatic testdata 

generation in his thesis. A Strategy for using GA to automate 

branch and 

 

fault-based Testing [20] and automatic structural testing using 

genetic algorithms [21] is done by Jones et al. Lin and Yeh 

worked on GA for automatic test data generation based on 

path based testing [22].  

 

An evolutionary approach is developed to dynamic test data 

generation by Anastasis and Andreas [23]. Harman et al 

proposed an approach to reduce the input domain using search 

based technique [24].  
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In fact, the genetic algorithm is also used to generate test data 

automatically [25].A lot of work is done by researchers on 

optimization of test cases. Mala et al has developed a hybrid 

genetic algorithm based approach for quality improvement and 

optimization of test cases[26] and Eric et al analyzed the effect 

of fault detection of test set  when its size is minimized [27]. 

 

The concept of Artificial Bee Colony algorithm was 

introduced by Karaboga [28,29]. Chong et al [30] applied 

honey bees foraging behavior model to the job scheduling 

problem. McCaffrey et al [31] generates pair wise test sets 

using a simulated bee colony algorithm.  

 

Mala et al [32] presented a new, non pheromonen based test 

suite optimization approach inspired by the behavior of 

biological bees.  

 

Dahiya et al [33] presented an ABC algorithm based approach 

for automatic generation of structural software tests. 

 

Sangeeta Sabharwal et. al n this paper a GA based approach is 

proposed for identifying the test path that must be tested first. 

Test paths or scenarios are derived from activity diagram and 

state chart diagram respectively. The proposed approach 

makes use of IF model and GA to find the path to be tested 

first. 

 

S. Raju and G. V. Uma in this paper the regression testing 

based test suite prioritization technique is illustrated. A new 

prioritization technique is proposed for requirement based 

System level test cases to improve the rate of fault detection of 

severe faults. 

 

Chartchai Doungsa et al, n this paper author proposed an 

approach for generating test data from UML state diagram 

using genetic algorithm.This approach helps software 

developers to reduce their effort in generating test data before 

coding.  

 

Arvinder Kaur and Shubhra Goyal in this paper a new Genetic 

Algorithm to prioritize the regression test suite is introduced 

that prioritize test cases on the basis of complete code 

coverage. The genetic algorithm would also automate the 

process of test case prioritization. The results representing the 

effectiveness of algorithms are presented with the help of an 

Average Percentage of Code Covered (APCC) metric. 

 

Bharti Suri and Shweta Singhal in this paper presents an 

implementation of an already introduced Ant Colony 

Optimization Algorithm for Test Case Selection and 

Prioritization. Graph representation and example runs 

explained in the paper show how the random nature of ACO 

helps to explore the possible paths and choose the optimal 

from them. Results show that ACO leads to solutions that are 

in close proximity with optimal solutions. In this study a tool 

ACO_TCSP for the same has been developed and applied on 

an example. Though in these tests the best solution was not 

found for all cases still the results obtained are in close 

proximity to the optimal results. The reduction in test suite 

size is achieved to be 62.5% in all the 4 test runs 

IV.CONCLUSION & FUTURE WORK 

Test data generation is one of the key issues in software 

testing. A properly generated test suite may not only locate the 

errors in a software system, but also help in reducing the high 

cost, efforts associated with software testing. Present work 

surveyed various techniques of software test case 

optimization. First we summarized traditional and advanced 

test optimization techniques, and then we identified gaps in 

existing techniques. Optimization of test cases is multi-

objective optimization, NP complete and peculiar nature 

problem. Soft computing can be used for these type problems. 

whose inexact solutions driving is computationally hard tasks 

such as the solution of “NP-complete problems”. 

 

In conclusion, a lot of test cases optimization techniques have 

been developed for achieving software testing effectiveness 

and fault coverage. Review of existing literatures has 

identified that there are several objectives of test case 

optimization like maximum number of defect detecting 

capability, minimum test design efforts/cost, minimum 

execution cost, maximum coveragebility of client 

requirements & codes, maximum mutant killing score and so 

forth. Therefore optimization of test cases should be treated as 

multi-objective optimization problem. However most of test 

cases optimization approaches are single objective. Single 

objective formulation of test cases optimization problem is not 

justified and not meeting the objectives of testing. Some 

objectives are conflicting in nature, coveragebility of one 

objective will suffer other objective while considering all 

objectives concurrently. So, there is strong need to shift the 

paradigm from single objective test case optimization to multi-

objective test case optimization. Moreover for these 

techniques, soft computing approaches like Genetic 

Algorithms, Fuzzy Logic, Artificial Neural Network etc may 

be well suited for experimentation and validation purpose 
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