
© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 222

A Review of use of Evolutionary Techniques in reducing Test

Cases

Ankita Vashisth1, Marender Singh Dagar2
1M.Tech (CS), SRCEM Palwal, INDIA

2Asst.Prof, SRCEM Palwal,INDIA

Abstract- Software testing is an inevitable activity in software

development. It is a critical determinant of software quality and

consumes approximately 50% of software development costs Test

case prioritization involves scheduling test cases in an order that

increases the effectiveness in achieving some performance goals.

One of the most important performance goals is the rate of fault

detection. Test cases should run in an order that increases the

possibility of fault detection and also that detects the most severe

faults at the earliest in its testing life cycle. Regression Testing is

an usual and a very costly activity to be performed, often in a

time and resource constrained environment. Thus we use

techniques like Test Case Selection and Prioritization, to select

and prioritize a subset from the complete test suite, fulfilling

some chosen criteria. Present paper gives the approach into

existing single objective test cases prioritization and optimization

using techniques such as Genetic Algorithms, Ant Colony

Optimization. This paper presents a comparative study of the

methods used for the automatic generation of test cases during

software testing and explores the limitations of each method.

Index Terms- Software testing; Test case generation; automatic

test case generation methods

I. INTRODUCTION

As any software system is developed changes are made to

the software. Changes are done to introduce new features and

functionalities. So after upgradation it is necessary to test the

software to make sure that the system is working as intended.

Hence, during regression testing the new test cases along with

the old ones are executed to certify the functionality of the

software. So, it becomes a tough task to carry out regression

testing as size of test suite grows.[1]

In order to assist the software engineer in regression testing,

test suite minimization techniques can be used

Test Suite Minimization Approach: Initially, a test suite T

is given with all the possible test cases to test the software

completely. Then use some algorithm to reduce T to get the

test suite reduction T '.

T ' is not redundant, meaning that if any of the test cases is

removed from T ' , the rest of the test case does not meet all

the requirements.[3]

Test suite can be optimized based on fault detection, execution

time and coverage.
The NP-completeness nature of test suite minimization

problem inspired many researchers to experiment with

different heuristics for its solution.

In recent years, biological intelligent heuristic optimization

algorithms have become one of the mainstream methods to

solve the non-linear, non-

differential, multi-peak and complex problems. Many different

bionic algorithms have been introduced by scholars from

different countries, inspired from the foraging behaviors in the

nature creature. Dorigo M et al. proposed the Ant Colony

Optimization (ACO) [4] in 1991; Eberhart and Kennedy

proposed the Particle Swarm Optimization (PSO) [5] in 1995;

Passino et al proposed the

Bacterial Foraging Optimization (BFO) [6] in 2002. Because

of the advantages of parallel searching, jumping out of local

minimum easily and so on, BFO is becoming a hot spot of

bionic algorithm. Since the researching work of this algorithm

in China is at the beginning stage and the randomness of

bacterial chemotaxis in the algorithm, it leads to the slow

chemotaxis speed and inefficient. So that, combining some

common mechanisms

and principles of intelligent bionic algorithm with the

differences in the internal operation mechanism becomes a

natural way to optimize the algorithm.[7]

II. OPTIMIZATION TECHNIQUES

The optimization algorithms are explained below :

A. Genetic Algorithm

Genetic Algorithms are population-based general purpose

algorithms used to find accurate or estimated solutions to

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 223

optimization and search problem.

They are stochastic search techniques based on the

phenomenon of natural selection and genetics.GA begins with

an initial population which is a random set of solutions. Each

individual solution in the population is called a Chromosome.

A chromosome can be a binary digit or any other data

structure. The chromosomes evolve through successive

iterations, called generations. During each generation, the

chromosomes are evaluated, using some measure of fitness.

Selection, Crossover and Mutation are three basic operators

responsible for GA and these are described below:

1. Selection : A new generation is formed by selecting those

chromosomes that satisfy the fitness value criteria.

Suitable chromosomes with higher probability are

selected. Some parents and offsprings are retained while

others are rejected so as to keep the population size

constant. After several generations the algorithm

converge to optimal or near optimal solution.

2. Crossover : the exchange of parents’ information

produces an offspring.

3. Mutation : Randomly change one or more digits in the

string representing an individual.

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based

meta-heuristic algorithm developed from the simulation of

social models of bird flocking, fish schooling, and swarming

able to find best possible solution(s) to the non-linear numeric

problems. PSO was first introduced in 1995 by Eberhart and

Kennedy. However, PSO can easily be trapped in local

optimal point when dealing with some complex and

multimodal functions.

PSO involves a number of particles, which are initialized

randomly in the space of the design variables. These particles

fly through the search space and their positions are updated

based on the best positions of individual particles and the best

position among all particles in the search space which in truss

sizing problems corresponds to a particle with the smallest

weight[5]. In PSO, a swarm consists of N particles moving

around in a D-dimensional search space. The position of the

jth particle at the kth iteration is used to evaluate the quality of

the particle and represents candidate solution(s) for the search

or optimization problems. PSO’s exploration ability, the

inertia weight is now modified during the optimization

process.

PSO is initialized with a group of random particles (solutions)

and then searches for optima by updating generations. In every

iteration, each particle is updated by following two "best"

values. The first one is the best solution (fitness) it has

achieved so far. (The fitness value is also stored.) This value is

called pbest. Another "best" value that is tracked by the

particle swarm optimizer is the best value, obtained so far by

any particle in the population. This best value is a global best

and called gbest. When a particle takes part of the population

as its topological neighbors, the best value is a local best and

is called lbest.

After finding the two best values, the particle updates its

velocity and positions with following equations[34]:

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() *

(gbest[] - present[]) ……. (a)

present[] = persent[] + v[] ……..(b)

v[] is the particle velocity, persent[] is the current particle

(solution). pbest[] and gbest[] are defined as stated before.

rand () is a random number between (0,1). c1, c2 are learning

factors. Usually c1 = c2 = 2.

Unlike GA there are no selection, crossover and variation

operation in PSO. So its algorithm is very simple and has a

high execution speed.

However if some particle finds a present optimal point then

other particle will be closed to it rapidly. Hence the diversity

of whole swarm and its global searching ability will be

weakened obviously. [17]

C. Ant Colony Optimization

Ant Colony Optimization(ACO) algorithm was proposed by

Marico Dorigo in 2005.[8] ACO is a probabilistic technique

for solving computational problems which can be used for

searching shortest paths.[9]

ACO deals with two important processes, namely:

Pheromone deposition and trail pheromone evaporation.

Pheromone deposition is the phenomenon of ants adding the

pheromone on all paths they follow. Pheromone trail

evaporation means decreasing the amount of pheromone

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 224

deposited on every path with respect to time. Updating the

trail is performed when ants either complete their search or get

the shortest path to reach the food source.[16]

Basic Principle of the algorithm is that Ants always find a

shortest path between the nest to food source, which mainly

depends on a hormone-pheromones. The shorter path contains

more pheromone, the probability of choosing that path by ants

is greater and finally ants colony will find a shortest path.[3]

ACO technique has been already used in solving various

combinatorial problem such as knapsack problem, travelling

salesman problem, distributed network, telecommunication

network, vehicle routing, test data generation.[9]

Though ACO is next generation technique for optimization

problems but it is not providing good solutions of problems

like multiple objectives optimization, Dynamic Optimization

Problems, the Stochastic Optimization Problems, continuous

optimization and Parallel Implementations of the

constraints.[10]

Most ant colony optimization algorithms use this algorithm

demonstrated below :[11]

Initiation of the parameters which determines the

pheromone trail

While (until result conditions supplied)

 do Generate Solutions

 Apply Local Search

 Update Pheromone Trail

 End

D. BFO Algorithm

Bacteria Foraging Optimization Algorithm (BFOA), given

by Passino in 2002 , belongs to nature-inspired optimization

algorithms. Main idea behind the algorithm is group foraging

strategy of E.Coli. bacteria in order to maximize energy

obtained per unit time. Communication also occurs between

individual bacterium to improve the searching strategy. This

algorithm consists of four prime steps[13] :

1. Chemotaxis: Here, swimming and tumbling are the

two prime ways which define the manner in which

bacteria search for food. Swimming means moving in

a pre-specified direction. Tumbling means moving in

a completely new direction. Mathematically, tumble

of any bacterium can be given by multiplication of

ɸ(j) and C(i),where ɸ(j) is unit length in random

direction and C(i) is step length. In case of

swimming, C(i) is constant.

2. Swarming: For the algorithm to converge at the

optimal solution, it is required that the optimum

bacteria attract other bacteria so that together they

converge at the solution point quickly. To achieve

this, a penalty function is added to the original cost

function on the basis of relative distances of each

bacterium from the fittest one. Penalty function

becomes zero when all the bacteria have reached to

the solution point.

3. Reproduction: Here, the fittest bacteria are divided

into two groups. The weaker set of bacteria are

replaced by other more fit set of bacteria. This keeps

the population of bacteria constant throughout the

evolution process.

Elimination and Dispersal: Because of changes in environment

some bacteria may be killed or may be dispersed to a new

place. In BFOA, this phenomenon is simulated by liquidating

some bacteria and initialing new replacements randomly in the

search space. It helps in reducing the probability of being

trapped in pre-mature solution point.[12]

III. RELATED WORK

Several algorithms based on genetic algorithm [14,15] and

swarm intelligennce [16,17] ie.ant colony optimizations and

bee colony optimizations have been proposed for test case

selection and prioritization from a large test suite. Sthamer[18]

and Pargas et al [19] applied GA for automatic testdata

generation in his thesis. A Strategy for using GA to automate

branch and

fault-based Testing [20] and automatic structural testing using

genetic algorithms [21] is done by Jones et al. Lin and Yeh

worked on GA for automatic test data generation based on

path based testing [22].

An evolutionary approach is developed to dynamic test data

generation by Anastasis and Andreas [23]. Harman et al

proposed an approach to reduce the input domain using search

based technique [24].

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 225

In fact, the genetic algorithm is also used to generate test data

automatically [25].A lot of work is done by researchers on

optimization of test cases. Mala et al has developed a hybrid

genetic algorithm based approach for quality improvement and

optimization of test cases[26] and Eric et al analyzed the effect

of fault detection of test set when its size is minimized [27].

The concept of Artificial Bee Colony algorithm was

introduced by Karaboga [28,29]. Chong et al [30] applied

honey bees foraging behavior model to the job scheduling

problem. McCaffrey et al [31] generates pair wise test sets

using a simulated bee colony algorithm.

Mala et al [32] presented a new, non pheromonen based test

suite optimization approach inspired by the behavior of

biological bees.

Dahiya et al [33] presented an ABC algorithm based approach

for automatic generation of structural software tests.

Sangeeta Sabharwal et. al n this paper a GA based approach is

proposed for identifying the test path that must be tested first.

Test paths or scenarios are derived from activity diagram and

state chart diagram respectively. The proposed approach

makes use of IF model and GA to find the path to be tested

first.

S. Raju and G. V. Uma in this paper the regression testing

based test suite prioritization technique is illustrated. A new

prioritization technique is proposed for requirement based

System level test cases to improve the rate of fault detection of

severe faults.

Chartchai Doungsa et al, n this paper author proposed an

approach for generating test data from UML state diagram

using genetic algorithm.This approach helps software

developers to reduce their effort in generating test data before

coding.

Arvinder Kaur and Shubhra Goyal in this paper a new Genetic

Algorithm to prioritize the regression test suite is introduced

that prioritize test cases on the basis of complete code

coverage. The genetic algorithm would also automate the

process of test case prioritization. The results representing the

effectiveness of algorithms are presented with the help of an

Average Percentage of Code Covered (APCC) metric.

Bharti Suri and Shweta Singhal in this paper presents an

implementation of an already introduced Ant Colony

Optimization Algorithm for Test Case Selection and

Prioritization. Graph representation and example runs

explained in the paper show how the random nature of ACO

helps to explore the possible paths and choose the optimal

from them. Results show that ACO leads to solutions that are

in close proximity with optimal solutions. In this study a tool

ACO_TCSP for the same has been developed and applied on

an example. Though in these tests the best solution was not

found for all cases still the results obtained are in close

proximity to the optimal results. The reduction in test suite

size is achieved to be 62.5% in all the 4 test runs

IV.CONCLUSION & FUTURE WORK

Test data generation is one of the key issues in software

testing. A properly generated test suite may not only locate the

errors in a software system, but also help in reducing the high

cost, efforts associated with software testing. Present work

surveyed various techniques of software test case

optimization. First we summarized traditional and advanced

test optimization techniques, and then we identified gaps in

existing techniques. Optimization of test cases is multi-

objective optimization, NP complete and peculiar nature

problem. Soft computing can be used for these type problems.

whose inexact solutions driving is computationally hard tasks

such as the solution of “NP-complete problems”.

In conclusion, a lot of test cases optimization techniques have

been developed for achieving software testing effectiveness

and fault coverage. Review of existing literatures has

identified that there are several objectives of test case

optimization like maximum number of defect detecting

capability, minimum test design efforts/cost, minimum

execution cost, maximum coveragebility of client

requirements & codes, maximum mutant killing score and so

forth. Therefore optimization of test cases should be treated as

multi-objective optimization problem. However most of test

cases optimization approaches are single objective. Single

objective formulation of test cases optimization problem is not

justified and not meeting the objectives of testing. Some

objectives are conflicting in nature, coveragebility of one

objective will suffer other objective while considering all

objectives concurrently. So, there is strong need to shift the

paradigm from single objective test case optimization to multi-

objective test case optimization. Moreover for these

techniques, soft computing approaches like Genetic

Algorithms, Fuzzy Logic, Artificial Neural Network etc may

be well suited for experimentation and validation purpose

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 226

REFERENCES

[1] Young, M. (2008). Software testing and analysis: process,

principles, and techniques.John Wiley & Sons.

[2] Anand, S., Burke, E., Chen, T. Y., Clark, J., Cohen, M. B.,

Grieskamp, W., & Zhu, H. (2013). An Orchestrated Survey on

Automated Software Test Case Generation. Journal of

Systems and Software.

[3] Bertolino, A. (2007, May). Software testing research:

Achievements, challenges, dreams.

In Future of Software Engineering, 2007. FOSE'07 (pp. 85-

103). IEEE.

[4] Pezz`e, M. and Young, M., 2007. Software Testing and

Analysis - Process, Principles and

Techniques. Wiley.

[5] Devasena, M. G., & Valarmathi, M. L. (2012). Search

based Software Testing Technique

for Structural Test Case Generation. International Journal of

Applied Information Systems (IJAIS), 1(6).

[6] Farooq, U., & Lam, C. P. (2009, April). Evolving the

Quality of a Model Based Test Suite.In Software Testing,

Verification and Validation Workshops, 2009. ICSTW'09.

International Conference on (pp. 141-149). IEEE. 1st

Technology, Education, and Science International Conference

(TESIC) 201373

[7] Kosindrdecha, N., & Daengdej, J. (2010). A Black-Box

Test Case Generation Method.

International Journal of Computer Science and Information

Security (IJCSIS).

[8] Harman, M., Kim, S. G., Lakhotia, K., McMinn, P., &

Yoo, S. (2010, April). Optimizing for the number of tests

generated in search based test data generation with an

application to the oracle cost problem. In Software Testing,

Verification, and Validation Workshops (ICSTW), 2010 Third

International Conference on (pp. 182-191). IEEE.

[9] Boghdady, P. N., Badr, N., Hashem, M., & Tolba, M. F.

(2011). Test Case Generation and Test Data Extraction

Techniques. Inter. J. Electr. Comput. Sci, 11(3), 87-94.

[10] ZHENG, W. (2011). Automatic Software Testing Via

Mining Software Data, PhD thesis, The Chinese University of

Hong Kong.

[11] Parnami, S., Sharma, K. S., & Chande, S. V. (2012). A

Survey on Generation of Test Cases and Test Data Using

Artificial Intelligence Techniques , UACEE International

Journal of Advances in Computer Networks and its Security,

pp. 16-18.

[12] Singh, K., & Kumar, R. (2010). Optimization of

Functional Testing using Genetic Algorithms. International

Journal of Innovation, Management and Technology, 1(1),

2010-0248.

[13] Geetha Devasena, M. S., & Valarmathi, M. L.

(2012).Meta Heuristic Search Technique for Dynamic Test

Case Generation. International Journal of Computer

Applications. 39 (12)

[14] M.J.Harrold, R.Gupta, and M.L. Soffa,“ A methodology

for controlling the size of the test suite, ” ACM Transaction on

Software Engineering and Methodology, pages 270-285, July

1993.

[15] H.Agrawal ,J.R. Horgan, and E.W. , Krauser,

“Incremental regression testing,” In: Proc.

Conference on Software Maintenance, pages 348-357,1993.

[16] R.Bahsoon, N. Mansour, “Methods and metrics for

selective regression testing,” In Computer Systems and

Applications, ACS/IEEE International Conference, pages 463-

465, 2001.

[17] G. Rothermel, R.H. Untch, C. Chu, and M.J.Harrold,

“Prioritizing Test Cases for Regression Testing,” IEEE Trans.

Software Eng., vol. 27, no.10, pages 929-948, Oct. 2001.

[18] S.Elbaum, Alexey G. Malishevsky, andG.Rothermel,

“Test case prioritization: A family

of empirical studies,” IEEE Transactions on Software

Engineering, vol. 28, NO.2, pages 159-

182, Feb.2002.

[19] K. K. Aggrawal, Y. Singh, A. Kaur, “ Code coverage

based technique for prioritizing test cases for regression

testing ,” ACM SIGSOFT Software Engineering Notes , vol

29 Issue 5 September 2004.

[20] J.Holland, “Adaption in Natural and Artificial Systems”,

Ann Arbor, MI: University of

Michigan Press,1975.

[21] D. Goldberg, “Genetic Algorithms in Search

Optimization and Machine Learning”, New

York,Addision Wesely, 1989.

[22] Wikipedia; http://en.wikipedia.org/wiki/

Swarm_intelligence.

[23]

Scholarpedia;http://www.scholarpedia.org/article/Artificial_be

e_colony_algorithm.

[24] H.H. Sthamer, “The automatic generation of software test

data using genetic algorithms, Ph.D thesis, University of

Glamorgan 1996.

[25] R.P Paragas, M. Harrolg and R.Peck , “Test data

generations using genetic algorithms”, Software testing

verification and reliability, vol.9, no4, pp263-282,1999.

[26] B .Jones, D.Eyres and H .Sthamer ,”A strategy for using

genetic algorithms to automate branch and fault based

testing”, the computer journal ,vol 41, no.2pp. 98-107,1998.

[27] B.F Jones, H.H Sthamer and D.Eyres,“Automatic

structural testing using genetic algorithms”, Software

engineering journal,vol.11,no.5,pp.229-306, 1996.

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 227

[28] J.C. Lin, P.L. Yeh,” Automatic test data generation for

path testing using Gas”, Department of Computer Science and

Engineering, Tatung University,1999.

[29] A.Anastasis, A. S. Andreou,” Automatic, evolutionary

test data generation for dynamic

software testing”, Journal of Systems andSoftware Volume 81,

Issue 11, Pages 1883-1898, November 2008.

[30]

M.Harman,Y.Hassoun,K.Lakhotia,P.McMinn,J.Wegener,”

The impact of input domain

reduction on search-based test data generation”,in the

proceedings of ACM SIGSOFT, ISBN: 978-1-59593-811-

4,2007.

[31] Marc Roper, Iain Maclean, Andrew Brooks,James Miller

and Murray Wood. Genetic Algorithms and the Automatic

Generation of Test data,1995.

[32] D.J.Mala , V.Mohan, “Quality Improvement and

Optimization of Test Cases-A Hybrid Genetic Algorithm

Based Approach”, ACM SIGSOFT ,May 2010.

[33] W.W.Eric, ,R.H.Joseph, L.Saul and Aditya

P.Mathur,”Effect of Test Case Minimization of Fault

Detection Effectiveness”,Software pPractice and

Experience,Vol.28,No.4, pp. 347-

369, 1998.

[34] http://www.swarmintelligence.org/tutorials.php

