
© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 606

Ray Tracing Performance: Render Time and Energy Cost

Shivansh Dixit

Department of Computer Science Engineering, Dronacharya College of Engineering, Farukhnagar,

Haryana India

Abstract- Optimizations for ray tracing have typically

focused on decreasing the time taken to render each

frame. However, in modern computer systems it's going

to actually be more important to attenuate the energy

used, or some combination of energy and render time.

Understanding the time and energy costs per ray can

enable the user to form conscious trade-offs between

image quality and time/energy budget during a

complete system. To facilitate this, during this paper we

present an in-depth study of per-ray time and energy

costs for ray tracing. Specifically, we use path tracing,

weakened into distinct kernels, to hold out an in-depth

study of the fine-grained contributions in time and

energy for every ray over multiple bounces. As

expected, we've observed that both the time and energy

costs are highly correlated with data movement.

Especially in large scenes that don't mostly slot in on-

chip caches, accesses to DRAM not only account for the

bulk of the energy use but also the corresponding stalls

dominate the render time.

Index terms- Ray Tracing, Energy Efficiency, Graphics

Processors, Memory Timing

1.INTRODUCTION

Ray tracing [40] algorithms have evolved to be the

foremost popular way of rendering photorealistic

images. In particular, path tracing [19] is widely used

in production today. Yet despite their widespread use,

ray tracing algorithms remain expensive in terms of

both computation time and energy consumption. New

trends arising University of Utah 50 Central Campus

Dr, Salt Lake City, UT, 84112 from the need to

minimize production costs in industries relying

heavily on computer generated imagery, as well as

the recent expansion of mobile architectures, where

application energy budgets are limited, increase the

importance of studying the energy demands of ray

tracing additionally to the render time. A large body

of work optimizes the computation cost of ray tracing

by minimizing the number of instructions needed for

ray traversal and intersection operations. However,

on modern architectures the time and energy costs are

highly correlated with data movement. High

parallelism and the behavior of deep memory

hierarchies, prevalent in modern architectures, make

further optimizations non-trivial. Although rays

contribute independently to the final image, the

performance of the associated data movement is

highly dependent on the overall state of the memory

subsystem. As such, to measure and understand

performance, one cannot merely rely on the number

of instructions to be executed, but must also consider

the data movement throughout the entire rendering

process. In this paper, we aim to provide a detailed

examination of time and energy costs for path

tracing. We split the ray tracing algorithm into

discrete computational kernels and measure their

performance by tracking their time and energy costs

while rendering a frame to completion. We

investigate what affects and limits kernel

performance for primary, secondary, and shadow

rays. Our investigation explores the variation of your

time and energy costs per ray in the least bounces

during a path. Time and energy breakdowns are

examined for both individual kernels and the entire

rendering process. To extract detailed measurements

of time and energy usage for different kernels and ray

types, we use a cycle-accurate hardware simulator

designed to simulate highly parallel architectures.

Specifically, we profile TRaX [35, 36], a custom

architecture designed to accelerate ray tracing by

combining the parallel computational power of

contemporary GPUs with the execution flexibility of

CPUs. Therefore, our study does not directly explore

ray tracing performance on hardware that is either

designed for general-purpose computation (CPUs) or

rasterization (GPUs). Our experiments show that data

movement is that the main consumer of your time

and energy. As rays are traced deeper into the

acceleration structure, more of the scene is accessed

and must be loaded. This results in extensive use of

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 607

the memory subsystem and DRAM, which

dramatically increases the energy consumption of the

entire system. Shadow ray traversal displays a similar

behavior as regular ray traversal, although it is

considerably less expensive, because it implements

any-hit traversal optimization (as opposed to first

hit). In all cases, we observe that the increase in per

ray, per bounce energy is incremental after the first

few bounces, suggesting that longer paths can be

explored at a reduced proportional cost. We also

examine the composition of latency per frame,

identifying how much of the render time is spent on

useful work versus stalling due to resource conflicts.

Again, the memory system dominates the cost.

Although compute time can often be improved

through increases in available resources, the memory

system, even when highly provisioned, may not be

able to service all necessary requests without stalling.

2. BACKGROUND

Some previous work focuses on understanding and

improving the energy footprint of rendering on GPUs

on both algorithmic and hardware levels. Yet, little or

no has been published on directly measuring the

energy consumption and latency patterns of ray

tracing and subsequently studying the implications of

ray costs. In this section, we briefly discuss the

related prior work and therefore the TRaX

architecture we use for our experiments. 2.1 Related

Work Ray tracing performance is traditionally

measured as a function of your time to render one

frame. With a known upper bound on theoretical

performance [2], general optimizations have been

proposed to various stages of the algorithm [34] to

improve performance and reduce memory traffic and

data transport [5, 15]. These approaches are

motivated by known behavior, with bandwidth usage

identified as the major bottleneck in traditional ray

tracing [28, 29], leading to suggested changes in ray

and geometry scheduling. Although they address

energy costs of ray tracing at a high level, none of

these explorations examine how individual rays can

affect performance, energy, and image quality, nor do

they systematically analyze the performance of ray

tracing as an entire. We provide a more quantifiable

unit of measure for the underlying behavior by

identifying the costs of rays as they relate to the

entire frame generation. Aila et. al. [2] evaluate the

energy consumption of ray tracing on a GPU with

different sorts of traversal. Although the work

distribution of ray traversal is identified because the

major inefficiency, the analysis only goes thus far on

suggest which traversal method is that the quickest.

Some work reduces energy consumption by

minimizing the amount of data transferred from

memory to compute units [3, 11, 31]. Others plan to

reduce memory accesses by improving ray coherence

and data management [22, 26, 9]. More detailed

studies on general rendering algorithms pinpoint

power efficiency improvements [18, 32], but

unfortunately don't specialize in ray tracing. Wang et.

al. [39] use a price model to attenuate power usage,

while maintaining visual quality of the output image

by varying rendering options in real-time

frameworks. Similarly, Johnson et. al. [17] directly

measure the per frame energy of graphics

applications on a smartphone. However, both

methods focus on rasterization. There is a pool of

labor investigating architecture exploitation with

much prior work addressing DRAM and its

implications for graphics applications [8, 38] with

some particularly that specialize in bandwidth [12,

24, 25]. Some proposed architectures also fall under a

category of hardware which aims to scale back

overall ray tracing energy cost by implementing

packet-based approaches to extend cache hits [7, 30]

or by reordering work in a buffer [23]. Streaming

architectures [14, 37] and hardware that uses treelets

to manage scene traffic [1, 21, 33] also are effective

in reducing energy demands.

2.1 TRaX Architecture

In our experiments, we use a hardware simulator to

extract detailed information about time and energy

consumption during rendering. We perform our

experiment by simulating rendering on the TRaX

architecture [35, 36]. TRaX is a dedicated ray tracing

hardware architecture based on a single program

multiple data (SPMD) programming paradigm, as

opposed to single instruction multiple data (SIMD)

approach used by current GPUs. Unlike other ray

tracing specific architectures, TRaX’s design is more

general and programmable. Although it possesses

similarities to modern GPU architectures, it is not

burdened by the GPU’s data processing assumptions.

Specifically, TRaX consists of Thread

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 608

Multiprocessors (TMs), each of which has a number

of Thread Processors (TPs),

as shown in Fig. 1. Each TP contains some functional

units, a little register file, scratchpad memory, and a

program counter. All TPs within a TM share access

to units which are expensive in terms of area, like the

L1 data cache and floating-point compute units.

Several chip-wide L2 caches are each shared by a

collection of TMs, and are then connected to the

main memory via the memory controller.

3 EXPERIMENTAL METHODOLOGIES

We run our experiments by simulating path tracing

on the TRaX architecture. TRaX and its simulator are

highly flexible systems, which enable testing modern

architecture configurations. We have also considered

other hardware simulators and decided against using

them for various reasons. GPGPUSim [4] allows

simulating GPUs, but only supports dated

architectures and so would not provide an accurate

representation of path tracing on modern hardware.

 Moreover, we need a system that is fast enough to

run path tracing to completion, unlike other

architecture simulators which are designed to feasibly

simulate a few million cycles. Additionally, the

profiling capabilities must separate parts of the

renderer and generate detailed usage statistics for the

memory system and compute, which is not easily

attainable on regular CPUs. Although a

comprehensive and configurable simulator for CPU

architectures exists [6], it is far too detailed and thus

expensive to run for the purposes of this study. As

with any application, hardware dependency makes a

difference within the performance evaluation.

Therefore, we also run our experiments on a physical

CPU, though the experiments on the CPU provide

limited information, since we cannot gather statistics

as detailed as those available from a cycle-accurate

simulator. Yet, we can still compare the results of

these tests to the simulated results and evaluate the

generality of our conclusions.

We augment the cycle-accurate simulator for TRaX

[16] to profile each ray tracing kernel using high-

fidelity statistics gathered at the instruction level.

Each instruction tracks its execution time, stalls, and

energy usage within hardware components, including

functional units and therefore the memory hierarchy.

Additionally, the simulator relies on USIMM for

high-fidelity DRAM simulation [10] enabling highly

accurate measurements of main memory

performance. For our study, the TRaX processor

comprises 32 TMs with 32 TPs each for a complete

of 1024 effective threads, all running at 1GHz. This

configuration resembles the performance and area of

a modern GPU. Table 1 shows the energy and latency

details for the hardware components. We use Cacti

6.5 [27] to estimate the areas of on-chip caches and

SRAM buffers. The areas and latencies for compute

units are estimated using circuits synthesized with

Synopsys DesignWare/Design Compiler at a 65nm

process. The TMs share four 512KB L2 caches with

16 banks each. DRAM is set up to use 8-channel

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 609

GDDR5 quad-pumped at twice the processor clock

(8GHz effective) reaching a peak bandwidth of

512GB/s.

We run our experiments on four scenes with different

geometric complexities (Fig. 2) to expose the effects

of different computational requirements and stresses

to the memory hierarchy. Each scene is rendered at

1024×1024 image resolution, with up to 9 ray

bounces. Our investigation aims to focus on

performance related to ray traversal the underlying

acceleration structure is a Bounding Volume

Hierarchy with optimized first child traversal [20].

We use simple Lambertian shaders for all surfaces

and a single point light to light each scene. Individual

pixels are rendered in parallel, where each TP

independently traces a separate sample to

completion; therefore, different TPs can trace rays at

different bounces. We track detailed, instruction-level

statistics for every distinct ray tracing kernel (ray

generation, traversal, and shading) for every ray

bounce and sort (primary, secondary, and shadow).

We derive energy and latency averages per ray using

this data. We run our CPU tests on an Intel Core i7-

5960X processor with 20 MB L3 cache and 8 cores

(16 threads) with the same implementation of path

tracing used by TRaX. Only the final rendering times

are available for these experiments.

4 EXPERIMENTAL RESULTS

Our experimental results are derived from 50

simulations across four scenes with maximum ray

bounces varying between 0 (no bounce) and 9.

Depending on the complexity, each simulation can

require from a few hours to a few days to complete.

In this section we present some of our experimental

results and the conclusions we draw based on them.

The full sets of experimental results are included in

the supplementary document. 4.1 Render Time We

first consider the time to render a frame at different

maximum ray bounces and track how the render time

is spent. In particular, we track the average time a TP

spends on the following events: – Compute

Execution: the time spent executing instructions, –

Compute Data Stall: stalls from waiting for the

results of previous instructions, – Memory Data Stall:

stalls from waiting for data from the memory

hierarchy, including all caches and DRAM, and –

Other: all other stalls caused by contentions on

execution units and local store operations. Fig. 3

shows the distribution of your time wont to render the

Crytek Sponza and San Miguel scenes. In Crytek

Sponza, the majority of the time is spent on

computation without much memory data stalling. As

the maximum number of ray bounces increases, the

time for all components grows approximately

proportionally, since the amount of rays (and thus

computational requirements) increases linearly with

each bounce. This is not surprising, since Crytek

Sponza is a relatively small scene and most of it can

fit in the L2 cache,

thereby requiring relatively fewer accesses to

DRAM. Once all scene data is read into the L2 cache,

the majority of memory data stalls are caused by L1

cache misses. On the other hand, in the San Miguel

scene, compute execution makes up the majority of

the render time only for primary rays. When we have

one or more ray bounces, memory data stalls quickly

become the most consumer of render time,

consistently taking over approximately 65% of the

entire time. Even though the instructions needed to

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 610

handle secondary rays are comparable to the ones for

the primary rays, the L1 cache hit rate drops from

approximately 80% for primary rays to 60% for rays

with up to two bounces or more. As a result, more

memory requests escalate up the memory hierarchy

to DRAM, putting yet more pressure on the memory

banks. Besides adding latency, cache misses also

incur higher energy costs.

4.2 Time per Kernel

We can consider the typical time spent per ray by the

subsequent individual kernels at different ray

bounces:

 Generate: ray generation kernel,

 Trace: ray traversal kernel for non-shadow rays,

including the acceleration structure and triangle

intersections,

 Trace Shadow: shadow ray traversal kernel, and

 Shade: shading kernel.

Fig. 4 shows the typical computation time per ray for

every bounce of path tracing up to 9 bounces. The

time consumed by the ray generation and shading

kernels is negligible. This is not surprising, since ray

generation does not require accessing the scene data

and the Lambertian shader we use for all surfaces

does not use textures. Even though these two kernels

are compute-intensive, the tested hardware is not

compute limited, and thus the execution units take a

smaller portion of the total frame rendering time.

Traversing regular rays (the Trace kernel) takes up

most of the time and traversing shadow rays (the

Trace Shadow kernel) is about 20% faster for all

bounces.

4.3 Ray Traversal Kernel Time

Within the ray traversal (Trace) kernel, a large

portion of time is spent stalling while waiting for the

memory system–either for data to be fetched or on

bank conflicts which limit access requests to the

memory. Fig. 5 shows the breakdown of time spent

for execution and stalls within the Trace kernel for

handling rays at different bounces within the same

rendering process up to 9 bounces. Memory access

stalls, which indicate the time required for data to be

fetched into registers, take a substantial percentage of

time even for the first few bounces. The percentage

of memory stalls is higher for larger scenes, but they

amount to a large percentage even for a

comparatively small scene like Crytek Sponza.

Interestingly, the percentage of memory stalls beyond

the second bounce remains almost constant. This is

because rays access the scene less coherently, thereby

thrashing the caches. This is a significant

observation, since the simulated memory system is

highly provisioned both in terms of the number of

banks and total storage size. This suggests that

further performance improvements gained will be

marginal if only simple increases in resources are

made. Thus, we foresee the need to require

modifications in how the memory system is

structured and used.

4.4 DRAM Bandwidth

Another interesting observation is the DRAM

bandwidth behavior. Fig. 6 show the DRAM

bandwidth for all four scenes in our tests using

different maximum ray bounces. Notice that the

DRAM bandwidth varies significantly between

different scenes for images rendered using a few

number of maximum bounces. In our tests our

smallest scene, Crytek Sponza, and largest scene, San

Miguel, use a relatively small portion of the DRAM

bandwidth for different reasons. Crytek Sponza uses

less DRAM bandwidth, just because it's alittle scene.

San Miguel, however, uses lower DRAM bandwidth

because of the coherence of the first few bounces and

the fact that it takes longer to render.

The other two scenes, Hairball and Dragon Box, use

a comparatively larger portion of the DRAM

bandwidth for renders up to a couple of bounces.

Beyond a few bounces, however, the DRAM

bandwidth utilization of these four scenes tend to

align with the scene sizes. Small scenes that render

quickly end up using larger bandwidth and larger

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 611

scenes that require a longer time use a smaller portion

of the DRAM bandwidth by spreading the memory

requests over time. Yet, all scenes appear to converge

towards an identical DRAM bandwidth utilization.

4.5 Energy Use

The energy used to render the entire frame can be

separated into seven distinct sources: compute,

register file, local store, instruction cache, L1 data

cache, L2 data cache, and DRAM. Overall,

performing a floating point arithmetic operation is

both faster and three orders of magnitude less energy

expensive than fetching an operand from DRAM

[13]. Fig. 7 shows the entire energy spent to render a

frame of the Crytek Sponza and San Miguel scenes.

In Crytek Sponza, a small scene which mostly fits

within on-chip data caches, memory accesses still

dominate the energy contributions at 80% overall,

including 60% for DRAM alone, at 9 bounces.

Compute, on the other hand, requires only about 1-

2% of the total energy. Interestingly, a bigger scene

like San Miguel follows an identical behavior: the

whole memory subsystem requires 95% and DRAM

requires 80% of the entire energy per frame at the

maximum of 9 bounces. The monotonic increase

within the total frame energy at higher maximum ray

bounces are often attributed to the rise within the

total number of rays within the system.

4.6 Energy Use per Kernel

We can consider energy per ray used by individual

kernels at different ray bounces by investigating the

average energy spent to execute the assigned kernels.

 Fig. 8 shows the typical energy use within the Crytek

Sponza and San Miguel scenes. The ray generation

kernel has a very small contribution (at most 2%)

because it uses few instructions, mainly for floating

point computation operations. In our tests, shading

also consumes a small percentage of energy, simply

because we use simple Lambertian materials without

textures. Other material models, especially ones that

use large textures, could be substantially expensive

from the energy perspective because of memory

accesses. However, investigating a broad range of

shading methods is beyond the scope of this work.

Focusing on the traversal kernels,

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 612

Fig. 9 compares costs to trace both shadow and non-

shadow rays for all scenes. Overall, because shadow

rays implement any-hit traversal optimization and

consequently load less scene data, their energy cost is

15% less than regular rays on the average.

4.7 Ray Traversal Kernel Energy

 Fig. 9 also shows the total energy cost of the ray

traversal kernels at different ray bounces up to the

maximum of 9. Unsurprisingly, the larger scenes and

people with high depth complexity consume more

energy as ray bounces increase. The energy required

by rays before the first bounce is considerably lower

than the secondary rays after the first bounce, since

they are less coherent than primary rays and scatter

towards a larger portion of the scene. This behavior

translates into an increase in both the

randomness of memory accesses and in the amount

of data fetched. However, because the rays bounce

further, the value per ray starts to level. This pattern

is more obvious for smaller scenes like Crytek

Sponza. Although within the first few ray bounces

the trail tracer thrashes the caches and therefore the

cache hit rates drop, the hit rates become roughly

constant for extra bounces. Thus, the amount of

requests that reach DRAM remains steady, leading to

the energy employed by the memory system to be

fairly consistent for ray bounces beyond three. The

sources of energy usage per ray for the traversal

kernels (Fig. 10) paint an image almost like the one

from the general energy per frame. The memory

system is liable for 60-95% of the entire energy, with

DRAM alone taking over to 80% for higher bounces

within the San Miguel scene.

4.8 Image Contributions per Ray Bounce

It is also important to understand how much each

bounce is contributing to the final image. This

information can be utilized to determine a desired

performance/quality balance. In particular, we

perform tests with maximum ray bounces of 9 and we

consider the overall image intensity contributions of

all rays up to a certain number of bounces (maximum

of 9), along with contributions per millisecond and

contributions per Joule. As seen in Fig. 11, the

majority of contribution to the image happens in the

first few bounces. After the fourth or fifth bounce, the

energy and latency costs to trace rays at that bounce

become significant compared to their minimal

contribution to the final image. This behavior is

expected from the current analysis with scene

complexity playing a minor role to the overall trend.

4.9 Comparisons to CPU Experiments

The findings so far are specific to the TRaX

architecture. To evaluate the generality of our

findings, we also compare our results to the same

path tracing application running on a CPU. For the

four test scenes, we observe similar relative behavior

shown in Fig. 12. Even though direct comparisons

cannot be made, the behavior is similar enough to

suggest that performance would be similar between

the two architectures; therefore, the results of this

study could be applied on implementations running

on currently available CPUs.

5 DISCUSSION

We observe that even for smaller scenes, that can

essentially fit into cache, memory still is the highest

contributor in energy and latency, suggesting that

even in a case of balanced compute workload,

compute remains inexpensive. Since data movement

is the highest contributor to energy use, often scene

compression is the suggested solution.

 However, compression schemes mostly reduce, but

do not eliminate, the memory bottlenecks arising

from data requests associated with ray tracing. Our

data suggests that render time and energy cost

improvements cannot be made by simply increasing

the available memory resources, which are already

constrained by the on-chip area availability. This

brings up a stimulating opportunity to seek out ways

to style a replacement memory system that's

optimized for ray tracing that might facilitate both

lower energy and latency costs. For example, the

recent dual streaming approach [33] that reorders the

ray tracing computations and the memory access

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 613

pattern is likely to have a somewhat different time

and energy behavior. Exploring different ways of

reordering the ray tracing execution would be an

interesting avenue for future research, which can

provide new algorithms and hardware architectures

that can possibly separate from the trends we observe

in our experiments.

6 CONCLUSIONS

We have presented a detailed study of render time

and energy costs of path tracing running on a custom

hardware designed for accelerating ray tracing. We

have identified the memory system as the main

source of both time and energy consumption. We

have also examined how statistics gathered per frame

translate into contributions to the final image.

Furthermore, we have included an evaluation of the

generality of our results by comparing render times

against the same application running on the CPU.

Given these observations, we would like to consider

more holistic performance optimizations as a

function of render time, energy cost and the impact of

rays on image quality. An interesting future work

direction would be a sensitivity analysis by varying

the hardware specifications, such as the memory

subsystem size. Also, a study targeting more

expensive shading models and texture contributions

could reveal how shading complexity could impact

ray traversal performance. In general, detailed studies

of ray tracing performance can provide much needed

insight which will be wont to design a function that

optimizes both render time and energy under

constrained budgets and a required visual fidelity.

Acknowledgements This material is supported in part

by the National Science Foundation under Grant No.

1409129. Crytek Sponza is from Frank Meinl at

Crytek and Marko Dabrovic, Dragon is from the

Stanford special effects Laboratory, Hairball is from

Samuli Laine, and San Miguel is from Guillermo

Leal Laguno.

REFERENCES

[1] Aila, T., Karras, T.: Architecture considerations

for tracing incoherent rays. In: Proc. HPG (2010)

[2] Aila, T., Laine, S.: Understanding the efficiency

of ray traversal on GPUs. In: Proc. HPG (2009)

[3] Arnau, J.M., Parcerisa, J.M., Xekalakis, P.:

Eliminating redundant fragment shader

executions on a mobile GPU via hardware

memoization. In: Proc. ISCA (2014)

[4] Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong,

H., Aamodt, T.M.: Analyzing CUDA workloads

employing a detailed GPU simulator. In:

ISPASS (2009)

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149727 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 614

[5] Barringer, R., Akenine-M¨oller, T.: Dynamic ray

stream traversal. ACM TOG (2014) 33(4), 151

(2014)

[6] Binkert, N., Beckmann, B., Black, G., Reinhardt,

S.K., Saidi, A., Basu, A., Hestness, J., Hower,

D.R., Krishna, T., Sardashti, S., et al.: The gem5

simulator. ACM SIGARCH Comp Arch News

39(2), 1–7 (2011)

[7] Boulos, S., Edwards, D., Lacewell, J.D., Kniss,

J., Kautz, J., Shirley, P., Wald, I.: Packet-based

Whitted and distribution ray tracing. In: Proc.

Graphics Interface (2007)

[8] Brunvand, E., Kopta, D., Chatterjee, N.: Why

graphics programmers need to know about

DRAM. In: ACM SIGGRAPH 2014 Courses

(2014)

[9] Budge, B., Bernardin, T., Stuart, J.A., Sengupta,

S., Joy, K.I., Owens, J.D.: Out-of-core Data

Management for Path Tracing on Hybrid

Resources. CGF (2009)

[10] Chatterjee, N., Balasubramonian, R., Shevgoor,

M., Pugsley, S., Udipi, A., Shafiee, A., Sudan,

K., Awasthi, M., Chishti, Z.: USIMM: the Utah

SImulated Memory Module. Tech. Rep. UUCS-

12-02, U. of Utah (2012)

[11] Chatterjee, N., OConnor, M., Lee, D., Johnson,

D.R., Keckler, S.W., Rhu, M., Dally, W.J.:

Architecting an energy-efficient DRAM system

for GPUs. In: HPCA (2017)

[12] Christensen, P.H., Laur, D.M., Fong, J., Wooten,

W.L., Batali, D.: Ray differentials and

multiresolution geometry caching for distribution

ray tracing in complex scenes. In: Eurographics

(2003)

[13] Dally, B.: The challenge of future high-

performance computing. Celsius Lecture,

Uppsala University, Uppsala, Sweden (2013)

[14] Gribble, C., Ramani, K.: Coherent ray tracing via

stream filtering. In: IRT (2008)

[15] Hapala, M., Davidovic, T., Wald, I., Havran, V.,

Slusallek, P.: Efficient stack-less BVH traversal

for ray tracing. In: SCCG (2011)

[16] HWRT: SimTRaX a cycle-accurate ray tracing

architectural simulator and compiler.

http://code.google.com/p/simtrax/ (2012). Utah

Hardware Ray Tracing Group

[17] Johnsson, B., Akenine-Mller, T.: Measuring per-

frame energy consumption of real-time graphics

applications. JCGT 3, 60–73 (2014)

[18] Johnsson, B., Ganestam, P., Doggett, M.,

AkenineM¨oller, T.: Power efficiency for

software algorithms running on graphics

processors. In: HPG (2012)

