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Abstract- Optimizations for ray tracing have typically 

focused on decreasing the time taken to render each 

frame. However, in modern computer systems it's going 

to actually be more important to attenuate the energy 

used, or some combination of energy and render time. 

Understanding the time and energy costs per ray can 

enable the user to form conscious trade-offs between 

image quality and time/energy budget during a 

complete system. To facilitate this, during this paper we 

present an in-depth study of per-ray time and energy 

costs for ray tracing. Specifically, we use path tracing, 

weakened into distinct kernels, to hold out an in-depth 

study of the fine-grained contributions in time and 

energy for every ray over multiple bounces. As 

expected, we've observed that both the time and energy 

costs are highly correlated with data movement. 

Especially in large scenes that don't mostly slot in on-

chip caches, accesses to DRAM not only account for the 

bulk of the energy use but also the corresponding stalls 

dominate the render time. 

 

Index terms- Ray Tracing, Energy Efficiency, Graphics 

Processors, Memory Timing 

 

1.INTRODUCTION 

 

Ray tracing [40] algorithms have evolved to be the 

foremost popular way of rendering photorealistic 

images. In particular, path tracing [19] is widely used 

in production today. Yet despite their widespread use, 

ray tracing algorithms remain expensive in terms of 

both computation time and energy consumption. New 

trends arising University of Utah 50 Central Campus 

Dr, Salt Lake City, UT, 84112 from the need to 

minimize production costs in industries relying 

heavily on computer generated imagery, as well as 

the recent expansion of mobile architectures, where 

application energy budgets are limited, increase the 

importance of studying the energy demands of ray 

tracing additionally to the render time. A large body 

of work optimizes the computation cost of ray tracing 

by minimizing the number of instructions needed for 

ray traversal and intersection operations. However, 

on modern architectures the time and energy costs are 

highly correlated with data movement. High 

parallelism and the behavior of deep memory 

hierarchies, prevalent in modern architectures, make 

further optimizations non-trivial. Although rays 

contribute independently to the final image, the 

performance of the associated data movement is 

highly dependent on the overall state of the memory 

subsystem. As such, to measure and understand 

performance, one cannot merely rely on the number 

of instructions to be executed, but must also consider 

the data movement throughout the entire rendering 

process. In this paper, we aim to provide a detailed 

examination of time and energy costs for path 

tracing. We split the ray tracing algorithm into 

discrete computational kernels and measure their 

performance by tracking their time and energy costs 

while rendering a frame to completion. We 

investigate what affects and limits kernel 

performance for primary, secondary, and shadow 

rays. Our investigation explores the variation of your 

time and energy costs per ray in the least bounces 

during a path. Time and energy breakdowns are 

examined for both individual kernels and the entire 

rendering process. To extract detailed measurements 

of time and energy usage for different kernels and ray 

types, we use a cycle-accurate hardware simulator 

designed to simulate highly parallel architectures. 

Specifically, we profile TRaX [35, 36], a custom 

architecture designed to accelerate ray tracing by 

combining the parallel computational power of 

contemporary GPUs with the execution flexibility of 

CPUs. Therefore, our study does not directly explore 

ray tracing performance on hardware that is either 

designed for general-purpose computation (CPUs) or 

rasterization (GPUs). Our experiments show that data 

movement is that the main consumer of your time 

and energy. As rays are traced deeper into the 

acceleration structure, more of the scene is accessed 

and must be loaded. This results in extensive use of 
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the memory subsystem and DRAM, which 

dramatically increases the energy consumption of the 

entire system. Shadow ray traversal displays a similar 

behavior as regular ray traversal, although it is 

considerably less expensive, because it implements 

any-hit traversal optimization (as opposed to first 

hit). In all cases, we observe that the increase in per 

ray, per bounce energy is incremental after the first 

few bounces, suggesting that longer paths can be 

explored at a reduced proportional cost. We also 

examine the composition of latency per frame, 

identifying how much of the render time is spent on 

useful work versus stalling due to resource conflicts. 

Again, the memory system dominates the cost. 

Although compute time can often be improved 

through increases in available resources, the memory 

system, even when highly provisioned, may not be 

able to service all necessary requests without stalling. 

 

2. BACKGROUND 

 

Some previous work focuses on understanding and 

improving the energy footprint of rendering on GPUs 

on both algorithmic and hardware levels. Yet, little or 

no has been published on directly measuring the 

energy consumption and latency patterns of ray 

tracing and subsequently studying the implications of 

ray costs. In this section, we briefly discuss the 

related prior work and therefore the TRaX 

architecture we use for our experiments. 2.1 Related 

Work Ray tracing performance is traditionally 

measured as a function of your time to render one 

frame. With a known upper bound on theoretical 

performance [2], general optimizations have been 

proposed to various stages of the algorithm [34] to 

improve performance and reduce memory traffic and 

data transport [5, 15]. These approaches are 

motivated by known behavior, with bandwidth usage 

identified as the major bottleneck in traditional ray 

tracing [28, 29], leading to suggested changes in ray 

and geometry scheduling. Although they address 

energy costs of ray tracing at a high level, none of 

these explorations examine how individual rays can 

affect performance, energy, and image quality, nor do 

they systematically analyze the performance of ray 

tracing as an entire. We provide a more quantifiable 

unit of measure for the underlying behavior by 

identifying the costs of rays as they relate to the 

entire frame generation. Aila et. al. [2] evaluate the 

energy consumption of ray tracing on a GPU with 

different sorts of traversal. Although the work 

distribution of ray traversal is identified because the 

major inefficiency, the analysis only goes thus far on 

suggest which traversal method is that the quickest. 

Some work reduces energy consumption by 

minimizing the amount of data transferred from 

memory to compute units [3, 11, 31]. Others plan to 

reduce memory accesses by improving ray coherence 

and data management [22, 26, 9]. More detailed 

studies on general rendering algorithms pinpoint 

power efficiency improvements [18, 32], but 

unfortunately don't specialize in ray tracing. Wang et. 

al. [39] use a price model to attenuate power usage, 

while maintaining visual quality of the output image 

by varying rendering options in real-time 

frameworks. Similarly, Johnson et. al. [17] directly 

measure the per frame energy of graphics 

applications on a smartphone. However, both 

methods focus on rasterization. There is a pool of 

labor investigating architecture exploitation with 

much prior work addressing DRAM and its 

implications for graphics applications [8, 38] with 

some particularly that specialize in bandwidth [12, 

24, 25]. Some proposed architectures also fall under a 

category of hardware which aims to scale back 

overall ray tracing energy cost by implementing 

packet-based approaches to extend cache hits [7, 30] 

or by reordering work in a buffer [23]. Streaming 

architectures [14, 37] and hardware that uses treelets 

to manage scene traffic [1, 21, 33] also are effective 

in reducing energy demands. 

 

2.1 TRaX Architecture  

In our experiments, we use a hardware simulator to 

extract detailed information about time and energy 

consumption during rendering. We perform our 

experiment by simulating rendering on the TRaX 

architecture [35, 36]. TRaX is a dedicated ray tracing 

hardware architecture based on a single program 

multiple data (SPMD) programming paradigm, as 

opposed to single instruction multiple data (SIMD) 

approach used by current GPUs. Unlike other ray 

tracing specific architectures, TRaX’s design is more 

general and programmable. Although it possesses 

similarities to modern GPU architectures, it is not 

burdened by the GPU’s data processing assumptions. 

Specifically, TRaX consists of Thread 
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Multiprocessors (TMs), each of which has a number 

of Thread Processors (TPs), 

 
as shown in Fig. 1. Each TP contains some functional 

units, a little register file, scratchpad memory, and a 

program counter. All TPs within a TM share access 

to units which are expensive in terms of area, like the 

L1 data cache and floating-point compute units. 

Several chip-wide L2 caches are each shared by a 

collection of TMs, and are then connected to the 

main memory via the memory controller. 

 

3 EXPERIMENTAL METHODOLOGIES 

 

We run our experiments by simulating path tracing 

on the TRaX architecture. TRaX and its simulator are 

highly flexible systems, which enable testing modern 

architecture configurations. We have also considered 

other hardware simulators and decided against using 

them for various reasons. GPGPUSim [4] allows 

simulating GPUs, but only supports dated 

architectures and so would not provide an accurate 

representation of path tracing on modern hardware. 

 Moreover, we need a system that is fast enough to 

run path tracing to completion, unlike other 

architecture simulators which are designed to feasibly 

simulate a few million cycles. Additionally, the 

profiling capabilities must separate parts of the 

renderer and generate detailed usage statistics for the 

memory system and compute, which is not easily 

attainable on regular CPUs. Although a 

comprehensive and configurable simulator for CPU 

architectures exists [6], it is far too detailed and thus 

expensive to run for the purposes of this study. As 

with any application, hardware dependency makes a 

difference within the performance evaluation.  

Therefore, we also run our experiments on a physical 

CPU, though the experiments on the CPU provide 

limited information, since we cannot gather statistics 

as detailed as those available from a cycle-accurate 

simulator. Yet, we can still compare the results of 

these tests to the simulated results and evaluate the 

generality of our conclusions.  

 
We augment the cycle-accurate simulator for TRaX 

[16] to profile each ray tracing kernel using high-

fidelity statistics gathered at the instruction level. 

Each instruction tracks its execution time, stalls, and 

energy usage within hardware components, including 

functional units and therefore the memory hierarchy. 

Additionally, the simulator relies on USIMM for 

high-fidelity DRAM simulation [10] enabling highly 

accurate measurements of main memory 

performance. For our study, the TRaX processor 

comprises 32 TMs with 32 TPs each for a complete 

of 1024 effective threads, all running at 1GHz. This 

configuration resembles the performance and area of 

a modern GPU. Table 1 shows the energy and latency 

details for the hardware components. We use Cacti 

6.5 [27] to estimate the areas of on-chip caches and 

SRAM buffers. The areas and latencies for compute 

units are estimated using circuits synthesized with 

Synopsys DesignWare/Design Compiler at a 65nm 

process. The TMs share four 512KB L2 caches with 

16 banks each. DRAM is set up to use 8-channel 
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GDDR5 quad-pumped at twice the processor clock 

(8GHz effective) reaching a peak bandwidth of 

512GB/s. 

 
We run our experiments on four scenes with different 

geometric complexities (Fig. 2) to expose the effects 

of different computational requirements and stresses 

to the memory hierarchy. Each scene is rendered at 

1024×1024 image resolution, with up to 9 ray 

bounces. Our investigation aims to focus on 

performance related to ray traversal the underlying 

acceleration structure is a Bounding Volume 

Hierarchy with optimized first child traversal [20]. 

We use simple Lambertian shaders for all surfaces 

and a single point light to light each scene. Individual 

pixels are rendered in parallel, where each TP 

independently traces a separate sample to 

completion; therefore, different TPs can trace rays at 

different bounces. We track detailed, instruction-level 

statistics for every distinct ray tracing kernel (ray 

generation, traversal, and shading) for every ray 

bounce and sort (primary, secondary, and shadow). 

We derive energy and latency averages per ray using 

this data. We run our CPU tests on an Intel Core i7-

5960X processor with 20 MB L3 cache and 8 cores 

(16 threads) with the same implementation of path 

tracing used by TRaX. Only the final rendering times 

are available for these experiments. 

 

4 EXPERIMENTAL RESULTS 

 

Our experimental results are derived from 50 

simulations across four scenes with maximum ray 

bounces varying between 0 (no bounce) and 9. 

Depending on the complexity, each simulation can 

require from a few hours to a few days to complete. 

In this section we present some of our experimental 

results and the conclusions we draw based on them. 

The full sets of experimental results are included in 

the supplementary document. 4.1 Render Time We 

first consider the time to render a frame at different 

maximum ray bounces and track how the render time 

is spent. In particular, we track the average time a TP 

spends on the following events: – Compute 

Execution: the time spent executing instructions, – 

Compute Data Stall: stalls from waiting for the 

results of previous instructions, – Memory Data Stall: 

stalls from waiting for data from the memory 

hierarchy, including all caches and DRAM, and – 

Other: all other stalls caused by contentions on 

execution units and local store operations. Fig. 3 

shows the distribution of your time wont to render the 

Crytek Sponza and San Miguel scenes. In Crytek 

Sponza, the majority of the time is spent on 

computation without much memory data stalling. As 

the maximum number of ray bounces increases, the 

time for all components grows approximately 

proportionally, since the amount of rays (and thus 

computational requirements) increases linearly with 

each bounce. This is not surprising, since Crytek 

Sponza is a relatively small scene and most of it can 

fit in the L2 cache,  

 
thereby requiring relatively fewer accesses to 

DRAM. Once all scene data is read into the L2 cache, 

the majority of memory data stalls are caused by L1 

cache misses. On the other hand, in the San Miguel 

scene, compute execution makes up the majority of 

the render time only for primary rays. When we have 

one or more ray bounces, memory data stalls quickly 

become the most consumer of render time, 

consistently taking over approximately 65% of the 

entire time. Even though the instructions needed to 
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handle secondary rays are comparable to the ones for 

the primary rays, the L1 cache hit rate drops from 

approximately 80% for primary rays to 60% for rays 

with up to two bounces or more. As a result, more 

memory requests escalate up the memory hierarchy 

to DRAM, putting yet more pressure on the memory 

banks. Besides adding latency, cache misses also 

incur higher energy costs. 

 

4.2 Time per Kernel  

We can consider the typical time spent per ray by the 

subsequent individual kernels at different ray 

bounces:  

 Generate: ray generation kernel,  

 Trace: ray traversal kernel for non-shadow rays, 

including the acceleration structure and triangle 

intersections,  

 Trace Shadow: shadow ray traversal kernel, and 

 Shade: shading kernel. 

Fig. 4 shows the typical computation time per ray for 

every bounce of path tracing up to 9 bounces. The 

time consumed by the ray generation and shading 

kernels is negligible. This is not surprising, since ray 

generation does not require accessing the scene data 

and the Lambertian shader we use for all surfaces 

does not use textures. Even though these two kernels 

are compute-intensive, the tested hardware is not 

compute limited, and thus the execution units take a 

smaller portion of the total frame rendering time. 

Traversing regular rays (the Trace kernel) takes up 

most of the time and traversing shadow rays (the 

Trace Shadow kernel) is about 20% faster for all 

bounces. 

 

4.3 Ray Traversal Kernel Time 

Within the ray traversal (Trace) kernel, a large 

portion of time is spent stalling while waiting for the 

memory system–either for data to be fetched or on 

bank conflicts which limit access requests to the 

memory. Fig. 5 shows the breakdown of time spent 

for execution and stalls within the Trace kernel for 

handling rays at different bounces within the same 

rendering process up to 9 bounces. Memory access 

stalls, which indicate the time required for data to be 

fetched into registers, take a substantial percentage of 

time even for the first few bounces. The percentage 

of memory stalls is higher for larger scenes, but they 

amount to a large percentage even for a 

comparatively small scene like Crytek Sponza. 

Interestingly, the percentage of memory stalls beyond 

the second bounce remains almost constant. This is 

because rays access the scene less coherently, thereby 

thrashing the caches. This is a significant 

observation, since the simulated memory system is 

highly provisioned both in terms of the number of 

banks and total storage size. This suggests that 

further performance improvements gained will be 

marginal if only simple increases in resources are 

made. Thus, we foresee the need to require 

modifications in how the memory system is 

structured and used. 

 

4.4 DRAM Bandwidth 

Another interesting observation is the DRAM 

bandwidth behavior. Fig. 6 show the DRAM 

bandwidth for all four scenes in our tests using 

different maximum ray bounces. Notice that the 

DRAM bandwidth varies significantly between 

different scenes for images rendered using a few 

number of maximum bounces. In our tests our 

smallest scene, Crytek Sponza, and largest scene, San 

Miguel, use a relatively small portion of the DRAM 

bandwidth for different reasons. Crytek Sponza uses 

less DRAM bandwidth, just because it's alittle scene. 

San Miguel, however, uses lower DRAM bandwidth 

because of the coherence of the first few bounces and 

the fact that it takes longer to render.  

 
The other two scenes, Hairball and Dragon Box, use 

a comparatively larger portion of the DRAM 

bandwidth for renders up to a couple of bounces. 

Beyond a few bounces, however, the DRAM 

bandwidth utilization of these four scenes tend to 

align with the scene sizes. Small scenes that render 

quickly end up using larger bandwidth and larger 
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scenes that require a longer time use a smaller portion 

of the DRAM bandwidth by spreading the memory 

requests over time. Yet, all scenes appear to converge 

towards an identical DRAM bandwidth utilization. 

4.5 Energy Use 

The energy used to render the entire frame can be 

separated into seven distinct sources: compute, 

register file, local store, instruction cache, L1 data 

cache, L2 data cache, and DRAM. Overall, 

performing a floating point arithmetic operation is 

both faster and three orders of magnitude less energy 

expensive than fetching an operand from DRAM 

[13]. Fig. 7 shows the entire energy spent to render a 

frame of the Crytek Sponza and San Miguel scenes. 

In Crytek Sponza, a small scene which mostly fits 

within on-chip data caches, memory accesses still 

dominate the energy contributions at 80% overall, 

including 60% for DRAM alone, at 9 bounces. 

Compute, on the other hand, requires only about 1-

2% of the total energy. Interestingly, a bigger scene 

like San Miguel follows an identical behavior: the 

whole memory subsystem requires 95% and DRAM 

requires 80% of the entire energy per frame at the 

maximum of 9 bounces. The monotonic increase 

within the total frame energy at higher maximum ray 

bounces are often attributed to the rise within the 

total number of rays within the system. 

 

4.6 Energy Use per Kernel 

We can consider energy per ray used by individual 

kernels at different ray bounces by investigating the 

average energy spent to execute the assigned kernels. 

 

 Fig. 8 shows the typical energy use within the Crytek 

Sponza and San Miguel scenes. The ray generation 

kernel has a very small contribution (at most 2%) 

because it uses few instructions, mainly for floating 

point computation operations. In our tests, shading 

also consumes a small percentage of energy, simply 

because we use simple Lambertian materials without 

textures. Other material models, especially ones that 

use large textures, could be substantially expensive 

from the energy perspective because of memory 

accesses. However, investigating a broad range of 

shading methods is beyond the scope of this work. 

Focusing on the traversal kernels,  
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Fig. 9 compares costs to trace both shadow and non-

shadow rays for all scenes. Overall, because shadow 

rays implement any-hit traversal optimization and 

consequently load less scene data, their energy cost is 

15% less than regular rays on the average. 

 

4.7 Ray Traversal Kernel Energy 

 Fig. 9 also shows the total energy cost of the ray 

traversal kernels at different ray bounces up to the 

maximum of 9. Unsurprisingly, the larger scenes and 

people with high depth complexity consume more 

energy as ray bounces increase. The energy required 

by rays before the first bounce is considerably lower 

than the secondary rays after the first bounce, since 

they are less coherent than primary rays and scatter 

towards a larger portion of the scene. This behavior 

translates into an increase in both the  

 
randomness of memory accesses and in the amount 

of data fetched. However, because the rays bounce 

further, the value per ray starts to level. This pattern 

is more obvious for smaller scenes like Crytek 

Sponza. Although within the first few ray bounces 

the trail tracer thrashes the caches and therefore the 

cache hit rates drop, the hit rates become roughly 

constant for extra bounces. Thus, the amount of 

requests that reach DRAM remains steady, leading to 

the energy employed by the memory system to be 

fairly consistent for ray bounces beyond three. The 

sources of energy usage per ray for the traversal 

kernels (Fig. 10) paint an image almost like the one 

from the general energy per frame. The memory 

system is liable for 60-95% of the entire energy, with 

DRAM alone taking over to 80% for higher bounces 

within the San Miguel scene. 

 

4.8 Image Contributions per Ray Bounce  

It is also important to understand how much each 

bounce is contributing to the final image. This 

information can be utilized to determine a desired 

performance/quality balance. In particular, we 

perform tests with maximum ray bounces of 9 and we 

consider the overall image intensity contributions of 

all rays up to a certain number of bounces (maximum 

of 9), along with contributions per millisecond and 

contributions per Joule. As seen in Fig. 11, the 

majority of contribution to the image happens in the 

first few bounces. After the fourth or fifth bounce, the 

energy and latency costs to trace rays at that bounce 

become significant compared to their minimal 

contribution to the final image. This behavior is 

expected from the current analysis with scene 

complexity playing a minor role to the overall trend. 

  

4.9 Comparisons to CPU Experiments 

The findings so far are specific to the TRaX 

architecture. To evaluate the generality of our 

findings, we also compare our results to the same 

path tracing application running on a CPU. For the 

four test scenes, we observe similar relative behavior 

shown in Fig. 12. Even though direct comparisons 

cannot be made, the behavior is similar enough to 

suggest that performance would be similar between 

the two architectures; therefore, the results of this 

study could be applied on implementations running 

on currently available CPUs.  

 

5 DISCUSSION 

 

We observe that even for smaller scenes, that can 

essentially fit into cache, memory still is the highest 

contributor in energy and latency, suggesting that 

even in a case of balanced compute workload, 

compute remains inexpensive. Since data movement 

is the highest contributor to energy use, often scene 

compression is the suggested solution. 

 However, compression schemes mostly reduce, but 

do not eliminate, the memory bottlenecks arising 

from data requests associated with ray tracing. Our 

data suggests that render time and energy cost 

improvements cannot be made by simply increasing 

the available memory resources, which are already 

constrained by the on-chip area availability. This 

brings up a stimulating opportunity to seek out ways 

to style a replacement memory system that's 

optimized for ray tracing that might facilitate both 

lower energy and latency costs. For example, the 

recent dual streaming approach [33] that reorders the 

ray tracing computations and the memory access 
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pattern is likely to have a somewhat different time 

and energy behavior. Exploring different ways of 

reordering the ray tracing execution would be an 

interesting avenue for future research, which can 

provide new algorithms and hardware architectures 

that can possibly separate from the trends we observe 

in our experiments.  

 

 

6 CONCLUSIONS 

 

We have presented a detailed study of render time 

and energy costs of path tracing running on a custom 

hardware designed for accelerating ray tracing. We 

have identified the memory system as the main 

source of both time and energy consumption. We 

have also examined how statistics gathered per frame 

translate into contributions to the final image. 

Furthermore, we have included an evaluation of the 

generality of our results by comparing render times 

against the same application running on the CPU. 

Given these observations, we would like to consider 

more holistic performance optimizations as a 

function of render time, energy cost and the impact of 

rays on image quality. An interesting future work 

direction would be a sensitivity analysis by varying 

the hardware specifications, such as the memory 

subsystem size. Also, a study targeting more 

expensive shading models and texture contributions 

could reveal how shading complexity could impact 

ray traversal performance. In general, detailed studies 

of ray tracing performance can provide much needed 

insight which will be wont to design a function that 

optimizes both render time and energy under 

constrained budgets and a required visual fidelity. 
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