
© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149731 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 780

Open Redirection in Misconfigured OAuth

Ravi Solanki
1
, Prof. Chandresh Parekh

2

1
Student, M.Tech, School of Information Technology & Cyber Security, Raksha Shakti University

2
Dean, School of Information Technology & Cyber Security, Raksha Shakti University

Abstract- OAuth2.0 is generally used by online facility

providers worldwide. OAuth security-related banners

appear from time to time, and mismanagement of the

protocol caused many difficulties. It verifies the user's

identity for the requested website without revealing the

password to the website. When a web application

receives untrustworthy input, it causes the request to be

readdressed to the underlying URL without any input,

redirects and forwards are potential. The user-agent

redirection system in OAuth is the vulnerable links

because hard for developers and operators to the right

way read, understand and implement all the subtle but

significant requirements. In this discussion, we begin by

identifying the security community's understanding of

the OAuth redirection threats. The current process of

the OAuth requirement, as well as its circulating best

practice, will be discussed. We announce new OAuth

redirection attack technologies that activity the

interaction of URL construing issues with redirection

controlling in majority browsers and mobile

applications. In explicit, it allows attackers to hijack

third party app accounts, gain access to sensitive

personal info, or take special actions on behalf of

affected users.

Index terms- Oauth2.0, Misconfigured, web

Applications, Open Redirection.

I.INTRODUCTION

OAuth is an open standard for token-based

authentication and authorization over the Internet.

OAuth, known as "oh-auth", allows end-user

information to be used for third-party services such

as Facebook, without revealing the user's password.

We all know that a recent Facebook breach was

caused by a leak of access tokens. The session token /

access token or OAuth token is very sensitive data

because if an attacker receives this information, your

account can be logged into your account without

knowing your password.

II. OVERVIEW OF OAUTH

A. OAUTH 2.0

OAuth is the authoritative framework for web

applications. It verifies the user's identity for the

requested website without revealing the password to

the website. This may seem complex at basic, but

give an illustration: the user wants to log into the

website. He goes to the signup page and finds three

options to login - via Facebook, Google, LinkedIn.

When a user connects on one of them, he validates

himself on the website.

B. OPEN REDIRECT

According to OWASP, when a web application

receives unreliable inputs, invalid redirects and

forwards are possible, causing the web application to

redirect request to URL with no input. By change

entrusted URL input on a malevolent site, an attacker

can successfully establish a phishing trick and take

user credentials. Since the server name on the revised

link is identical to the original site, phishing efforts

may have a more reliable presence. Unrelated

redirects and subsequent attacks can also be used to

maliciously create a URL that periapt under the app's

access control check, and then guarantor the attacker

to particular tasks that they cannot normally use.

III. SECURE VS UNSECURE URL REDIRECTS

A. RISKY URL REDIRECTS

If the verification or additional method of control

isn't implemented to verify the accuracy of the URL,

the code below is vulnerable. This vulnerability is

often used as part of a phishing scam by redirecting

users to malicious sites. If authentication isn't

applied, a malicious user may create a hyperlink to

redirect their users to an undetected malicious

website, for example:

http://example.com/example.php?url=http://malicious

.example.com

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149731 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 781

The user specifies a link to the first trusted site

(example.com) and doesn't perceive the redirection

which will occur.

C. SECURE URL REDIRECTS

When we want to automatically redirect a user to

another page (without the Visitant activity such as

clicking a hyperlink) You can run the code this way.

PHP:

<? php

/ * Redirected Browser * /

Title ("Location: http://www.mysite.com/");

?>

In the above illustration, the URL is implicitly

declared in the code and cannot be done be changed

by the attacker.

D. REDIRECT AND FORWARD CAN BE USED

SAFELY

Avoid redirects and further use. If used, do not allow

URLs to be the user's input for the destination. This

can usually be done. In this case, you need to have a

way to verify the URL.

If the user cannot avoid input, make sure the value

supplied is valid, compatible with the application,

and that the user is authorized. Force all redirects to

visit the first lead, let the user know they are visiting

your site

IV. TYPICAL PATTERNS OF URL VALIDATOR

During a large evaluation of real-world OAuth

implementations, we noticed that URL validators of

OAuth providers behave differently. In this section

we will list most of the types of URL validator

behaviours we have seen, and we will discuss each of

them in the next section

A. DOMAIN WHITELIST

Some OAuth providers, especially those with legacy,

allow clients to be explicitly configured without

redirect_ury. They only check the domain portion of

the URL to make sure the scheme is HTTP or HTTP.

Some of them also whitelist all subdomains of the

configured domain. In such cases, if the domain

domain.tl is whitelisted, https: //sub.domain.tld/a/b

will still be a valid redirect URL.

B. PREFIX MATCHING

Most OAuth providers require users to configure

redirect_url when registering an OAuth client.

However, most of them only verify the redirection

provided in the request with prefix matching. In that

case, suppose a developer verifies the registered

https: //domain.tld/a as redirect_url, https:

//domain.tld/abc. Note that some implementations

parse and validate domains in addition to pre-

matching.

C. ARBITRARY SCHEME

We have also seen OAuth providers checking for

strict compatibility for domains and paths, but allow

for any custom scheme. Their intent is to allow

developers to use OAuth for native applications. In

such cases, a URL such as x: //domain.tld/a is

allowed.

V. BROWSER EXPLOITATION

The in general, to successfully use OAuth

redirect_security, the first step is to find a way to leak

the code or access the victim's token. Anonymous

redirects do this by using Open Redirect on the

website hosting the OAuth client, we focus on

finding bypasses For the URL verifier. In other

words, we break the URL behind the validation-2.

The methods we use to skip URL validators are

categorized below. In this section, the URL contains

all the green text host components. The URL on the

left side of the arrow (on) indicates the validation of

the OAuth provider's URL, while the URL on the

right shows the commentary on the browsers.

A. FOOTING IN ENCODING / DECODING

Encoding / decoding is complex and it is easy to fix

errors, which have been popular for decades. A

comprehensive study and summarized in the Unicode

Security Guide [25], many classic Unicode attack

tactics still apply today. We present here three attack

vectors operating in several implementations. We

hope there are more attack vectors that can use the

encoding / decoding error.

B. CONSUMPTION IS HIGH

If user credentials are allowed, test with the following

vector:

https://attacker%ff@benign.com

https://attackernign.com

If sub-domains are allowed, test with the following

vector:

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149731 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 782

https://attackernign.com

Explanation: When the decoder on the server meets a

larger character than the ASCII range, it tries to

decode it using Unicode with forwarding characters.

Such weaknesses [25] have been described as XSS

attacks technology. Here we use it to build

redirection exploits.

C. MARK PAY ATTENTION TO THE

QUESTION MARK

Attack Case 1(Error Decoding by Server):

https://attacker.com%ff@benign.com

https://attacker.com? @benign.com

Explanation: When validating a domain, the parser

captures benign.com as a domain. Was the printable

converted to%% before the URL was output?

Therefore, the browser sends a request to the

attacker.com. We found this method in the bug report

D. THE BEST FIT MAPPING

Assault Case 1:

https://attacker.com／.benign.com

https://attacker.com/.benign.comExplanation: The

parser has a full-width character, but browsers like

Edge or some previous versions of IE normalize it to

a half-width character.

Assault Case 2:

https://benign.com／

https://benign.com／@attacker.com

Explanation: The parser normalizes the full-width

character to the half-width character, while the

browser has the full-width character.

VI. EVIL SLASH TRICK

Most browsers treat both as / and path separators, and

when the address bar contains the user input URL,

most browsers automatically become \ /. According

to the URL standard [8], this is the desired behavior.

However, both the URL verifier and the browser can

go wrong.

 The forward slash is not considered a path

separator, the browser does.

https://attacker.com\@benign.com

https://attacker.com/@benign.com

Explanation: The parser does not behave as a

separator and captures Benign.com as a domain, the

browser exchanges / and sends the request to the

attacker.

 Parser treats forward slash as path separator,

browser does not.

https://benign.com\@attacker.com

https://benign.com\@attacker.com

Explanation: This attack relies on the new Safari bug

we first exposed, working on the latest version of

Safari at the time of writing. When performing

redirection, Safari allows user-information and is not

considered a path separator. When the parser acts as a

Path Separator and manages it in the output, Safari is

redirected to Attacker.com..

VII. PRACTICAL EXPLOITATION

A. CODE INJECTION

OAuth has a policy to protect against code leakage

via redirect_url. Authentication-1 needs to be

redirected to level the authentication request and the

token exchange request, which is good for this

purpose. As long as the token exchange request

arrives, the AS request to store the redirect_url to the

authorization request. We have noticed that some

ASA tokens cannot verify redirect_url unless they

appear in the conversion request. If the token is not

provided by its customer at the request, the relief is

invalid. In fact, this may explain our observation that

the number of implemented injections is vulnerable

to code injection. This problem has also been

observed and mentioned [13], and some alternative

countermeasures have been proposed, such as

floating, code-bound state, or PKCE.

As an attacker, the simplest and most effective

technique to try is to change the response_type from

"code" to "token" and test the underlying flow if it

supports it. By doing this, the attacker can directly

access_token and skip any code injection. This is an

old attack known as the application attack, which was

discussed in 2014. However, in practice, it works

quite well these days.

Another obstacle to using code injection is the state

variable. There is a misunderstanding among

developers and security researchers that session-

bound state variables can prevent code injection

attacks. The truth is that only the code-bound state

variable can prevent code injection, while the

session-bound state variable only prevents CSRF.

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149731 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 783

Worse, in fact, there are many implementation flaws

for state certification. In many cases, an attacker can

reuse any valid state or create a valid session-state

pair by stopping an OAuth authentication request.

B. BURGLARY BLINDLY

The OAuth redirection vulnerability caused by the

URL parser we discussed affects the vulnerability of

the provider and all of its OAuth clients. Meanwhile,

most implementations support auto-compliance

mechanisms that allow automatic authentication after

the first time, giving the attacker the ability to

perform CSRF style stealth attacks. A very stolen

technology The OAuth authority should create an

image that represents the URL. Attackers may also

place malicious images on some online social

platforms. Of course, two conditions must be met for

this attack to work.

1. The user is logged into the provider (AS) and the

login session is still valid.

2. There is no consent page, which means that auto-

consent applies because the user is usually given

access to the customer.

VIII. CONCLUSION

For OAuth, I strongly suggest reading the OAuth 2.0

Security Best Current Practice Draft and checking

every security threat against your implementation.

The best and simplest solution is to use simple string

comparisons for URL validation, to avoid

redirect_url related weaknesses. For some reason, to

use a format such as a domain whitelist, the provider

must make sure that validation-1 and validation-2 are

implemented correctly, or refer to Section 3.2.

Optional code to reduce injection. If the provider uses

URL pattern matching, make sure the other API

endpoint/webpage does not have a URL matching the

pattern. It is a good practice to use a specific

subdomain for the authentication endpoint.

As a URL parser, I suggest developers use the

popular libraries URL parser if possible. If

developers need to implement the URL parser

manually, it is safer to follow the latest WHATWG

standard. Examine all components involved in URL

processing and note encoding / decoding issues.

REFERENCES

[1] R. Fielding, “Hypertext Transfer Protocol --

HTTP/1.1,” [Online]. Available:

https://tools.ietf.org/html/rfc2616. [Accessed

1999].

[2] W. Denniss, “OAuth 2.0 for Native Apps,” 2017.

[Online]. Available: https://tools.ietf.org/html

/rfc8252.

[3] D. Hardt, “The OAuth 2.0 authorization

framework (No. RFC 6749).,” 2012. [Online].

Available: https://tools.ietf.org/html/rfc6749.

[4] R. Yang, W. C. Lau and S. Shi, “Breaking and

Fixing Mobile App Authentication with

OAuth2.0-based Protocols,” in International

Conference on Applied Cryptography and

Network Security, 2017.

[5] R. Yang, W. C. Lau and T. Liu, “Signing into

One Billion Mobile App Accounts Effortlessly

with OAuth2.0,” in Black Hat Europe, 2016.

[6] T. Berners-Lee, “Uniform Resource Locators

(URL),” 1994. [Online]. Available:

https://tools.ietf.org/html/rfc1738.

[7] T. Berners-Lee, “Uniform Resource Identifier

(URI): Generic Syntax,” 2005. [Online].

Available: https://tools.ietf.org/html/rfc3986.

[8] WhatWG, “URL Living Standard,” 2018.

[Online]. Available: https://url.spec.whatwg.org.

[9] E. T. Lodderstedt, “OAuth 2.0 Threat Model and

Security Considerations,” 2013. [Online].

Available: https://tools.ietf.org/html/rfc6819.

[10] N. Sakimura, “OpenID Connect Core 1.0,” 2014.

[Online]. Available: https://openid.net/specs/

openid-connect-core-1_0-final.html.

[11] J. Wang, “Covert Redirect Vulnerability,” 2014.

[Online]. Available: http://tetraph.com/covert

_redirect/.

[12] J. Bradley, “Covert Redirect and its real impact

on OAuth and OpenID Connect,” 2014.

[Online]. Available: http://www.thread-

safe.com/2014/05/covert-redirect-and-its-real-

impact-on.html.

[13] E. T. Lodderstedt, “OAuth 2.0 Security Best

Current Practice (draft 07),” 2018. [Online].

Available: https://tools.ietf.org/html/draft-ietf-

oauth-security-topics-07.

[14] Paypal, “Stricter Redirect Checks Required on

Log In With PayPal Applications,” 2015.

[Online]. Available: https://www.paypal-

engineering.com/2015/03/30/stricter-redirect-

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149731 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 784

checks-required-on-log-in-with-paypal-

applications/.

[15] Facebook, “Strict URI Matching,” 2017.

[Online]. Available: https://developers.facebook.

com/blog/post/2017/12/18/strict-uri-matching/.

[16] E. Homakov, “How I hacked Github again,”

2014. [Online]. Available: http://homakov.

blogspot.com/2014/02/how-i-hacked-github-

again.html.

[17] J. Wang, “Microsoft Live Online Service OAuth

2.0 Covert Redirect Web Security Bugs

(Information Leakage & Open Redirect),” 2014.

[Online]. Available: http://www.tetraph.com

/blog/covert-redirect/microsoft-lives-oauth-2-0-

covert-redirect- vulnerablity/.

[18] prakharprasad, “Slack OAuth2 "redirect_uri"

Bypass,” Hackerone, 2014. [Online]. Available:

https://hackerone.com/reports/2575.

[19] ethancruize, “Stealing Users OAUTH Tokens via

redirect_uri,” Hackerone, 2018. [Online].

Available:

https://hackerone.com/reports/405100.

[20] N. B. S. Harsha, “Oauth 2.0 redirection bypass

cheat sheet,” 2016. [Online]. Available:

http://nbsriharsha.blogspot.com/?view=sidebar.

[21] filedescriptor, “Bypassing callback_url

validation on Digits,” Hackerone, 2016.

[Online]. Available: https://hackerone.com

/reports/108113.

[22] filedescriptor, “Internet Explorer has a URL

problem,” 2016. [Online]. Available:

https://blog.innerht.ml/internet-explorer-has-a-

url-problem/.

[23] Y. Tian, “1000 Ways To Die In Mobile OAuth,”

in Black Hat USA, 2016.

