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Abstract- In this paper an appraisal theme for visual 

tracing by using CNN. Due to various uncertain 

changes of articles online, such as sudden motion, 

background position and large deformation, the visual 

tracing is still a stimulating task. Hear a novel Theme 

for Deep Position-Specific Tracing. It differ the 

different criteria like quantization task and a grouping 

task, and in orders an individual network for each task. 

The quantization network achievements the data in the 

current edge and provides a selected position to 

improve the probability of successful tracing, while the  

grouping network finds the target in the middle of 

many examples generated around the target position in 

the previous edge, as well as the one predictable from 

the quantization network in the current edge. CNN 

based tracers often have substantial number of usable 

parameters, and are prone to over-fitting to some 

particular position states, leading to less precision or 

tracing error. 

 

Index Terms- Visual Tracing; position Specific Tracing; 

CNN; Decomposition Network. 

 

I. INTRODUCTION 

 

Visual position tracing is a core problem in 

multimedia understanding and computer vision. It  has 

numerous applications in robotics, human-computer 

interaction, video analysis. In this paper, we focus on 

the problem of single position tracing. A typical 

system is to track an uninformed position in a video 

in order, where the position has been represented in 

the first edge by a rectangle. Although many progress 

has been made in recent years, it is still a challenging 

task due to unknown changes of position online, such 

as shape deformations, occlusions, fast motion and 

pose variations, to name a few.  Many methods have 

been proposed for the visual tracing problem,  such 

as multiple instance learning, subspace learnin, 

ensemble learning, compressive coding, etc. In recent 

years, the Discriminative Relationship Filters (DRF) 

based methods have achieved good results in terms of 

accuracy and speeds. More recently, several pure 

CNN based methods have been developed and 

obtained state-of-the-art tracing results in public 

benchmarks. Despite achieving promising 

performances, existing CNN trackers still have some 

drawbacks. First, to predict the position of target in 

the current edge, most of these trackers search the 

position near its position in the previous edge, which 

are prone to drifting in cases of fast motion and error 

locating in the previous edge. One way to invoke this 

problem is to sample as many examples as possible in 

a larger region and feed them into a network, 

resulting in very slow tracing speeds since CNN 

should run many times on the generated examples . 

Second, we argue that the convention state transition 

strategy for visual tracing is suboptimal because they 

do not exploit useful information from the current 

edge. Third, because only limited number of positive 

data can be used online, many top CNN trackers have 

large guideded parameters, and thus are likely to be 

over-fitting to backgrounds. To improve tracing 

accuracy and robustness, it is thus imperative to 

provide a tracker which can handle all above 

questions.  In this paper, we propose a simple, 

flexible yet effective method, Deep position-Specific 

Tracing (DPST), which decomposes the single 

tracing task into quantization and classification, and 

trains different network for each task. Our 

architecture is significant difference from tracker 

combination methods because we train our networks 

for separated purposes: one network is for target 

position estimation, and the other is for frontend and 

background classification. Specifically, the 

quantization network is a small network operated on 

a searching region which is larger than the target size, 

and provides a specific guess of the target position in 

the current edge. The classification network accepts 

many examples generated from the target position in 

the previous edge and the specific one assured in the 
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current edge. Finally, the extensive experimental 

results show that the proposed edgework achieves 

competitive performance compared with other state-

of-the-arts on popular benchmarks.  

 
Figure: A comparison of the proposed DPST with 

MDNet and C-COT on two example sequences. The 

AUC on “Biker"/“Singer2" for DPST, MDNet and C-

COT are 0.645/0.714, 0.392/0.694 and 0.531/0.081, 

respectively. Best viewed in color. Helighted The 

Position what we are going to Trace in a motioned 

picture. 

2. DPST ALGORITHM 

 

 
 

3. QUANTIZATION 

 

The search region is 4 times larger than the target 

size, and it is resized to 107×107×31 as input to the 

pre-trained VGG-M [6]. Here, we adopt the low-level 

features from the VGG-M network (first ReLU layer) 

since it preserves more spatial information.  

Snorm on estimated location. The proposed state 

transition strategy is denoted as  

Scomb = {Snorm(Xt ; ext−1); Snorm(Xt ; x∗t )} 

The output is a 51 × 51 × 96 feature map which is 

then fed into our network for localization. The 

architecture of our network is implemented with two 

1 × 1 convolutional layers, followed by a loss layer. 

The first convolutional layer has convolutional 

kernels of channel 96 and outputs 256 feature maps, 

followed by a non-linear ReLU unit and a dropout 

layer. The main goal of this layer is to adapt the pre-

trained VGG-M features to specific videos since the 

same kind of objects can be treated as target or as 

background in different sequences. The second layer 

has kernels of channel 256 and outputs the heat map 

of the cropped region. To train the network, we 

employ softmax loss2 and define labels on the feature 

map as: 

yi =  2, if | |ct − ect | | ≤ R,                                 Eq(1) 

1, otherwise, 

where the ct is the center of target bounding box on 

the feature map in the frame t . Eq (1) indicates that 

the samples are considered to be positive if they are 

within the radius R of the center of targetlocation on 

the feature map. R is set by users and fixed across all 

videos. Also, we weight the losses by the positive and 

negative samples to eliminate class imbalance issue. 

 

4. DECOMPOSITION 

 

The sampled examples are resized to 107×107×3 

pixels. In this paper, the relu3 layer of the pretrained 

VGG-M [6] model is utilized as feature extractor 

because it captures more semantic part or category 

information than lower layers. For each example, the 

output 3×3×512 dimensional feature map is then fed 

into our classification network for final prediction. 

Our specially designed classification network 

consists of three 1 × 1 convolutional layers. The first 

two convolutional layers have 512 and 128 number 

of filters, respectively. The last one produces  

2 outputs for target and background. For network 

learning, we again employs softmax logistic 

regression for simplicity. The target state in the 

current frame is given by finding the example with 

the maximum positive score as ext = arдmaxxi ∈Xt f 
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+(xi ) [34], where f + is the output positive score 

from our classification network. 

 

5. CONCLUSIONS 

 

In this paper, we presented a theme that helpful for 

Deep Position -Specific Tracing (DPST), which 

decouples the single tracing task into a quantization 

task and a Decomposition task, and trains a special 

network for each task. The Quantization network 

exploits the Data from the current slice, and provides 

a Current position for state transition, which is 

helpful to improve the performance of tracing. Our 

Decomposition network has fewer trainable 

parameters due to its 1 × 1 convolutional layers and 

the global average pooling. This specially designed 

structure is less likely to over-fitting, and improves 

the tracing accuracy and robustness. The proposed 

DPST algorithm achieves competitive results on the 

benchmarks without using additional annotated 

Motioned Pictures, largely reducing the human effort 

for sticky tags. 
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