
© July 2017 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 144915 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 274

A Ranking Model, A Fine Grained Benchmark, A Feature

Evaluation: A Survey on Mapping Bug Reports to
Relevant Files

K. DILEEP REDDY

1
, DR. V.B.NARSIMHA

2

1
MCA Student,

2
Assistant Professor

12
Department of CSE, OU, Hyderabad, Telangana, India

Abstract- Once a novel bug report is received,

developers generally have to be compelled to be

compelled to breed the bug and perform code reviews to

hunt out the cause, a way that will be tedious and time

overwhelming. A tool for ranking all the provision files

with relation to but in all probability they are to contain

the rationale for the bug would modify developers to

slender down their search and improve productivity.

This paper introduces associate degree adaptive

ranking approach that leverages project data through

purposeful decomposition of computer code computer

file, API descriptions of library parts, the bug-fixing

history, the code modification history, and so the file

dependency graph. Given a bug report, the ranking

score of each offer file is computed as a weighted

combination of associate degree array of choices, where

the weights unit of measurement trained automatically

on antecedently solved bug reports using a learning-to-

rank technique. We’ve an inclination to worth the

ranking system on six huge scale open offer Java comes,

exploitation the before-fix version of the project for

every bug report. The experimental results show that

the learning-to-rank approach outperforms three recent

progressive ways. Specially, our technique makes

correct recommendations at intervals the best ten

stratified offer files for over seventy p.c of the bug

reports at intervals the Eclipse Platform and Felis

domesticus comes.

Index Terms- Bug reports, software maintenance,

learning to rank

I. INTRODUCTION

Word illustration makes an attempt to represent

aspects of word meanings. as an example, the

illustration of “cell phone” might capture the facts

that cell phones are electronic product, that they

embrace battery and screen, that they will be

accustomed chat with others, and so on. Word

illustration may be a important part of the many

tongue process systems as word is typically the

fundamental process unit of texts. A uncomplicated

approach is to represent every word as alone-hot

vector, whose length is vocabulary size and only {1}

dimension is 1, with all others being zero. However,

one hot word illustration solely encodes the indices

of words in an exceedingly vocabulary, however fails

to capture made relative structure of the lexicon. to

unravel this drawback, several studies represent every

word as a continual, low-dimensional and real valued

vector, conjointly referred to as word embeddings.

Existing embedding learning approaches are totally

on the premise of spatial arrangement hypothesis [9]

that states that the representations of words ar

mirrored by their contexts. As a result, words with

similar grammatical usages and linguistics meanings,

like “hotel” and “motel”, are mapped into

neighboring vectors within the embedding area. Since

word embeddings capture linguistics similarities

between words, they need been leveraged as inputs or

additional word options for a range of tongue process

tasks, as well as MT , grammar parsing , question

respondent, discourse parsing , etc al. Despite the

success of the context-based word embeddings in

several natural language processing tasks [14], we

have a tendency to argue that they're not effective

enough if directly applied to sentiment analysis that

is that the analysis space targeting at extracting,

analyzing and organizing the sentiment/opinion (e.g.

thumbs up or thumbs down) of texts. the foremost

major problem of context-based embedding learning

algorithms is that they solely model the contexts of

words however ignore the sentiment data of text. As

a result, words with opposite polarity, like smart and

unhealthy, ar mapped into shut vectors within the

embedding area. this can be important for a few tasks

like pos-tagging [18] as a result of the 2 words have

similar usages and grammatical roles. However, it

© July 2017 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 144915 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 275

becomes a disaster for sentiment analysis as they

need opposite sentiment polarity labels.

II.RELATED WORK

1. Title: Feature identification: A novel approach and

a case study

Author: G. Antoniol and Y.-G. Gueheneuc,

Feature identification may be a well-known

technique to spot subsets of a program ASCII text file

activated once workout a practicality. many

approaches are projected to spot options. we have a

tendency to gift associate degree approach to feature

identification and comparison for giant object-

oriented multi-threaded programs victimisation each

static and dynamic knowledge. we have a tendency to

use processor emulation, information filtering, and

probabilistic ranking to beat the difficulties of

collection dynamic knowledge, i.e., impreciseness

and noise. we have a tendency to use model

transformations to match and to visualise known

options. we have a tendency to compare our approach

with a naive approach and a thought analysis-based

approach employing a case study on a real-life giant

object-oriented multi-threaded program, Mozilla, to

indicate the benefits of our approach. we have a

tendency to conjointly use the case study to match

processor emulation with applied mathematics

identification.

2. Title: Feature identification: An epidemiological

metaphor,

Author: G. Antoniol and Y.-G. Gueheneuc,

Feature identification may be a technique to spot the

ASCII text file constructs activated once workout one

among the options of a program. we have a tendency

to propose new applied mathematics analyses of

static and dynamic information to accurately

establish options in giant multithreaded object-

oriented programs. we have a tendency to draw

inspiration from medical specialty to enhance

previous approaches to feature identification ANd

develop an medical specialty figure of speech. we

have a tendency to build our figure of speech on our

previous approach to feature identification, during

which we have a tendency to use processor

emulation, knowledge-based filtering, probabilistic

ranking, and metamodeling. we stock out 3 case

studies to assess the quality of our figure of speech,

victimisation the "save a bookmark" feature of net

browsers as AN illustration. within the 1st case study,

we have a tendency to compare our approach with 3

previous approaches (a naive approach, a plan

analysis-based approach, and our previous

probabilistic approach) in characteristic the feature in

MOZILLA, a large, real-life, multithreaded

objectoriented program. Within the second case

study, we have a tendency to compare the

implementation of the feature within the FIREFOX

and MOZILLA net browsers. within the third case

study, we have a tendency to establish identical

feature in 2 additional net browsers, Chimera (in C)

and ICEBrowser (in Java), and another feature in

JHOTDRAW and XFIG, to focus on the

generalizability of our figure of speech.

3. Title: Debugadvisor: A recommender system for

debugging,

Author: B. Ashok, J. Joy, H. Liang, S. K. Rajamani,

G. Srinivasa, and V. Vangala,

In giant software package development comes, once

a computer user is assigned a bug to repair, she

usually spends lots of your time looking (in associate

ad-hoc manner) for instances from the past wherever

similar bugs are debugged, analyzed and resolved.

Systematic search tools that enable the computer user

to specific the context of the present bug, and search

through various information repositories related to

giant comes will greatly improve the productivity of

debugging This paper presents the planning,

implementation and knowledge from such a quest

tool known as DebugAdvisor.

4. Expectations, outcomes, and challenges of modern

code review

Author: A. Bacchelli and C. Bird,

Code review could be common software system

engineering apply used each in open supply and

industrial contexts. Review these days is a smaller

amount formal and additional “lightweight” than the

code inspections performed and studied within the

70s and 80s. we have a tendency to through empirical

observation explore the motivations, challenges, and

outcomes of tool-based code reviews. we have a

tendency to determined, interviewed, and surveyed

developers and managers and manually classified

many review comments across numerous groups at

Microsoft. Our study reveals that whereas finding

defects remains the most motivation for review,

reviews ar less regarding defects than expected and

instead give extra edges like information transfer,

inflated team awareness, and creation of other

solutions to issues.

© July 2017 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 144915 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 276

5. Title: Leveraging usage similarity for effective

retrieval of examples in code repositories,

Author: S. K. Bajracharya, J. Ossher, and C. V.

Lopes,

Developers usually learn to use arthropod genus

(Application Programming Interfaces) by observing

existing samples of API usage. Code repositories

contain several instances of such usage of arthropod

genus. However, typical info retrieval techniques fail

to perform well in retrieving API usage examples

from code repositories. This paper presents Structural

linguistics compartmentalisation (SSI), a way to

associate words to ASCII text file entities supported

similarities of API usage. The heuristic behind this

method is that entities (classes, methods, etc.) that

show similar use of arthropod genus ar semantically

connected as a result of they are doing similar things.

we have a tendency to appraise the effectiveness of

SSI in code retrieval by scrutiny 3 SSI primarily

based retrieval schemes with 2 typical baseline

schemes. we have a tendency to appraise the

performance of the retrieval schemes by running a

group of twenty candidate queries against a

repository containing 222,397 ASCII text file entities

from 346 jars happiness to the Eclipse framework.

The results of the analysis show that SSI is effective

in up the retrieval of examples in code repositories.

III.PROPOSED ALGORITHM

A. Architecture:

This paper introduces associate adaptive ranking

approach that leverages project data through practical

decomposition of ASCII text file, API descriptions of

library parts, the bug-fixing history, the code

modification history, and also the file dependency

graph. Given a bug report, the ranking score of every

supply file is computed as a weighted combination of

associate array of options, wherever the weights area

unit trained mechanically on antecedently resolved

bug reports employing a learning-to-rank technique.

We assess the bug fixing technique applying feature

choice and instance choice methodology. It provides

associate applicable assignment of bug report back to

nominative developer. It reduces associate abnormal

behavior of software package engineering.

ADVANTAGES:

1.We tend to introduce a learning-to-rank approach

that emulates the bug finding method utilized by

developers.

2.Assign correct errors or bug to applicable user.

3.It scales back longer for assignment associated

finding errors in an applicable Program.

4.The ranking performance will take pleasure in

informative bug reports and well documented code

resulting in a much better lexical similarity and from

ASCII text file files that have already got a bug-

fixing history.

5.It applies the feature choice and instance choice

technique to method on bug report.

IV.CONCLUSION

To find a bug, developers use not solely the content

of the bug report however additionally domain data

relevant to the package project. we have a tendency

to introduced a learning-to-rank approach that

emulates the bug finding method used by developers.

The ranking model characterizes helpful relationships

between a bug report and ASCII text file files by

investing domain data, like API specifications, the

syntactical structure of code, or issue chase

knowledge. Experimental evaluations on six Java

comes show that our approach will find the relevant

files at intervals the highest ten recommendations for

over seventy % of the bug reports in Eclipse Platform

and Felis catus. What is more, the projected ranking

model outperforms 3 recent progressive approaches.

Feature analysis experiments using greedy backward

feature elimination demonstrate that every one

options ar helpful. Once plus runtime analysis, the

feature analysis results is used to pick out a set of

© July 2017 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 144915 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 277

options so as to attain a target trade-off between

system accuracy and runtime complexness. The

projected adaptation ranking approach is mostly

applicable to package comes that there exists a

sufficient quantity of project specific data, like a

comprehensive API documentation (Section

three.1.2) associated an initial range of antecedently

mounted bug reports (Section half-dozen.1). What is

more, the ranking performance will get pleasure from

informative bug reports and well documented code

resulting in a higher lexical similarity (Section

three.1.1), and from ASCII text file files that have

already got a bug-fixing history (Section three.2). In

future work, we are going to leverage further sorts of

domain data, like the stack traces submitted with bug

reports and also the file amendment history, likewise

as options antecedently utilized in defect prediction

systems. we have a tendency to additionally arrange

to use the ranking SVM with nonlinear kernels and

more assess the approach on comes in alternative

programming languages.

REFERENCES

[1] G. Antoniol and Y.-G. Gueheneuc, “Feature

identification: A novel approach and a case

study,” in Proc. 21st IEEE Int. Conf. Softw.

Maintenance,Washington, DC, USA, 2005, pp.

357–366.

[2] G. Antoniol and Y.-G. Gueheneuc, “Feature

identification: An epidemiological metaphor,”

IEEE Trans. Softw. Eng., vol. 32, no. 9, pp. 627–

641, Sep. 2006.

[3] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G.

Srinivasa, and V. Vangala, “Debugadvisor: A

recommender system for debugging,” in Proc.

7th Joint Meeting Eur. Softw. Eng. Conf. ACM

SIGSOFT Symp. Found. Softw. Eng., New

York, NY, USA, 2009, pp. 373–382.

[4] A. Bacchelli and C. Bird, “Expectations,

outcomes, and challenges of modern code

review,” in Proc. Int. Conf. Softw. Eng.,

Piscataway, NJ, USA, 2013, pp. 712–721.

[5] S. K. Bajracharya, J. Ossher, and C. V. Lopes,

“Leveraging usage similarity for effective

retrieval of examples in code repositories,” in

Proc. 18th ACM SIGSOFT Int. Symp. Found.

Softw. Eng., New York, NY, USA, 2010 pp.

157–166.

[6] R. M. Bell, T. J. Ostrand, and E. J. Weyuker,

“Looking for bugs in all the right places,” in

Proc. Int. Symp. Softw. Testing Anal., New

York, NY, USA, 2006, pp. 61–72.

[7] N. Bettenburg, S. Just, A. Schr€oter, C. Weiss,

R. Premraj, and T. Zimmermann, “What makes a

good bug report?” in Proc. 16th ACM SIGSOFT

Int. Symp. Found. Softw. Eng., New York, NY,

USA, 2008, pp. 308–318.

[8] T. J. Biggerstaff, B. G. Mitbander, and D.

Webster, “The concept assignment prob lem in

program understanding,” in Proc. 15th Int. Conf.

Softw. Eng., Los Alamitos, CA, USA, 1993, pp.

482–498.

[9] D. Binkley and D. Lawrie, “Learning to rank

improves IR in SE,” in Proc. IEEE Int. Conf.

Softw. Maintenance Evol., Washington, DC,

USA, 2014, pp. 441 445.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent

Dirichlet allocation,” J. Mach. Learn. Res., vol.

3, pp. 993–1022 Mar. 2003.

[11] S. Breu, R. Premraj, J. Sillito, and T.

Zimmermann, “Information needs in bug reports:

Improving cooperation between developers and

users,” in Proc. ACM Conf. Comput. Supported

Cooperative Work, New York, NY, USA, 2010,

pp.301–310.

[12] B. Bruegge and A. H. Dutoit, Object-Oriented

Software Engineering Using UML, Patterns, and

Java, 3rd ed. Upper Saddle River, NJ, USA,

Prentice-Hall, 2009.

[13] Y. Brun and M. D. Ernst, “Finding latent code

errors via machine learning over program

executions,” in Proc. 26th Int. Conf. Softw.

Eng.,Washington, DC, USA, 2004, pp. 480–490.

[14] M. Burger and A. Zeller, “Minimizing

reproduction of software failures,” in Proc. Int.

Symp. Softw. Testing Anal., New York, NY,

USA, 2011 pp. 221–231.

[15] R. P. L. Buse and T. Zimmermann, “Information

needs for software development analytics,” in

Proc. Int. Conf. Softw. Eng., Piscataway, NJ,

USA, 2012, pp. 987–996

