Experimental Study on Optimization of Cement by Using Ground Granulated Blast Furnace Slag (GGBS) and M-Sand in High Performance Concrete

B. Rajalakshmi

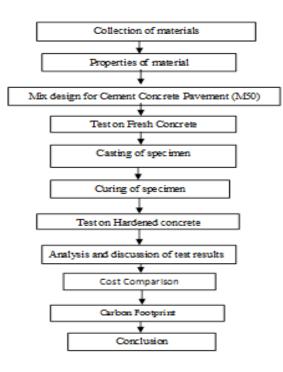
Final Year, M. Tech., Structural Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, India

Abstract- To reduce the carbon footprint on the environment and to reduce the optimum use of OPC by replacing with GGBS, an industrial waste with cost benefit. The OPC partially replaced with GGBS and the properties were observed using M50 concrete with various percentages of cement viz.. 40%, 45%, 50%, 55%, 60%, 65% & 70% as per Cl 18.4. of IRC 112.2011. Since River sand is becoming scarce nowadays, the use of manufactured stone (M-Sand) in concrete has become unavoidable. Hence properties of concrete using M-Sand with various percentages of GGBS replacement were tested and the results were compared. The 7th and 28th day test results indicate that the workability of concrete viz 40%, 45%, 50%, 55%, 60%, 65% & 70% replacement of cement by **GGBS** were excellent in High Performance Concrete (M50) and it is increased from 25 % to 68% compared to conventional concrete. The flexural strength and compressive strength were analysed in this study.

Index terms- HPC – High Performance Concrete, GGBS – Ground Granulated Blast Furnace Slag, M-Sand – Manufactured Sand, Tensile strength, flexural strength & workability

I.INTRODUCTION

Concrete plays a vital role in the infrastructure development. Rapid increase in the consumption of concrete, the demand for cement has increased The industry manifold. cement is facing unprecedented challenges such as CO2 emissions and the need for alternative material is unavoidable. One ton of CO2 is released into the atmosphere for everyone ton of ordinary Portland cement (OPC) produced. This adds to the greenhouse gases which leads to global warming climate changes and other environmental degradations. Pressure over the construction industry and concrete technologists to reduce the consumption of cement by incorporating supplementary Cementitious materials and chemical admixtures in concrete. The concrete thus developed keeping the environment in mind is known as sustainable concrete.


GGBS (Ground Granulated Blast Furnace Slag) is a byproduct during the manufacture of iron in blast furnace. It is available in large quantities and occupies a lot of space. It is glassy and when dried granulated and ground it exhibits chemical properties similar to cement. This facilitates the use of GGBS as partial replacement of cement. Hence GGBS replaced cement can be used in combination with M-Sand comfortably. The other advantages are that the GGBS replaced cement produces low heat, protects concrete from chloride and sulphate attack.

The aim of this research is to study the properties of M50 concrete with optimum partial replacement of cement with GGBS. Studies have been conducted by using GGBS and M-Sand and the results are compared to arrive at the right proportion.

II. EXPERIMENTAL PROGRAM

- A. Objectives
- To study the strength parameters of the GGBS.
- To study the alternate material for Cement.
- To identify the potential use of GGBS
- To reduce carbon footprint using GGBS
- B. Methodology

© May 2020 | IJIRT | Volume 6 Issue 12 | ISSN: 2349-6002

III. MATERIALS USED

Cement

Ordinary Portland cement of 53 grade was used for this research. The physical, chemical properties and compressive strength of the cement were tested and are given in the Tables 1, 2 and 3. The cement content used for all the concrete mixes was 450 kg/m3.

Physical Properties	Values	Requirement as per IS 269-2015	
Specific Gravity	3.15	_	
Specific surface (Air	270.80	Min. 225 m ² /kg	
permeability test)	m²/kg		
Initial Setting Time	120 minutes	Min. 30 mins	
Final Setting Time	265 minutes	Max. 600 mins	
Soundness (Le	1	Max. 10 mm	
Chatelier test)	1 mm		
Table 2: Chamical composition of Comont			

Т	ab	le	2:	Chemical	composition	of	Cement
---	----	----	----	----------	-------------	----	--------

Constituents	Cement Clinker
Cao	60-62%
Sio2	17-24%
Al2o3	3-7%
Fe2o3	0.5-0.6%
Mgo	0.1-0.4%

Table 3: Compressive Strength of Cement

Age of Cement	Compressive	Requirement as
mortar cube	Strength	per IS 269-2015

3 days	24.01 MPa	Min. 23 MPa
7 days	34.35 MPa	Min. 33 MPa
28 days	45.69 MPa	Min. 43 MPa

Fine Aggregate

Manufactured Sand (M-Sand) was used as fine aggregate for the research study. The specific gravity of M-Sand was 2.540. The sieve analysis test was conducted on fine aggregate. The fine aggregate fall in the grading limits for Zone - II as per IS: 383 as given in Table 4.

Sieve size	Percentage	Percentage passing limits
(mm)	Passing	for Zone-II as per
	(%)	IS:383:2016
4.75 mm	100.00	90 - 100
2.36 mm	93.47	75 – 100
1.18 mm	66.60	55 - 90
600 microns	49.14	35 - 59
300micron	27.62	8 - 30
150 microns	7.58	0 – 10

Coarse Aggregate

Graded aggregates of manufactured hard blue granite of ISS 20 mm was used as coarse aggregate. The specific gravity of coarse aggregate was 2.674. The sieve analysis test was conducted on the coarse aggregate. The coarse aggregate fall in the grading limits as per IS 383-2016 as given in Table 5.

Table 5: Sieve analysis of coarse aggregate

Sieve size	Percentage	Percentage passing limits
(mm)	Passing (%)	as per IS 383-2016 (%)
40 mm	100	100
20 mm	97.33	90-100
10 mm	29.52	25-55
4.75 mm	1.25	0-10

Other Physical tests for coarse aggregate such as Water absorption, Impact test and Crushing Strength test were conducted, and the results are given in Table 6.

Table 6: Physical properties of coarse aggregate

* 1		00 0
Physical	Values	Max.Limits as per IS:
properties		383:2016
Water absorption	0.40 %	2%
Impact value	17.50 %	30 %
Crushing value	21.50 %	30 %

Water

Potable water was used in the preparation of concrete mixes. Water - Cement ratio for all the mix

proportions was fixed to achieve adequate workability (slump) of fresh concrete.

GGBS:

Ground granulated blast furnace slag (GGBS) is one of the "greenest" of construction materials. Its only raw material is a very specific slag that is a byproduct from the blast furnaces manufacturing iron. The physical properties and chemical composition of GGBS were tested and given in table 7 and 8. Table 7: Physical properties of GGBS

Physical Properties	Values	Requirement as per IS 12089
Specific Gravity	2.89	-
Specific surface (Air	320.00	Minimum 300 m ² /kg
permeability test)	m²/kg	1.00D0

Table 8: Chemical composition of GGBS

Constituents	Cement Clinker
Cao	34-43%
Sio2	27-38%
Al2o3	7-12%
Fe2o3	0.2-1.6%
Mgo	7-15%

Chemical Admixture:

To impart additional workability, Conplast SP430 super plasticizing chemical admixture was used in concrete for workability. Based on trial & error method, the optimum percentage of Super Plasticizer was found at 0.8% by weight of cement was used as given in Table No. 9.

Chemical Admixtures (Conplast SP	Properties as per
430)	IS 9103
Specific Gravity	1.20
pH	6.73
Chloride content	0.2%

IV. MIX DESIGN

Concrete mix design was done as per IS 10262-2009 for M50 grade. The quantities of ingredient materials and mix proportions as per design are as under Table No.10

Table No. 10 Details of concrete mix proportion adopted for using M-Sand

Cement	F. A	C.A	Water
450 kg/m ³	621 kg/m ³	1235 kg/m ³	165 kg/m ³
1	1.38	2.74	0.33

Specimen Preparation

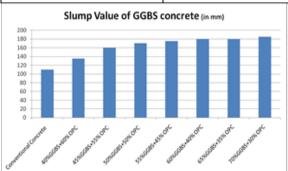
In order to compare the properties of GGBS Concrete, cubes and beams were casted and compared with using conventional concrete as detailed below:

Table No.11 Details of	Specimens
------------------------	-----------

Types of Concrete	Cube	Beam
	(150x150	(150x150x7
	x 150mm)	00mm)
Conventional Concrete	6	3
40% GGBS + 60% OPC	6	3
45% GGBS + 55% OPC	6	3
50% GGBS + 50% OPC	6	3
55% GGBS + 45% OPC	6	3
60% GGBS + 40% OPC	6	3
65% GGBS + 35% OPC	6	3
70% GGBS + 30% OPC	6	3

Testing of the Specimens

Compressive strength and Flexural strength of hardened concrete was tested in accordance with IS 516. For each mix, the strength was determined on concrete specimens as shown in Table No. 11 at 7^{th} and 28^{th} days.


V. DISCUSSION ON THE TEST RESULTS

a. Slump Cone Test

The workability of GGBS Concrete using M- Sand as given in Table No.12.

Table No.12

Types of Concrete	Slump Value (mm)
Conventional Concrete	110
40% GGBS + 60% OPC	135
45% GGBS + 55% OPC	160
50% GGBS + 50% OPC	170
55% GGBS + 45% OPC	175
60% GGBS + 40% OPC	180
65% GGBS + 35% OPC	180
70% GGBS + 30% OPC	185

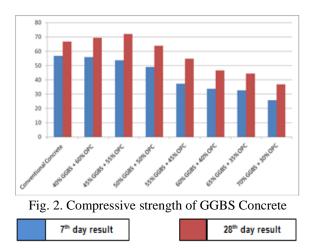


Fig.1. Slump Value of GGBS Concrete

b. Compressive Strength

The mean compressive strength of 150 mm concrete cubes was determined for specimens which were kept for curing for 7 days and 28 days and reported in Table No.13

Types of Concrete	Compressive Strength (Mpa)	
	7 th Day	28 th Day
Conventional Concrete	56.69	66.77
40% GGBS + 60% OPC	55.81	69.40
45% GGBS + 55% OPC	53.72	71.96
50% GGBS + 50% OPC	48.98	63.76
55% GGBS + 45% OPC	37.28	54.78
60% GGBS + 40% OPC	33.76	46.52
65% GGBS + 35% OPC	32.56	44.35
70% GGBS + 30% OPC	25.82	36.82

FLEXURAL STRENGTH TEST ON BEAMS:

The flexural strength of concrete beam was performed on universal testing machine. The specimens were tested at the age of 7th & 28th days subjected to two points loading and results were reported in Table No. 14

Fig.3 Flexural Strength Test prior to Crack

Fig.4 Flexural Strength Test at Crack

Table No.14 Flexural Strength

Types of Concrete	Flexural Srength (Mpa)		
	7 th Day	28 th Day	
Conventional Concrete	3.715	5.321	
40% GGBS + 60% OPC	3.850	5.320	
45% GGBS + 55% OPC	3.565	5.270	
50% GGBS + 50% OPC	3.232	4.885	
55% GGBS + 45% OPC	2.856	3.763	
60% GGBS + 40% OPC	2.560	3.542	
65% GGBS + 35% OPC	2.296	3.027	
70% GGBS + 30% OPC	2.002	2.764	
6.000			
5.000			
4.000	_		
3.000		_	
2.000			
1.000			
a de de de	de de	de de	
alternet appende appende appende	SHESHT ASHERT AS	assister assister	
Company of the State of the Sta	Stand States	100 and 100 and a state of the second	
•			
Fig 5. Flexural Strength of GGBS			
7 th day result 28 th day result			

VI. RESULTS AND CONCLUSIONS

The concrete was prepared for M50 grade concrete with partial replacement of cement by GGBS with various percentages of 0%, 40%, 45%, 50%, 55%, 60%, 65% & 70% using 100% M-Sand as fine aggregate. The specimens were casted for 7 days, 28 days and then tested. The results are presented below. From the above results, following conclusions were made...

- The workability of concrete using GGBS and M-Sand is increased from 22 % to 68 % and it possesses good pumpable and compaction characteristics.
- It achieved maximum Compressive strength when there is partial replacement of 45% GGBS with 100% M-Sand. But the target mean strength as specified by IRC is satisfied at the partial replacement of 50% GGBS. So the optimum percentage of replacement of GGBS is 50%.
- The maximum flexural strength achieved for the partial replacement of 40% GGBS which is same as conventional concrete. Even at 50% GGBS, the results are almost same without much change.
- Based on this study, 50% GGBS is found optimum which would result in 23% cost saving approximately.

A. Abbreviations and Acronyms
GGBS – Ground Granulated Blast Furnace Slag
OPC – Ordinary Portland Cement
M-Sand – Manufactured Sand
FA – Fine Aggregate
CA – Coarse Aggregate

B. Units

N/mm2 - "Newton per square millimeter (Mpa) mm - "millimeter"

REFERENCES

- Study on behavior of M-Sand Concrete using GGBS as Filler R. Subashini T. Sonia, Assistant professor Assistant professor, Dr. M. Shahul Hameed, Dean, Department of Civil Engineering, P.S.R. Engineering College, Sivakasi, India
- [2] Experimental Study on Behaviour of High Performance Concrete using GGBS and M Sand by A. Andriya Annal, Post Graduate Student, Priya Rachel, Assistant Professor St. Peters College of Engineering and Technology, Chennai, India
- [3] Experimental investigation on strength and durability characteristics of high performance concrete using GGBS and M-Sand by Christina

Mary V & Kishore CH, Faculty of Building & Environment, Sathyabhama University, Chennai.

[4] Study of partial replacement of fine aggregate with GGBS by P. Bhaskaran, Karthik Kumar & team, College of SKP Institute of Technology, Tiruvannamalai