Derivation of Intensity Duration Frequency Curves Using Short Duration Rainfall for Yermarus Raingauge Station Raichur District Karnataka

Mohammed Badiuddin Parvez¹, M .Inayathulla²

¹Research Scholar, Department of Civil Engineering, UVCE, Bangalore University, Bangalore, Karnataka, India

²Professor, Department of Civil Engineering, UVCE, Bangalore University, Bangalore, Karnataka, India

Abstract- The estimation of rainfall intensity is commonly required for the design of hydraulic and water resources engineering control structures. The intensity-duration-frequency (IDF) relationship is a mathematical relationship between the rainfall intensity, the duration and the return period. The present study aimed the derivation of IDF curves of Yermarus Raingauge Station of Raichur District with 19 years of rainfall data (1998 to 2016). The Normal Distribution, Log Normal Distribution, Gumbel distribution, Pearson Type III Distribution and Log Pearsons Type III Distribution techniques are used to Find the rainfall intensity values of 2, 5, 10, 15, 30, 60, 120, 720, 1440 minutes of rainfall duration with different return period. Chi Square test was conducted to find the goodness of fit the short duration IDF using daily rainfall data are presented, which is input for water resources projects.

Index terms- Gumbel Distribution, Intensity Duration Frequency (IDF), Log Normal Distribution, Normal Distribution, Pearson Type III Distribution, Log Pearson Type III Distribution Rainfall Duration, Return Period, Rainfall Intensity

I. INTRODUCTION

IDF stands for Intensity-Duration-Frequency. Rainfall intensity is defined as the ratio of the total amount of rain (rainfall depth) falling during a given period to the duration of the period It is expressed in depth units per unit time, usually as mm per hour. The period of time over which rainfall is measured is called duration. The number of times, during a specified period of years, that precipitation of a certain magnitude or greater occurs or will occur at a station is called frequency (FAO, 2012). The IDF-relationships give an idea about the frequency or return period of a mean rainfall intensity or rainfall volume that can be expected within a certain period, i.e. the storm duration. In this sense the storm duration is an artificial parameter that can comprise any part of a rainfall event. Runoff occurs when precipitation moves across the land surface, some of which eventually reaches natural or artificial streams and lakes. Runoff often transports contaminants to these water bodies, reducing their usefulness as a source of water (National Association of RC and D Councils, 2001). The relation between rainfall and runoff is influenced by various storm and basin characteristics. Because of these complexities and the frequent paucity of adequate runoff data, many approximate formulae have been developed to relate rainfall and runoff. The earliest of these formulae were usually empirical statements.

The scope of this study was to predict rainfall depth and intensity for Yermarus station using the data from 1998 to 2016 by using Normal, Log Normal, Pearson Type III, Log Pearson Type III and Gumbel distribution. For the distribution giving the best results, short duration IDF curves and equations were derived for the station having maximum rainfall depth for various short durations and standard return periods,

II MATERIALS AND METHODS

A Study Area

The Study area Yermarus Station of Raichur District, Karnataka is located It is located 7 Km towards North from District headquarters Raichur Karnataka. The average mean daily temperature varies from 24 to 410C respectively.

Fig 1 Location Map of Study Area

Fig 2 Methodology adopted for IDF curves

IJIRT 148410 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

III RESULTS AND DISCUSSIONS

A Estimation of Short Duration Rainfall

Indian Meteorological Department (IMD) use an empirical reduction formula (Equation 3.1) for estimation of various duration like 1-hr, 2-hr, 3-hr, 5hr, 8-hr rainfall values from annual maximum values. Chowdhury et al. (2007), used IMD empirical reduction formula to estimate the short duration rainfall from daily rainfall data in Sylhet city and found that this formula give the best estimation of short duration rainfall. (Rashid et al, 2012)

 $P_t=P_24 (t/24)^{(1/3)} (3.1)$

where, Pt is the required rainfall depth in mm at t-hr duration,

P24 is the daily rainfall in mm and t is the duration of rainfall for which the rainfall depth is required in hr.

Short duration rainfall by using IMD empirical formula for Yermarus station is tabulated in Table 1.

Year	Rainfall	($t \frac{1}{2}$						
	(mm)	$P_{t} = P_{24} \left(\frac{1}{2} \right)$	$\left(\frac{1}{24}\right)^3$ in mm	where, time t	is in hours				
Durati	on in	5	10	15	30	60	120	720	1440
Minut	es								
1998	113.4	17.17177	21.635114	24.766006	31.203213	39.313584	49.532012	90.00564	113.4
1999	84.1	12.73497	16.045089	18.367029	23.141007	29.155842	36.734059	66.75021	84.1
2000	63.8	9.661012	12.172136	13.933608	17.555247	22.118225	27.867217	50.63809	63.8
2001	75.9	11.49327	14.480645	16.576189	20.88469	26.31306	33.152379	60.24187	75.9
2002	60.9	9.221875	11.618857	13.300263	16.757281	21.112851	26.600525	48.33636	60.9
2003	57	8.631311	10.874793	12.448522	15.684154	19.760796	24.897043	45.24093	57
2004	98.8	14.96094	18.84964	21.577437	27.185868	34.252047	43.154875	78.41761	98.8
2005	63.4	9.600441	12.095822	13.84625	17.445182	21.979552	27.692501	50.32061	63.4
2006	116	17.56548	22.131157	25.333833	31.91863	40.214954	50.667667	92.06926	116
2007	101.9	15.43036	19.441077	22.254462	28.038866	35.326757	44.508925	80.87808	101.9
2008	80.4	12.17469	15.339181	17.558967	22.122913	27.873123	35.117935	63.81352	80.4
2009	265.5	40.20374	50.653639	57.983903	73.05514	92.043709	115.96781	210.7275	265.5
2010	65.8	9.963865	12.553708	14.370399	18.105568	22.811586	28.740797	52.22549	65.8
2011	103	15.59693	19.650941	22.494697	28.341542	35.708106	44.989394	81.75115	103
2012	29.5	4.467082	5.6281821	6.4426559	8.1172378	10.227079	12.885312	23.41417	29.5
2013	64.7	9.797295	12.343843	14.130164	17.802891	22.430237	28.260328	51.35242	64.7
2014	85.5	12.94697	16.312189	18.672782	23.526232	29.641194	37.345565	67.86139	85.5
2015	74.1	11.2207	14.13723	16.183078	20.389401	25.689035	32.366156	58.81321	74.1
2016	68.3	10.34243	13.030672	14.916386	18.793469	23.678288	29.832773	54.20975	68.3

Table1 Short duration rainfall for Yermarus

B Normal Distribution

	Table 2 Estimation of maximum rainfall intensity for various return period by Normal Distribution For <u>Yarmarus Raingauge</u> Station													
Duratio	Return perio	od 2 <u>yrs</u>	Return perio	od 5 yrs.	Return perio	od 10 yrs	Return perio	od 25 yrs.	Return perio	d 50 yrs	Return perio	od 75 <u>yrs</u>	Return perio	d 100 yrs
n in	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall
minutes	Depth(mm	Intensit	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity
)	у)	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr)
		(mm/hr)												
	13.3255	7.2816		204.493		207.290		208.870		209.380		209.548		209.631
5			17.04113	6	17.27425	9	17.40586	3	17.44836	3	17.462348	2	17.46926	1
	16.7892	9.1742		128.823		130.585		131.580		131.901		132.007		132.059
10			21.47052	1	21.76423	4	21.93005	3	21.9836	6	22.001224	3	22.00994	6
	19.2188	10.5018		98.3103		99.6552		100.414		100.659		100.740		100.780
15			24.5776	9	24.91381	3	25.10362	5	25.16492	7	25.185098	4	25.19507	3
	24.2141	13.2315		61.9316		62.7788		63.2571		63.4116		63.4624		
30			30.96583	6	31.38943	6	31.62858	6	31.70581	2	31.731235	7	31.7438	63.4876
	30.5079	16.6706						39.8495		39.9468		39.9788		39.9946
60			39.0145	39.0145	39.5482	39.5482	39.84952	2	39.94682	2	39.97885	5	39.99468	8
	38.4375	21.0037				24.9138		25.1036		25.1649				25.1950
120			49.15519	24.5776	49.82761	1	50.20724	2	50.32984	2	50.370195	25.1851	50.39014	7
	69.8456	38.1662				7.54523		7.60271		7.62128		7.62739		7.63041
720			89.32092	7.44341	90.54278	2	91.23262	8	91.45539	2	91.528719	3	91.56496	3
	88.0000	48.0864		4.68905		4.75319		4.78941		4.80110		4.80495		4.80685
1440			112.5373	4	114.0768	8	114.9459	2	115.2266	7	115.31896	7	115.3646	9

© July 2019 | IJIRT | Volume 6 Issue 2 | ISSN: 2349-6002

C Log Normal Distribution

	Table 3 Estimation of maximum rainfall intensity for various return period by Log Normal Distribution For <u>Yermarus Raingauge</u> Station													
Duratio	Return per	iod 2 yrs	Return perio	d 5 yrs.	Return period 10 yrs.		Return perio	Return period 25 yrs		d 50 yrs	Return perio	d 75 yrs.	Return perio	d 100 yrs.
n in	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall
minutes	Depth(m	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity
	m)	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr)
	13.3255	7.2816		203.954		207.678		209.788		210.471		210.695		210.807
5			16.99618	2	17.30654	5	17.48238	6	17.53926	1	17.557994	9	17.56725	1
	16.7892	9.1742		128.483		130.829		132.158		132.588		132.730		132.800
10			21.41389	4	21.80492	5	22.02647	8	22.09813	8	22.121731	4	22.1334	4
	19.2188	10.5018		98.0510		99.8415				101.184		101.292		101.345
15			24.51277	9	24.96039	6	25.21399	100.856	25.29602	1	25.323044	2	25.3364	6
	24.2141	13.2315		61.7683		62.8962		63.5352		63.7419		63.8100		63.8437
30			30.88416	1	31.44812	4	31.76764	8	31.87099	9	31.905036	7	31.92186	2
	30.5079	16.6706				39.6221		40.0247		40.1549		40.1978		40.2190
60			38.9116	38.9116	39.62215	5	40.02472	2	40.15494	4	40.197826	3	40.21903	3
	38.4375	21.0037		24.5127		24.9603		25.2139		25.2960		25.3230		
120			49.02554	7	49.92078	9	50.42799	9	50.59205	2	50.646087	4	50.6728	25.3364
	69.8456	38.1662		7.42377				7.63614		7.66098		7.66917		7.67321
720			89.08533	7	90.71208	7.55934	91.63373	4	91.93186	8	92.030048	1	92.07858	5
	88.0000	48.0864		4.67668		4.76208		4.81046				4.83127		4.83382
1440			112.2405	7	114.2901	6	115.4513	9	115.8269	4.82612	115.95059	5	116.0117	3

D Gumbel's Distribution

	Table 4 Estimation of maximum rainfall intensity for various return period by Gumbal's Distribution For Yermanus Raingauge Station													
Duratio	Return per	iod 2 yrs	Return perio	od 5 yrs.	Return period 10 yrs		Return perio	Return period 25 yrs		od 50 <u>yrs</u>	Return perio	od 75 <u>yrs</u>	Return perio	d 100 yrs
n in	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall
minutes	Depth(m	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity
	m)	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr)
	13.3255	7.2816		143.941		145.298		146.062		146.308		146.389		146.429
5			11.99513	6	12.10822	6	12.17185	2	12.19237	4	12.199118	4	12.20245	4
	16.7892	9.1742		90.6777		91.5325						92.2197		92.2449
10			15.11295	1	15.25543	5	15.3356	92.0136	15.36145	92.1687	15.369956	3	15.37416	5
	19.2188	10.5018				69.8523		70.2194		70.3378		70.3767		70.3960
15			17.3	69.2	17.46309	6	17.55487	7	17.58446	4	17.594196	8	17.59901	3
	24.2141	13.2315		43.5932		44.0042				44.3100		44.3345		44.3467
30			21.79663	7	22.00212	3	22.11775	44.2355	22.15503	6	22.167297	9	22.17336	2
	30.5079	16.6706		27.4620		27.7209		27.8666		27.9135		27.9290		27.9366
60			27.46204	4	27.72093	3	27.86662	2	27.91359	9	27.929045	4	27.93668	8
	38.4375	21.0037				17.4630		17.5548		17.5844				17.5990
120			34.6	17.3	34.92618	9	35.10974	7	35.16892	6	35.188391	17.5942	35.19801	1
	69.8456	38.1662		5.23936		5.28875		5.31655		5.32551		5.32846		5.32991
720			62.87237	4	63.46509	7	63.79862	2	63.90617	4	63.94155	3	63.95903	9
	88.0000	48.0864		3.30059		3.33170		3.34921		3.35486		3.35672		3.35763
1440			79.21422	3	79.961	8	80.38123	8	80.51672	4	80.561305	1	80.58333	9

E Pearson Type III Distribution

	Table 5 Estimation of maximum rainfall intensity for various return period by Pearson Type III Distribution For Yermanis Raingauge Station													
Duratio	Return per	iod 2 yrs	Return perio	d 5 ygg,	Return period 10 yrs		Return perio	d 25 yrs	Return perio	od 50 ygg	Return perio	od 75 <u>yrs</u>	Return perio	d 100 yrs
n in	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall
minutes	Depth(m	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity
	m)	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr)
	13.3255	7.2816		184.429		187.070		188.562		189.044		189.203		189.281
5			15.36912	4	15.58923	7	15.71356	7	15.75372	6	15.766939	3	15.77347	7
	16.7892	9.1742		118.004		119.906		120.981		121.329		121.443		121.500
10			19.66744	7	19.98437	2	20.16363	8	20.22158	5	20.240654	9	20.25008	5
	19.2188	10.5018		90.8792		92.4676		93.3670		93.6579		93.7537		93.8010
15			22.71982	8	23.11692	9	23.34177	8	23.41448	2	23.438427	1	23.45026	5
	24.2141	13.2315		56.2500		57.0980				57.7322		57.7832		57.8084
30			28.12502	4	28.54905	9	28.7887	57.5774	28.86613	6	28.891622	4	28.90422	4
	30.5079	16.6706		35.1865		35.6904		35.9751		36.0670		36.0973		36.1122
60			35.18654	4	35.69047	7	35.97512	2	36.06706	6	36.097328	3	36.11229	9
	38.4375	21.0037		22.1661		22.4835				22.7208		22.7398		22.7493
120			44.33226	3	44.96718	9	45.32581	22.6629	45.44165	2	45.479783	9	45.49863	2
	69.8456	38.1662		6.71308		6.80923		6.86353		6.88107		6.88685		6.88970
720			80.55707	9	81.71078	2	82.36246	8	82.57295	9	82.642251	4	82.6765	8
	88.0000	48.0864		4.22898		4.28954		4.32375		4.33480		4.33844		4.34024
1440			101.4955	1	102.9491	7	103.7702	8	104.0354	8	104.12271	6	104.1659	4

F Log Pearsons Type III Distribution

© July 2019 | IJIRT | Volume 6 Issue 2 | ISSN: 2349-6002

	Table 6 Estimation of maximum rainfall intensity for various return period by Log Pearson Type III Distribution For Yermarus, Raingauge Station													
Duratio	Return perio	d 2 yrs	Return perio	d 5 yrs	Return period 10 yrs Retu		Return perio	Return period 25 yrs		d 50 yrs	Return perio	d 75 yrs	Return period 100 yrs	
n in	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall
minutes	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity	Depth(mm	Intensity
)	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr))	(mm/hr)
		143.386		215.702		263.053		323.283						412.318
5	11.94884	1	17.97517	1	21.92114	7	26.94032	8	30.66383	367.966	32.82808	393.937	34.35985	3
		90.3277		135.884		165.713		203.656		231.804		248.165		259.744
10	15.05462	4	22.64734	1	27.61896	8	33.94274	5	38.63409	5	41.36087	2	43.29079	7
		68.9329		103.698		126.463		155.418		176.899		189.385		198.222
15	17.23323	2	25.92472	9	31.61579	2	38.85471	9	44.22496	8	47.34635	4	49.55555	2
		43.4250				79.6668		97.9077		111.439		119.305		124.872
30	21.71251	2	32.6631	65.3262	39.8334	1	48.95387	5	55.71996	9	59.65266	3	62.43608	2
		27.3560		41.1529		50.1869		61.6780		70.2027		75.1576		78.6645
60	27.35605	5	41.15293	3	50.18695	5	61.67802	2	70.20275	5	75.15765	5	78.66453	3
		17.2332		25.9247		31.6157		38.8547		44.2249		47.3463		49.5555
120	34.46646	3	51.84944	2	63.23159	9	77.70943	1	88.44992	6	94.6927	5	99.1111	5
		5.21914				9.57495		11.7672		13.3936				15.0080
720	62.62971	3	94.21668	7.85139	114.8994	2	141.2074	8	160.7242	8	172.0681	14.339	180.0968	7
		3.28785		4.94606		6.03184		7.41292				9.03300		9.45449
1440	78.90849	4	118.7056	6	144.7642	2	177.9102	4	202.4998	8.43749	216.7922	7	226.9078	1

G Chi-Square Test

To identify a specific theoretical distribution for the available data it is important to do a test. The aim of the test is to find how good a fit is between the observed and the predicted data. Chi-square is one of the most widely used tests to find the best fit theoretical distribution of any specific dataset which is represented by Equation 3.2.

 $\chi 2 = \sum_{i=1}^{n} \sum_{j=1}^{n} (O_i - E_i)^2 / E_i$ (3.2) where, Oi and Ei represent the observed and expected frequencies respectively. If the observed frequencies are close to the corresponding expected frequencies, the $\chi 2$ value will be small, indicating a good fit; otherwise it will be a poor fit. (Rashid et al, 2012)

Table 7 :	: Chi –Square Te	est							
Durati	Observed	NORMAL	NT	LOC	-NORMAL DIS	STRIBUTION	GUMBELS DISTRIBUTION		
on in	values	DISTRIBUTIO	IN		r	r			
minute		Expected	Chi-squar	e	Expected	Chi-square	Expected	Chi-square	
s		values	values		values	values	values	values	
5	13.32553325	19.19288241	1.7936746	529	17.65889708	1.063375703	26.38436048	6.463411112	
10	16.78915342	24.18156492	2.2598929	942	22.24886064	1.339772111	33.24227764	8.143404001	
15	19.21877022	27.68096332	2.5869299	912	25.46857068	1.533655195	38.0528833	9.321864328	
30	24.21413316	34.87582837	3.2593274	451	32.08838831	1.932284463	47.94362868	11.74481309	
60	30.50789607	43.9407903	4.1064952	264	40.42883589	2.43452587	60.40518698	14.79753724	
120	38.43754045	55.36192664	5.1738598	324	50.93714136	3.06731039	76.1057666	18.64372866	
720	69.84564629	100.599297	9.4015272	231	92.5589285	5.573672874	138.2933557	33.87790327	
1440	88	126.7471718	11.845182	206	116.6169424	7.022387779	174.2387099	42.68348345	

Table 7 Contd										
Duration	in Observed v	alues PEARSON TYPE	III	LOG PEARSON T	LOG PEARSON TYPE III					
minutes		Expected values	Chi-square values	Expected values	Chi-square values					
5	13.3255332	24.59217347	5.161690243	25.2391913	5.62360523					
10	16.7891534	2 30.98425898	6.503335197	31.79945201	7.08531278					
15	19.2187702	35.4680989	7.444455461	36.40126135	8.11065305					
30	24.2141331	6 44.68700441	9.37942614	45.86271542	10.2187825					
60	30.5078960	56.30209751	11.81733643	57.78340056	12.8748592					
120	38.4375404	5 70.93619781	14.88891092	72.8025227	16.2213061					
720	69.8456462	9 128.8996258	27.05494664	132.2909632	29.4760693					
1440	88	162.4033519	34.08709678	166.6761693	37.1375202					

© July 2019 | IJIRT | Volume 6 Issue 2 | ISSN: 2349-6002

Fig 3: IDF for Yermarus Raingauge Station by Log Normal Distribution

Table 8 : Rainfall IDF Empirical Equation For RespectiveReturn Period Using Log Normal Distribution									
Return Period (T)	$i = x * (t_d)^{-y}$								
years	Х	Y							
2	584.26	0.667							
5	613.86	0.667							
10	622.65	0.667							
25	627.61	0.667							
50	629.21	0.667							
75	629.74	0.667							
100	630.00	0.667							

IV CONCLUSIONS

Among the various available probability distribution functions Log_ Normal distribution had the best approximation of rainfall intensity for various return periods. Study showed that i = x * (td)-y was the best form of IDF empirical equation for Yermarus Raingauge Station Raichur It has been tabulated in Table 8. These IDF equations will help to estimate the rainfall intensity for any specific return period in Yermarus Raingauge Station Raichur in a short time and more easily. The results computed can be utilized for developing surface drain network for recharging ground water.

REFERENCES

- Bell F. C., 1969, "Generalized rainfall-durationfrequency relationship", ASCE J. Hydraulic Eng., 95, 311–327.
- [2] Bernard, M. M., (1932), "Formulas for rainfall intensities of long durations". Trans. ASCE 6:592 - 624.
- [3] Bhaskar, N. R.; Parida, B. P.; Nayak, A. K. 1997. Flood Estimation for Ungauged Catchments Using the GIUH. Journal of Water Resources Planning and Management, ASCE 123(4): 228-238.
- [4] Chow V.T., D.R. Maidment and L.W.Mays, 1988, "Applied Hydrology", McGraw- Hill, Chapter 10 – Probability, Risk and Uncertainty Analysis for Hydrologic and Hydraulic Design: 361 – 398.
- [5] M. M. Rashid, 1 S. B. Faruque and 2 J. B. Alam 2012, "Modeling of Short Duration Rainfall Intensity Duration Frequency (SDRIDF) Equation for Sylhet City in Bangladesh.
- [6] Mohammed Badiuddin Parvez, M Inayathulla "Generation Of Intensity Duration Frequency Curves For Different Return Period Using Short Duration Rainfall For Manvi Taluk Raichur District Karnataka", International Research Journal of Engineering and Management Studies (IRJEMS), Volume: 03 Issue: 04 | April -2019.
- [7] Mohammed Badiuddin Parvez, M Inayathulla "Prioritization Of Subwatersheds of Cauvery Region Based on Morphometric Analysis Using GIS", International Journal for Research in Engineering Application & Management (IJREAM), Volume: 05 Issue: 01, April -2019. 4.
- [8] Mohammed Badiuddin Parvez, M Inayathulla "Modelling of Short Duration Isopluvial Map For Raichur District Karnataka", International Journal for Science and Advance Research in Technology (IJSART), Volume: 05 Issue: 4, April -2019.
- [9] Mohammed Badiuddin Parvez, and M
 Inayathulla. "Morphometry, Hypsometry
 Analysis and Runoff Estimation of Aam Talab
 Watershed Raichur, Karnataka" International
 Journal Of Advance Research And Innovative
 Ideas In Education Volume 5 Issue 3 2019 Page
 1713-1727
- [10] V.T.Chow, "Handbook of Applied Hydrology," McGraw-Hill Book.