IFgsr-Continuous Mappings in Intuitionistic Fuzzy Topological Spaces

Anitha S¹, Mohana K²

¹Research Scholar, Department of Mathematics, Nirmala College for Women ²Assistant Professor, Department of Mathematics, Nirmala College for Women

Abstract- The aim of this paper is to establish intuitionistic fuzzy gsr-continuous mappings and to study some of their properties. Further we introduce intuitionistic fuzzy gsr irresolute mappings and investigate their characterizations.

Index Terms- Intuitionistic fuzzy topology, Intuitionistic fuzzy continuous mappings, Intuitionistic fuzzy gsr continuous mappings.

1. INTRODUCTION

Zadeh [14] introduced the fuzzy concept in 1965 and the theory of fuzzy topology was introduced and developed by C.L. Chang [3]. Atanassov [2] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. In 1997 Coker[4] defined intuitionistic fuzzy topological spaces. This approach provided a wide field for investigation in the area of fuzzy topology and its applications. One of the directions is related to the properties of intuitionistic fuzzy sets introduced by Gurcay [5] in 1997.

We define the notion of intuitionistic fuzzy gsrcontinuous mappings and intuitionistic fuzzy gsrirresolute mappings. We discuss characterizations of intuitionistic fuzzy gsr- continuous mappings and irresolute mappings. We also established their properties and relationships with other classes of early defined forms of intuitionistic continuous mappings.

2. PRELIMINA RIES

Definition 2.1. [1] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ < x, \mu A(x), \nu A(x) > / x \in X \}$ where the functions $\mu A(x) : X \rightarrow [0,1]$ and $\nu A(x) : X \rightarrow [0,1]$ denote the degree of membership (namely $\mu A(x)$) and the degree of non-membership (namely vA(x)) of each element $x \in X$ to the set A, respectively, and $0 \le \mu A(x) + \nu A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy set in X.

Definition 2.2. [1] $A = \{ \langle x, \mu A(x), \nu A(x) \rangle / x \in X \}$ and $B = \{ \langle x, \mu B(x), \nu B(x) \rangle / x \in X \}$. Then $A \subseteq B$ if and only if $\mu A(x) \leq \mu B(x)$ and $\nu A(x) \geq \nu B(x)$ for all $x \in X$ A = B if and only if $A \subseteq B$ and $B \subseteq A$ $Ac = \{ \langle x, \nu A(x), \mu A(x) \rangle / x \in X \}$

 $A \ \cap \ B = \{ < x, \ \mu A(x) \land \ \mu B(x), \ \nu A(x) \lor \ \nu B(x) > / \ x \in X \}$

 $A \ \cup \ B = \{ < x, \ \mu A(x) \ \lor \ \mu B(x), \ \nu A(x) \ \land \ \nu B(x) > / \ x \in X \}$

For the sake of simplicity, Let us use the notation A = $\langle x, \mu A, \nu A \rangle$ instead of A = $\{\langle x, \mu A(x), \nu A(x) \rangle / x \in X\}$. Also for the sake of simplicity, we shall use the notation A = $\langle x, (\mu A, \mu B), (\nu A, \nu B) \rangle$ instead of A = $\langle x, (A/\mu A, B/\mu B), (A/(\nu A, B/\nu B) \rangle$.

The intuitionistic fuzzy sets $0 \sim = \{ < x, 0, 1 > / x \in X \}$ and $1 \sim = \{ < x, 1, 0 > / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3. [4] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms.

$$0\sim$$
, $1\sim \in \tau$

Gl \cap G2 $\in \tau$, for any Gl , G2 $\in \tau$

 $\cup \ Gi \ \in \tau \ for \ any \ family \ \{ \ Gi \ / \ i \in J \} \subseteq \tau.$

In this case the pair (X,τ) is called an intuitionistic fuzzy topological space(IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set(IFOS in short) in X.

The complement (Ac) of an IFOS A in an IFTS(X, τ) is called an intuitionistic fuzzy closed set(IFCS in short) in X.

Definition 2.4. [2] Let X and Y be two nonempty sets and $f: X \rightarrow Y$ be a function. Then

If $B = \{\langle y, \mu_B(y), \nu_B(y) \rangle / y \in Y\}$ is an IFS in Y, then the preimage of B under f denoted by f -1 (B) is the IFS in X defined by f -1 (B) = $\{\langle x, f - 1[(\mu_B)B)(x), f -1(\nu_B)(x) \rangle / x \in X\}$

Definition 2.5. [4] Let (X,τ) be an IFTS and A = $\langle x, \mu A, \nu A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by

 $int(A) = \bigcup \{G / G \text{ is an IFOS in } X \text{ and } G \subseteq A\},\$

 $cl(A) = \bigcap \{K / K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$

Definition 2.6. [10] An IFS A = $\langle x, \mu A, \nu A \rangle$ in an IFTS(X, τ) is said to be an

- (ii) intuitionistic fuzzy regular open set(IFROS in short) if A = int(cl(A)),
- (iii) intuitionistic fuzzy regular closed set(IFRCS in short) if A = cl(int(A)),
- (iiii) intuitionistic fuzzy semi open set(IFSOS in short) if $A \subseteq cl(int(A))$,
- (iiv) intuitionistic fuzzy semi closed set(IFSCS in short) if $int(cl(A)) \subseteq A$,
- (iv) intuitionistic fuzzy pre-open set(IFPOS in short) if $A \subseteq int(cl(A))$,
- (ivi) intuitionistic fuzzy pre-closed set(IFPCS in short) if $cl(int(A)) \subseteq A$,
- (ivii) intuitionistic fuzzy α open set(IF α OS in short) if A \subseteq int(cl(int(A)),
- (iviii) intuitionistic fuzzy α -closed set(IF α CS in short) if cl(int(cl(A)) \subseteq A.

Definition 2.7. [10] Let an IFS A of an IFTS (X,τ) .

Then the semi closure of A (scl(A) in short) is defined as $scl(A) = \bigcap \{K \mid K \text{ is an IFSCS in } X \text{ and } A \subseteq K\}.$

Then the semi interior of A (sint(A) in short) is defined as $sint(A) = \bigcup \{G \mid G \text{ is an IFSOS in X and } G \subseteq A\}$

Definition 2.8. An IFS A in an IFTS $(X{,}\tau)$ is said to an

(i) intuitionistic fuzzy generalized closed (IFGCS) [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X,

(ii) intuitionistic fuzzy α - generalized closed (IF α GCS) [9] if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X,

(iii) intuitionistic fuzzy generalized α - closed (IFG α CS) [9] if α cl(A) \subseteq U whenever A \subseteq U and U is an IF α OS in X,

Definition 2.9.[1] An IFS A in an IFTS (X,τ) is said to be an Intuitionistic fuzzy gsr-closed sets (IFGSRCS in short) if scl(A) \subseteq U and U is an IFROS in (X, τ) .

An IFS A is said to be an intuitionistic fuzzy gsropen set (IFGSROS in short) in (X,τ) if the Ac is an IFGSRCS in (X,τ) .

Definition 2.10. Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ).

Then f is said to be an

- (1) intuitionistic fuzzy continuous (IF continuous in short) if $f -1(B) \in IFOS(X)$ for every $B \in \sigma$ [5],
- (2) intuitionistic fuzzy α -continuous (IF α continuous in short) if f -1(B) \in IF α OS(X) for every B $\in \sigma$ [8],
- (3) intuitionistic fuzzy pre continuous (IFP continuous in short) if $f -1(B) \in IFPOS(X)$ for every $B \in \sigma$ [8].
- (4) intuitionistic fuzzy generalized continuous(IFG continuous in short) if f -1(B) is an IFGCS for every IFCS B of (Υ, σ)[13],
- (5) intuitionistic fuzzy generalized semi continuous(IFGS continuous in short) if f -1(B) is an IFGSCS for every IFCS B of (Y, σ)[11],
- (6) intuitionistic fuzzy α -generalized continuous (IF α G continuous in short) if f -1(B) is an IF α GCS for every IFCS B of (Y, σ)[10],
- (7) intuitionistic fuzzy generalized α continuous (IFG α continuous in short) if f -1(B) is an IFG α CS for every IFCS B of (Y, σ)[9].

Definition 2.11. [11]Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ).

Then f is said to be an intuitionistic fuzzy irresolute (IF irresolute in short) if $f -1(B) \in IFCS(X)$ for every IFCS B in Y.

Lemma 2.12. [6] Let $g : X \to X \times Y$ be the graph of a function $f : X \to Y$. If A is an IFS of X and B is an IFS of Y, then $g-1(A \times B)(x) = (A \cap f -1(B))(x)$.

3. INTUITIONISTIC FUZZY GSR-CONTINUOUS MAPPINGS

Definition3.1. Let A be an IFS in an IFTS (X, τ). Then the intuitionistic fuzzy gsr interior and intuitionistic fuzzy gsr closure of A are defined as follows.

IFgsrint(A) = \bigcup {G |G is an IFGSROS in X and G \subseteq A},

 $IFgsrcl(A) = \cap \{K \mid K \text{ is an IFGSRCS in } X \text{ and } A \subseteq K\}.$

Proposition 3.2. Let A be an IFS in X, then A \subseteq IFgsrcl(A) \subseteq scl(A) \subseteq cl(A).

Proof: Obvious.

Theorem 3.3. Let A be an IFGSRCS in X, then IFgsrcl(A) = A.

Proof: Let A be an IFGSRCS, IFgsrcl(A) is the smallest IFGSRCS which contains A, which is nothing but A. Thus IFgsrcl(A) = A.

Theorem 3.4. Let A be an IFGSROS in X, then IFgsrint(A) = A.

Proof: Similar to 3.3.

Definition 3.5. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy gsr-continuous (IFGSR continuous in short) if f -1(B) is an IFGSRCS in (X,τ) for every IFCS B of (Y, σ) .

Example 3.6. Let $X = \{a, b\}$, $Y = \{u, v\}$ and Let $Gl = \langle x, (0.3, 0.4), (0.7, 0.5) \rangle$ and $G2 = \langle y, (0.5, 0.5), (0.4, 0.5) \rangle$. Then $\tau = \{0\sim, 1\sim, G1\}$ and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a)= u and f(b) = v. Then f -1(B) is an IFGSRCS in (X, τ) for every IFCS B of (Y, σ) . Therefore f is an IFGSR-continuous.

Example 3.7. Let X = {a, b}, Y = {u, v}.Let G1= $\langle x, (0.3, 0.4), (0.7, 0.5) \rangle$ and G2 = $\langle y, (0.5, 0.6), (0.4, 0.3) \rangle$. Then $\tau = \{0\sim, 1\sim, G1\}$ and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b) = v. Then for IFCS B = $\langle y, (0.4, 0.3), (0.5, 0.6) \rangle$ of (Y, $\sigma),~f$ -1(B) is not an IFGSRCS in (X, τ). Therefore f is not an IFGSR-continuous.

Theorem 3.8. Every IF continuous mapping is an IFGSR -continuous mapping.

Proof: Suppose $f : (X, \tau) \rightarrow (Y, \sigma)$ is an IF continuous mapping and Let B be an IFCS in Y. By assumption, f is an IF continuous mapping, f -1(B) is an IFCS in X. Since every IFCS is an IFGSRCS, f -1(B) is an IFGSRCS in X. Therefore f is an IFGSR -continuous mapping.

The converse of the above theorem need not be true as seen from the following example.

Example 3.9. Let $X = \{a, b\}$, $Y = \{u, v\}$. Let GI = $\langle x, (0.1, 0.3), (0.6, 0.5) \rangle$ and G2 = $\langle x, (0.2, 0.3), (0.5, 0.4) \rangle$. Then $\tau = \{0 \sim, 1 \sim, GI\}$ and $\sigma = \{0 \sim, 1 \sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then for IFCS B = $\langle y, (0.5, 0.4), (0.2, 0.3) \rangle$ of (Y, σ) , f -1(B) is not an IFCS in (X, τ) . Thus, f is not an IF continuous. But f is an IFGSR- continuous.

Theorem 3.10. Every IFG- continuous mapping is an IFGSR -continuous mapping.

Proof: Consider $f : (X, \tau) \rightarrow (Y, \sigma)$ be an IFGcontinuous mapping. Suppose B is an IFCS in Y. By the assumption f is an IFG- continuous mapping, f -1(B) is an IFGCS in X. Since every IFGCS is an IFGSRCS, f -1(B) is an IFGSRCS in X. It follows that f is an IFGSR -continuous mapping.

Example 3.11. Let X = {a, b}, Y = {u, v}. Let G1= $\langle x,(0.3,0.2),(0.7,0.8)\rangle$ and G2= $\langle x,(0.7,0.8),(0.3,0.2)\rangle$. Then $\tau = \{0\sim, 1\sim, G1\}$ and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a)= u and f(b) = v. Then for IFCS B = $\langle y,(0.3,0.2),(0.7,0.8)\rangle$ of (Y, σ) , f -1(B) is not an IFGCS in (X, τ) . Therefore f is not an IFG continuous. But f is an IFGSR continuous.

Theorem 3.12. Every IF α -continuous mapping is an IFGSR- continuous mapping.

Proof: Suppose $f : (X, \tau) \rightarrow (Y, \sigma)$ be an IF α - continuous mapping. If B be an IFCS in Y. By the assumption we have, f as an IF α -continuous mapping, f -1(B) is an IF α CS in X. Since every IF α CS is an IFGSRCS, f -1(B) is an IFGSRCS in X. Therefore f is an IFGSR -continuous mapping.

Example 3.13. Let $X = \{a, b\}$, $Y = \{u, v\}$. Let $Gl=\langle x, (0.2, 0.3), (0.6, 0.5)\rangle$ and $G2 = \langle y, (0.3, 0.3), (0.6, 0.4)\rangle$. Then $\tau = \{0\sim, 1\sim, G1\}$ and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b) = v. Then for IFCS B = $\langle y, (0.6, 0.4), (0.3, 0.3)\rangle$ of (Y, σ) , f -1(B) is not an IF α CS in (X, τ) . Therefore f is not an IF α - continuous. But f is an IFGSR -continuous.

Theorem 3.14. Every IF α G- continuous mapping is an IFGSR- continuous mapping.

Proof: Suppose $f : (X, \tau) \rightarrow (Y, \sigma)$ be an IF α G - continuous mapping. And if B is an IFCS in Y. By the assumption, f is an IF α G-continuous mapping, f - 1(B) is an IF α GCS in X. Since every IF α GCS is an IFGSRCS, f -1(B) is an IFGSRCS in X. Thus f is an IFGSR- continuous mapping.

Example 3.15. Let X = {a, b}, Y = {u, v}. Let G1= $\langle x,(0.3,0.4),(0.7,0.5)\rangle$ and G2 = $\langle y,(0.6,0.4),(0.3,0.5)\rangle$. Then $\tau = \{0\sim, 1\sim, G1\}$ and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a)= u and f(b) = v. Then for IFCS B = $\langle y,(0.3,0.5),(0.6,0.4)\rangle$ of (Y, σ) , f -1(B) is not an IF α GCS in (X, τ) . Therefore f is not an IF α G continuous. But f is an IFGSR- continuous.

Theorem 3.16. Every IFG α -continuous mapping is an IFGSR -continuous mapping.

Proof: Consider $f : (X, \tau) \rightarrow (Y, \sigma)$ be an IFGa continuous mapping and B be an IFCS in Y. By the assumption, f is an IFGa -continuous mapping, f -1(B) is an IFGaCS in X. Since every IFGaCS is an IFGSRCS, f -1(B) is an IFGSRCS in X. Therefore f is an IFGSR -continuous mapping.

Example 3.17. Let $X = \{a, b\}$, $Y = \{u, v\}$. Let $G1=\langle x, (0.3, 0.4), (0.7, 0.5) \rangle$ and $G2 = \langle y, (0.6, 0.4), (0.3, 0.5) \rangle$. Then $\tau = \{0\sim, 1\sim, G1\}$

and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a)= u and f(b) = v. Then for IFCS B = $\langle y, (0.3, 0.5), (0.6, 0.4) \rangle$ of (Y, σ) , f -1(B) is not an IF α GCS in (X, τ) . Therefore f is not an IFG α continuous. But f is an IFGSR -continuous.

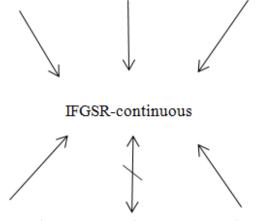
Remark 3.18. An IFGSR -continuous mapping is independent of IFP -continuous mapping.

Example 3.19. Let X = {a, b}, Y = {u, v}. Let Gl= $\langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and G2 = $\langle y, (0.3, 0.4), (0.6, 0.5) \rangle$. Then $\tau = \{0\sim, 1\sim, Gl\}$ and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b) = v. Then for IFCS B = $\langle y, (0.6, 0.5), (0.3, 0.4) \rangle$ of (Y, σ) , f -1(B) is not an IFPCS in (X, τ) . Therefore f is not an IFP continuous. But f is an IFGSR continuous.

Example 3.20. Let X = {a, b}, Y = {u, v}. Let G1= $\langle x, (0.5, 0.4), (0.5, 0.6) \rangle$ and G2 = $\langle y, (0.6, 0.7), (0.4, 0.2) \rangle$. Then $\tau = \{0\sim, 1\sim, G1\}$ and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a)= u and f(b) = v. Then for IFCS B = $\langle y, (0.4, 0.2), (0.6, 0.7) \rangle$ of (Y, σ) , f -1(B) is not an IFGSRCS in (X, τ) . Therefore f is not an IFGSR continuous. But f is an IFP -continuous.

Remark 3.21. We obtain the following diagram from the results we discussed above.

IF continuous IFα continuous IFG continuous



IFGa continuous IFP continuous IFaG continuous

Theorem 3.22. A mapping $f : (X, \tau) \to (Y, \sigma)$ is an IFGSR-continuous if and only if the inverse image of every IFOS in Y is an IFGSROS in X.

Proof: Necessary Part: Let A be an IFOS in Y. This implies Ac is an IFCS in Y. Since f is an IFGSR-continuous, f -1(Ac) is an IFGSRCS in X. Since f -1(Ac) = (f - 1(A))c, f -1(B)) is an IFGSROS in X. Hence the inverse image of an IFOS in Y is an IFGSROS in X.

Sufficient Part: Let A be an IFCS in Y. Then Ac is an IFOS in Y. By hypothesis, f -1(Ac) is an IFGSROS in X. Since f -1(Ac) = (f -1(A))c, f -1(A) is an IFGSRCS in X. Hence f is an IFGSR-continuous function.

Theorem 3.23. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an intuitionistic fuzzy gsr-continuous mapping. Then the following statements hold.

(i) f (IFgsrc1(A)) \subseteq c1(f (A)), for every intuitionistic fuzzy set A in X.

(ii) $IFgsrc1(f-1(B)) \subseteq f-1(c1(B))$ for every intuitionistic fuzzy set B in Y.

Proof: (i) Let $A \subseteq X$. Then c1(f (A)) is an intuitionistic fuzzy closed set in Y. Since f is intuitionistic fuzzy gsr-continuous, f -1(c1(f (A))) is intuitionistic fuzzy gsr-closed in X. Since

 $A \subseteq f -1(f(A)) \subseteq f -1(c1(f(A)))$ and f -1(c1(f(A))) is intuitionistic fuzzy gsr-closed, implies

IFgsrc1(A) \subseteq f -1(c1(f (A))). Hence f(IFgsrc1(A)) \subseteq c1(f (A)).

(ii) Replacing A by f -1(B) in (i), we get f (IFgsrcl(f -1(B))) $\subseteq c1(f(f-1(B))) = c1(B)$

f (IFgsrcl(f - 1(B))) $\subseteq c1(B)$. Hence IFgsrc1(f - 1(B)) $\subseteq f - 1(c1(B))$.

Theorem 3.24. Let $f: X \to Y$ be a mapping and $g: X \to X \times Y$ the graph of the mapping f. Then f is intuitionistic fuzzy gsr-continuous if g is so.

Proof. Let B be an IFOS in Y. Then by Lemma 2.12, $f -1(B) = f -1(1 \sim \times B) = 1 \sim \cap f -1(B) = g -1(1 \sim \times B)$. Since B is an IFOS Y, $1 \sim \times B$ is an IFOS in X $\times Y$. Also since g is intuitionistic fuzzy gsr-continuous implies that $g-1(1 \sim \times B)$ is an IFGSROS in X. Therefore f -1(B) is an IFGSROS in X. Hence f is intuitionistic fuzzy gsr-continuous mapping. Theorem 3.25. If $f: X \to Y$ is intuitionistic fuzzy gsrcontinuous and $g: Y \to Z$ is intuitionistic fuzzy continuous, then $g \circ f: X \to Z$ is intuitionistic fuzzy gsr-continuous.

Proof. Let B be any intuitionistic fuzzy closed set in Z. Since g is intuitionistic fuzzy continuous, g-1(B) is intuitionistic fuzzy closed set in Y. Since f is intuitionistic fuzzy gsr-continuous mapping f -1[g-1(B)] is an intuitionistic fuzzy gsr-closed set in X. ($g \circ f$)-1(B) = f -1(g-1(B)) is intuitionistic fuzzy closed set, for every intuitionistic fuzzy closed B in Z. Hence $g \circ f$ is intuitionistic fuzzy gsr-continuous mapping.

Defnition 3.26. An IFTS (X, τ) is said to be an
(1) intuitionistic fuzzy gsr T*1/2 (in short IFgsr T*1/2)space if every IFGSRCS in
X is an IFCS in X,
(2) intuitionistic fuzzy gsr T**1/2 (in short IFgsr T**1/2)space if every IFGSRCS in
X is an IFGCS in X.

Theorem 3.27. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFGSRS continuous mapping, then f is an IF continuous mapping if X is an IFgsr T*1/2 space.

Proof: Let A be an IFCS in Y. Then f-1(A) is an IFGSRCS in X, by hypothesis. Since X is an IFgsr T*1/2, f-1(A) is an IFCS in X. Hence f is an IF continuous mapping.

Theorem 3.28. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be an IFGSR continuous mapping, then f is an IFG continuous mapping if X is an IFgsr T**1/2 space.

Proof: Let A be an IFCS in Y. Then f -1(A) is an IFGSRCS in X, by hypothesis. Since X is an IFgsr T**1/2, f -1(A) is an IFGCS in X. Hence f is an IFG continuous mapping.

Theorem 3.29. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is a mapping from an IFTS X into an IFTS Y. If X is IFgsr T*1/2 space, then f is intuitionistic fuzzy gsr-continuous iff it is intuitionistic fuzzy continuous.

Proof: Let f be intuitionistic fuzzy gsr-continuous mapping and let A be an intuitionistic fuzzy closed set in Y. Then by definition of intuitionistic fuzzy

185

gsr continuous f-1(A) is intuitionistic fuzzy gsrclosed in X. Since X is IFgsr T*1/2 space, f -1(A) is intuitionistic fuzzy closed set. Hence f is intuitionistic fuzzy continuous.

Conversely, assume that f is intuitionistic fuzzy continuous. Then by f is intuitionistic fuzzy gsr-continuous mapping.

Theorem 3.30. Let X, X1, X2 are IFTS's and pi : X1 \times X2 \rightarrow Xi (i = 1,2) are projections of X1 \times X2 onto Xi. If f : X \rightarrow X1 \times X2 is intuitionistic fuzzy gsr-continuous, then pi \circ f (i = 1,2) is intuitionistic fuzzy gsr-continuous mapping.

Proof: The proof follows from the facts that projections are intuitionistic fuzzy continuous mappings.

4. INTUITIONISTIC FUZZY GSR IRRESOLUTE MAPPINGS

Definition 4.1. A mapping $f: X \rightarrow Y$ from an IFTS X into an IFTS Y is said to be intuitionistic fuzzy gsr irresolute (intuitionistic fuzzy gsr-irresolute) if f -1(B) is an IFGSRCS in X for every IFGSRCS B in Y.

Theorem 4.2. Let $f: X \rightarrow Y$ is a mapping from an IFTS X into an IFTS Y. Then every intuitionistic fuzzy gsr-irresolute mapping is intuitionistic fuzzy gsr-continuous.

Proof: Assume that $f: X \rightarrow Y$ is an intuitionistic fuzzy gsr-irresolute mapping and let B be an IFCS in Y. Since every intuitionistic fuzzy closed set is an intuitionistic fuzzy gsr-closed. Therefore B is an IFGSRCS in Y. Since f is intuitionistic fuzzy gsrirresolute, by definition f -1(B) is IFGSRCS in X. Hence f is intuitionistic fuzzy gsr-continuous.

Example 4.3. Let $X = \{a, b\}$, $Y = \{u, v\}$. Let $GI = \langle x, (0.8, 0.4, 0.4), (0.1, 0.6, 0.6) \rangle$ and $G2 = \langle y, (1, 0.4, 0.4), (0, 0.6, 0.6) \rangle$. Then $\tau = \{0\sim, 1\sim, GI\}$ and $\sigma = \{0\sim, 1\sim, G2\}$ are IFTS on X and Y respectively. Define a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a)= u and f(b) = v. Then f is an IFGSR continuous. We have $B = \langle y, (0, 0.4, 0.2), (0, 0.6, 0.6) \rangle$ is an IFGSRCS in Y but f -1(B) is not an IFGSRCS in X. Therefore f is not an IFGSR irresolute mapping.

Theorem 4.4. Let $f : X \rightarrow Y$ be a mapping from a IFTS X into an IFTS Y. Then the following statements are equivalent.

(i) f is intuitionistic fuzzy gsr-irresolute mapping.

(ii) f -1(B) is an IFGSROS in X, for every IFGSROS B in X.

Proof: Similar to Theorem3.22.

Theorem 4.5. Let $f : X \rightarrow Y$ be a mapping from an IFTS X into an IFTS Y. Then the following

statements are equivalent.

(i) f is an intuitionistic fuzzy gsr-irresolute mapping.

(ii) f -1(B) is an IFGSROS in X for each IFGSROS B in Y .

(iii) IFgsrcl(f -1(B)) $\subseteq f -1(IFgsrcl(B))$, for each IFS B of Y.

(iv) $f -1(IFgsrintB) \subseteq IFgsrint(f -1(B))$, for each IFS B of Y.

Proof: (i) \Rightarrow (ii) It can be proved by using the complement and Definition 4.1.

(ii) \Rightarrow (iii) Let B be an IFS in Y. Since B \subseteq IFgsrcl(B), f-1(B) = f-1(IFgsrcl(B)). Since IFgsrcl(B) is an

IFSGCS in Y, by our assumption, $f -1(IFgsrcl(B)) \subseteq f -1(IFgsrcl(B))$.

(iii) \Rightarrow (iv) By taking complement we get the result.

 $(iv) \Rightarrow (i)$ Let B be any IFGSROS in Y. Then IFgsrint(B) = B. By our assumption we have f - 1(B) =

 $f -1(IFgsrint(B)) \subseteq IFgsrint(f -1(B))$, so f -1(B) is an IFGSROS in X. Hence f is intuitionistic fuzzy gsrirresolute mapping.

Theorem 4.6. If a mapping $f: X \to Y$ is intuitionistic fuzzy gsr-irresolute mapping, then

 $f(IFgsrcl(B)) \subseteq scl(f(B))$ for every IFS B of X.

Proof. Let B be an IFS of X. Since scl(f (B)) is an IFGSRCS in Y, by our assumption f-1(scl)

(f (B))) is an IFGSRCS in X. Furthermore $B \subseteq f -1(f(B)) \subseteq f -1(scl(f(B)))$ and hence IFgsrcl(B) $\subseteq f -1(scl(f(B)))$ and consequently f (IFgsrcl(B)) $\subseteq f(f -1(scl(f(B)))) \subseteq scl(f(B))$.

Theorem 4.7. Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are intuitionistic fuzzy gsr-irresolute mappings, where X,Y ,Z are IFTS. Then $g \circ f$ is an intuitionistic fuzzy gsr-irresolute mapping.

Proof. Let B be an intuitionistic fuzzy gsr-closed set in Z. Since g is an intuitionistic fuzzy gsr irresolute mapping, g-1(B) is an intuitionistic fuzzy gsr-closed set in Y. Also since f is intuitionistic fuzzy gsr irresolute mapping, f -1(g-1(B)) is an intuitionistic fuzzy gsr-closed set in X. (g \circ f)-1(B) = f -1(g-1(B)) for each B in Z. Hence (g \circ f)-1(B) is an intuitionistic fuzzy gsr-closed set in X. Therefore g \circ f is an intuitionistic fuzzy gsr irresolute mapping.

Theorem 4.8. Let (X, τ) , (Y, σ) , (Z, δ) be any intuitionistic fuzzy topological spaces. Let $f :(X, \tau) \rightarrow (Y, \sigma)$ be intuitionistic fuzzy gsr irresolute and g : $(Y, \sigma) \rightarrow (Z, \delta)$ is intuitionistic fuzzy continuous, then $g \circ f$ is intuitionistic fuzzy gsr continuous.

Proof. Let B be any intuitionistic fuzzy closed set in Z. Since g is intuitionistic fuzzy continuous,

g-1(B) is IFCS in Y. Since every IFCS is an IFGSRCS. Therefore f -1(B) is an IFGSRCS in Y. But since f is an intuitionistic fuzzy gsr- irresolute mapping f -1(g-1(B)) is an IFGSRCS in X. (g \circ f)-1(B)= f -1(g-1(B)) is IFGSRCS in X. Hence g \circ f is intuitionistic fuzzy gsr-continuous.

Theorem 4.9. Let f: $X \rightarrow Y$ be intuitionistic fuzzy gsrirresolute mapping. Then f is intuitionistic fuzzy irresolute mapping if (X, τ) is intuitionistic fuzzy gsr $T^* 1/2$ space.

Proof. Let B be an IFCS in Y. Then B is an IFGSRCS in Y. Since f is intuitionistic fuzzy gsr-irresolute, f -1(B) is an IFGSRCS in X. But (X, τ) is intuitionistic fuzzy gsr T*1/2 space implies f -1(B) is an IFCS in X. Hence f is intuitionistic fuzzy irresolute.

REFERENCES

- Anitha.S, Mohana K., IFgsr-closed sets in intuitionistic fuzzy topological spaces, Internat.J. of Innovative research in technology, Volume 5, Issue 2(2018).
- [2] Atanassov.K.T, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20(1986), 87-96.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1986), 182-190.
- [4] Coker.D, An introduction to Intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88(1997), 81-89.

- [5] Gurcay. H., Coker. D.,and Es. A. Haydar., On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. of Fuzzy Math., 5(1997), 365-378.
- [6] I.M. Hanafy, Completely continuous functions in Intuitionistic fuzzy topological spaces, Czechoslovak Mathematical Journal, 53(2003), 793–803.
- [7] M.Jeyaraman, A.Yuvarani andO.Ravi. Intuitionistic fuzzy _-generalized semi Continuous and irresolute mappings, International Journal of Analysis and Applications, 3(2)(2013), 93-103.
- [8] Joung Kon Jeon, Young Bae Jun, and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19(2005), 3091-3101.
- [9] Kalamani. D, Sakthivel. K and Gowri. C. S., Generalized alpha closed sets in intuitionistic fuzzy topological spaces, Applied Mathematical Sciences, 6(2012), 4691-4700.
- [10] Sakthivel, K., 2010, Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and Intuitionistic Alpha Generalized Irresolute Mappings, Applied Mathematical Sciences. Vol. 4, no. 37. pp. 1831 – 1842.
- [11] Santhi. R and Sakthivel. K., Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.
- [12] R. Santhi and K. Arun Prakash, Intuitionistic fuzzy semi-generalized irresolute mappings, Tamkang Journal of Mathematics 42(2), (2011) 119-134.
- [13] Thakur. S. S and Rekha Chaturvedi., Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(2008), 559-572.
- [14] L.A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.