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Abstract - Clustering is one of the most common 

exploratory data analysis technique used to get an 

intuition about the structure of the data. It can be defined 

as the task of identifying subgroups in the data such that 

data points in the same subgroup (cluster) are very 

similar while data points in different clusters are very 

different. In other words, we try to find homogeneous 

subgroups within the data such that data points in each 

cluster are as similar as possible according to a similarity 

measure such as euclidean-based distance or correlation-

based distance. The decision of which similarity measure 

to use is application specific. K-means is one of the 

simplest unsupervised learning algorithms that solve the 

well-known clustering problem. K - Means clustering 

algorithm is a scheme for clustering continuous and 

numeric data. As K-Means algorithm consists of scheme 

of random initialization of centroids, every time it is run, 

it gives different or slightly different results because it 

may reach some local optima. Quantification of such 

aforementioned variation is of some importance as this 

sheds light on the nature of the Discrete K-Means 

Objective function with regards its maxima and minima. 

The K-Means Clustering algorithm aims at minimizing 

the aforementioned Objective function. In this research 

investigation, the author has attempted to quantify the 

variation of results of the K-Means Clustering 

Algorithm, run 10 times on the first 25 Prime numbers. 

Also, a notion of Percentage Uncertainty of clustering 

assignment for each data set point is computed for each 

run of the K- Means Clustering Algorithm. Also, a 

criterion is proposed for the applicability of K-Means 

Clustering Algorithm for the given data set. 

 

Index Terms - K-Means Clustering, Clustering 

Uncertainty  

I.INTRODUCTION 

 

[1]defines the notion of K-Means Clustering in detail. 

k-means clustering is a method of vector quantization, 

originally from signal processing, that aims to 

partition n observations into k clusters in which each 

observation belongs to the cluster with the nearest 

mean (cluster centers or cluster centroid), serving as a 

prototype of the cluster. This results in a partitioning 

of the data space into Voronoi cells. It is popular for 

cluster analysis in data mining. k-means clustering 

minimizes within-cluster variances (squared 

Euclidean distances), but not regular Euclidean 

distances, which would be the more difficult Weber 

problem: the mean optimizes squared errors, whereas 

only the geometric median minimizes Euclidean 

distances. For instance, better Euclidean solutions can 

be found using k-medians and k-medoids. 

Stuart P. Lloyd [2] advented the notion of Least 

squares quantization in pcm.  It has long been realized 

that in pulse-code modulation (PCM), with a given 

ensemble of signals to handle, the quantum values 

should be spaced more closely in the voltage regions 

where the signal amplitude is more likely to fall. It has 

been shown by Panter and Dite that, in the limit as the 

number of quanta becomes infinite, the asymptotic 

fractional density of quanta per unit voltage should 

vary as the one-third power of the probability density 

per unit voltage of signal amplitudes. In this paper the 

corresponding result for any finite number of quanta is 

derived; that is, necessary conditions are found that the 

quanta and associated quantization intervals of an 
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optimum finite quantization scheme must satisfy. The 

optimization criterion used is that the average 

quantization noise power be a minimum. It is shown 

that the result obtained here goes over into the Panter 

and Dite result as the number of quanta become large. 

The optimum quantization schemes for 26 quanta, b = 

1,2, . ,7 are given numerically for Gaussian and for 

Laplacian distribution of signal amplitudes. 

J. MacQueen [3] details some methods for 

classification and analysis of multivariate observations  

Shenchao Du et al [4] detailed Aircraft Design 

Optimation with Uncertainty based On Fuzzy 

Clustering Analysis. According to them Uncertainty 

always exists in any design problems; conventional 

aircraft design with deterministic optimization may 

achieve underdesign or overdesign. Therefore, it is 

necessary to consider uncertainty analysis in aircraft 

concept design. Traditional uncertainty analyses need 

many sampling points to simulate the uncertain 

models. These methods include a large number of 

calculations to achieve the required accuracy. To 

increase the efficiency of uncertainty analysis and 

reduce the effect of error propagation on uncertainty 

models, a method with dynamic surrogate models 

based on fuzzy clustering analysis was proposed by 

them in this paper. Among the design spaces, the 

sampling points with little influence on response 

surface are abandoned by dynamic screening until the 

surrogate model reaches the expected level of 

accuracy. They then applied this method to the 

optimization of a hypothetical aircraft concept design, 

which shows that the calculated amount of uncertainty 

analysis can be reduced effectively while the 

optimized performance can satisfy the reliability and 

robustness. 

Carl Edward Rasmussen et. al [5] carried out research 

on Modeling and Visualizing Uncertainty in Gene 

Expression Clusters Using Dirchlet Process Mixtures. 

Although the use of clustering methods has rapidly 

become one of the standard computational approaches 

in the literature of microarray gene expression data, 

little attention has been paid to uncertainty in the 

results obtained. Dirichlet process mixture (DPM) 

models provide a nonparametric Bayesian alternative 

to the bootstrap approach to modeling uncertainty in 

gene expression clustering. Most previously published 

applications of Bayesian model-based clustering 

methods have been to short time series data. In this 

paper, the authors presented a case study of the 

application of nonparametric Bayesian clustering 

methods to the clustering of high-dimensional non 

time series gene expression data using full Gaussian 

covariances. The authors use the probability that two 

genes belong to the same cluster in a DPM model as a 

measure of the similarity of these gene expression 

profiles. Conversely, this probability can be used to 

define a dissimilarity measure, which, for the purposes 

of visualization, can be input to one of the standard 

linkage algorithms used for hierarchical clustering. 

Biologically plausible results are obtained from the 

Rosetta compendium of expression profiles which 

extend previously published cluster analyses of this 

data. 

Prasad, I.L.N. et al., [6] presented their research on 

Analysis of Uncertainty Inherent ti Valuation 

Methodologies in Construction Industry. In this 

research investigation, the authors presented a Scheme 

to analyze uncertainty inherent to valuation 

methodologies in the construction industry. Firstly, 63 

construction projects were considered and their 

Uncertainities were computed for each of the valuation 

methodologies of Cost Approach Method, Market 

Approach Method and Income Approach Method. For 

each of the Valuation Approach, these Uncertainities 

are then clustered using K-Means Clustering 

Algorithm. Using a proposed notion of Cluster Level 

Uncertainty, the authors compute the Upper Bound 

and Lower Bound Uncertainities for the 

aforementioned thusly Clustered rote Uncertainities of 

the 63 Construction projects. Furthermore, a notion of 

Relative Importance Index and Ensembling Scheme is 

also proposed to ascribe importance coefficient to the 

Cluster Level Uncertainty of each Construction 

Project for the different valuation approaches used and 

combine the values of the three valuation approaches 

appropriately to get one value of Cluster Level 

Uncertainty, respectively. Cluster level Uncertainty is 

useful as most Construction projects have some 

semblance with past projects and therefore one can use 

the Cluster Level Uncertainty to find the Uncertainty 

of any Construction project in progress, i.e., which has 

not finished yet. For validation purposes the authors 

considered the above analysis for all 63 projects and 

repeated this scheme on the first 58 Construction 

Projects and for the next 5 Construction Projects, the 

authors used Linear Regression based Forecasting to 

predict the Uncertainities of the aforementioned last 5 

Construction Projects. Then, the Uncertainities of the 
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first 58 Construction Projects and the predicted 

Uncertainities last 5 Construction Projects are 

considered and these are Clustered using K-Means 

Clustering Algorithm. The authors then compute the 

Cluster Level Uncertainities for each of the last 5 

Construction Project Uncertainities using the 

proposed notion of Cluster Level Uncertainty and use 

the proposed Relative Importance Index and 

Ensembling Scheme to combine the values gotten by 

each of the three valuation approaches. Finally, the 

authors compared these Ensemble Values of the 

Validation Approach and the actual data case analysis. 

Paniz Karbasi [7] presents a fast-seeding technique for 

K-Means Algorithm. The k-means algorithm is one of 

the most popular clustering techniques because of its 

speed and simplicity. This algorithm is very simple 

and easy to understand and implement. The first step 

of this algorithm is choosing k initial cluster centers. 

The way that this set of initial cluster centers are 

chosen, have a great effect on speed and quality of k-

means. One of the most popular seeding techniques is 

k-means++ initialization, but this method needs k 

passes over the dataset. The author proposes a new 

seeding technique which chooses the initial centers 

much faster than k-means++. 

[8] details the reasons for variance in the results of K-

Means Clustering algorithm every time it is excuted. 

The output of the K-Means clustering changes from 

one execution to the other because of the following 

reasons: 

KMeans is deterministic, but it depends on the initial 

centroids. Some methods to decide the initial 

centroids, such as KMeans++, have a random 

component. So, that is what leads to the aforesaid 

changes. 

Finding the global minimum of a k-means clustering 

is NP-hard. Therefore, normally, we randomly 

initialize K-Means Clustering algorithm with different 

random seeds and use the best outcome (sub-optimal 

solution). 

Because k_means is an unsupervised clustering 

method. For each execution, it does not have any pre-

knowledge about the input data, so, for example, it 

does not know which cluster should be cluster number 

one, and just considers one number for each cluster 

during the process. But there is a solution for it, if the 

data is not stochastic. During all executions center of 

each specific cluster would not change. Hence, 

alongside output clustering of K-means, we can also 

read center of clusters that is calculated with k-means, 

and use them based on their distance from original 

coordinates, or based on their coordinates, which 

during all executions will not be changed, and use 

them to make our own unchanged clusters. For 

instance, we can make our own definition that cluster 

with the smallest coordinates should be cluster one, 

and so on. 

This is a consequence of the random initialization of 

the clusters in the first iteration. To avoid different 

results, we should always select the same initial 

centroids. Selecting the optimal set of centroids is an 

NP-hard problem. For a better initialization it is 

suggested that we consider the K-Means ++ method: 

Arthur, D., & Vassilvitskii, S. [9] presented k-

means++ algorithm discussing the advantages of 

careful seeding. The k-means method is a widely used 

clustering technique that seeks to minimize the 

average squared distance between points in the same 

cluster. Although it offers no accuracy guarantees, its 

simplicity and speed are very appealing in practice. By 

augmenting k-means with a very simple, randomized 

seeding technique, the authors obtained an algorithm 

that is Θ(log k)-competitive with the optimal 

clustering. Preliminary experiments show that this 

augmentation improves both the speed and the 

accuracy of k-means, often quite dramatically. 

Olivier Bachem et.al., [10] detail Distributed and 

Provably Good Seedings for k-Means in Constant 

Rounds. The k-means++ algorithm is the state of the 

art algorithm to solve k-Means clustering problems as 

the computed clusterings are O(log k) competitive in 

expectation. However, its seeding step requires k 

inherently sequential passes through the full data set 

making it hard to scale to massive data sets. The 

standard remedy is to use the k-means|| algorithm 

which reduces the number of sequential rounds and is 

thus suitable for a distributed setting. In this paper, the 

authors provide a novel analysis of the k-means|| 

algorithm that bounds the expected solution quality for 

any number of rounds and oversampling factors 

greater than k, the two parameters one needs to choose 

in practice. In particular, the authors show that k-

means|| provides provably good clusterings even for a 

small, constant number of iterations. This theoretical 

finding explains the common observation that k-

means|| performs extremely well in practice even if the 

number of rounds is low. The authors further provide 

a hard instance that shows that an additive error term 
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as encountered in this analysis is inevitable if less than 

k−1 rounds are employed. 

Olivier Bachem et.al., [11] discuss in detail about Fast 

and Provably Good Seedings for k-Means. Seeding – 

the task of finding initial cluster centers – is critical in 

obtaining high quality clusterings for k-Means. 

However, k-means++ seeding, the state-of-the-art 

algorithm, does not scale well to massive datasets as it 

is inherently sequential and requires k full passes 

through the data. It was recently shown that Markov 

chain Monte Carlo sampling can be used to efficiently 

approximate the seeding step of k-means++. However, 

this result requires assumptions on the data generating 

distribution. The authors propose a simple yet fast 

seeding algorithm that produces provably good 

clusterings even without assumptions on the data. The 

authors analysis shows that the algorithm allows for a 

favourable trade-off between solution quality and 

computational cost, speeding up k-means++ seeding 

by up to several orders of magnitude. The authors 

validate their theoretical results in extensive 

experiments on a variety of real-world data sets. 

Fouad Khan [12] presented his research on An Initial 

Seed Selection Algorithm for K-means Clustering of 

Georeferenced Data to Improve Replicability of 

Cluster Assignments for Mapping Application. K-

means is one of the most widely used clustering 

algorithms in various disciplines, especially for large 

datasets. However, the method is known to be highly 

sensitive to initial seed selection of cluster centers. K-

means++ has been proposed to overcome this problem 

and has been shown to have better accuracy and 

computational efficiency than k-means. In many 

clustering problems though –such as when classifying 

georeferenced data for mapping applications- 

standardization of clustering methodology, 

specifically, the ability to arrive at the same cluster 

assignment for every run of the method i.e. 

replicability of the methodology, may be of greater 

significance than any perceived measure of accuracy, 

especially when the solution is known to be non-

unique, as in the case of k-means clustering. The 

author proposes a simple initial seed selection 

algorithm for k-means clustering along one attribute 

that draws initial cluster boundaries along the “deepest 

valleys” or greatest gaps in dataset. Thus, it 

incorporates a measure to maximize distance between 

consecutive cluster centers which augments the 

conventional k-means optimization for minimum 

distance between cluster center and cluster members. 

Unlike existing initialization methods, no additional 

parameters or degrees of freedom are introduced to the 

clustering algorithm. This improves the replicability of 

cluster assignments by as much as 100% over k-means 

and k-means++, virtually reducing the variance over 

different runs to zero, without introducing any 

additional parameters to the clustering process. 

Further, the proposed method is more computationally 

efficient than k-means++ and in some cases, more 

accurate. 

K. Karteeka Pavan et.al., [13] carried out research on 

Robust seed selection algorithm for k-means type 

algorithms - Optimal centroids using high density 

object. Selection of initial seeds greatly affects the 

quality of the clusters and in k-means type algorithms. 

Most of the seed selection methods result different 

results in different independent runs. The authors 

propose a single, optimal, outlier insensitive seed 

selection algorithm for k-means type algorithms as 

extension to k-means++. The experimental results on 

synthetic, real and on microarray data sets 

demonstrated that effectiveness of the new algorithm 

in producing the clustering results. 

 

II PROBLEM STATEMENT 

 

The various steps of the problem of concern are: 

1. Consider the first 25 Prime numbers starting with 

2 as the first prime. 

2. Perform K-Means Clustering Algorithm on the 

data of the first 25 primes (aforementioned) 10 

times. 

3. Ascertain Cluster Assignments of the data in 

every run of the 10 runs of the K-Means 

Clustering Algorithm. 

4. Evaluate Cluster Centroids of Each Cluster for 

every run of the 10 runs of the K-Means 

Clustering Algorithm. 

5. Coin a definition of Uncertainty of the Cluster 

Assignments from the data of the 10 Cluster 

Assignments (varying) gotten by 10 runs of the K-

Means Clustering Algorithm. 

6. Using this definition we compute percentage 

uncertainty for each data point for each run of the 

10 runs of the K-Means Clustering Algorithm. 

7. Finally plotting the percentage uncertainty for 

each data point for each run of the 10 runs of the 

K-Means Clustering Algorithm. 
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8. Propose a criterion is proposed for the 

applicability of K-Means Clustering Algorithm 

for the given data set.   

9. Test whether K-Means Clustering Algorithm can 

be applied on the considered data set based on the 

criterion stated in 8. 

 

III EXISTING THEORY 

 

K- Means Clustering Algorithm 

Clustering is the classification of objects into different 

groups, or more precisely, the partitioning of a data set 

into subsets (clusters), so that the data in each subset 

(ideally) share some common trait - often according to 

some defined distance measure.  

K- Means method falls in the category of Partitional 

Clustering. 

Common Distance measures 

Distance measure will determine how the similarity of 

two elements is calculated and it will influence the 

shape of the clusters. 

They include: 

1. The Euclidean distance (also called 2-norm 

distance) is given by:  
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2. The Manhattan distance (also called taxicab norm 

or 1-norm) is given by: 
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4. Inner product space: The angle between two 

vectors can be used as a distance measure when 

clustering high dimensional data.  
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The k-means algorithm is an algorithm to cluster m

objects based on attributes into K partitions, where 

mK  . 

It assumes that the object attributes form a vector 

space.  

An algorithm for partitioning (or clustering) N data 

points into K disjoint subsets jS
 containing data 

points so as to minimize the sum-of-squares criterion.  

2
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where mx
 is a vector representing the the 

thm  data 

point and j
is the geometric centroid of the data 

points in jS
.  

Simply speaking K-means clustering is an algorithm 

to classify or to group the objects based on 

attributes/features into K number of groups. K is 

positive integer number.  

The grouping is done by minimizing the sum of 

squares of distances between data and the 

corresponding cluster centroid. 

 

How the K-Mean Clustering algorithm works? 

Fig 1- Flow chart showing the working of the K-

Means Clustering Algorithm 

 

Step 1: Begin with a decision on the value of K = 

number of clusters. 

Step 2: Put any initial partition that classifies the data 

into K clusters. You may assign the training samples 
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randomly, or systematically as the following: Take the 

first k training sample as single element clusters       

Assign each of the remaining ( Km− ) training 

sample to the cluster with the nearest centroid. After 

each assignment, recompute the centroid of the 

gaining cluster.  

Step 3: Take each sample in sequence and compute its 

distance from the centroid of each of the clusters. If a 

sample is not currently in the cluster with the closest 

centroid, switch this sample to that cluster and update 

the centroid of the cluster gaining the new sample and 

the cluster losing the sample.  

Step 4. Repeat step 3 until convergence is achieved, 

that is until a pass through the training sample causes 

no new assignments.  

 

Choosing the right number (K) of Clusters  

The Elbow Method First of all, we compute the sum 

of squared error (SSE) for some values of K (for 

example 2, 4, 6, 8, etc.). The SSE is defined as the sum 

of the squared distance between each member of the 

cluster and its centroid. Mathematically, it is J as 

defined already. If we plot K against the SSE, we will 

see that the error decreases as K gets larger; this is 

because when the number of clusters increases, they 

should be smaller, so distortion is also smaller. The 

idea of the elbow method is to choose the K at which 

the SSE decreases abruptly. This produces an "elbow 

effect" in the graph of K against SSE. 

 

Cluster Evaluation-Silhouette Score 

The Silhouette Score is a measure of how much 

similarity an object bears to its own cluster (cohesion) 

compared to other clusters (separation). The values of 

the Silhouette Score range from -1 to +1.  When the 

Silhouette Score is high, it indicates how well an 

object matches to its own cluster and how poorly it 

matches with the neighbouring clusters. 

In our study, we calculate the Silhouette Score in the 

Euclidean Distance Metric. 

Firstly, we compute the mean distance between 

iCi
 (data point i  in the cluster iC

) and all other 

data points in the same cluster, as 
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=
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where
( )jid ,

 is the distance between data points i

and 
j

 in the cluster iC
 and iC

 indicates the number 

of data points in the Cluster iC
. We divide by 

1−iC
 

as we do not include the distance  
( )iid ,

 in the sum. 

The value 
( )ia

 can be interpreted as a measure of how 

well i  belongs to its cluster (the smaller the value, the 

better the belongingness). 

We now compute the mean distance of point i  to some 

cluster kC
as the mean of the distance from i  to all 

points in kC
. That is, we compute 
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For each data point iCi
, we define. 
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to be the smallest mean distance of i to all points in 

any other cluster, and the cluster with this smallest 

aforementioned mean distance is said to be the 

neighbouring cluster of i . 

The Silhouette Score of one data point i  is defined as 
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Existing Definition of Uncertainty of K-Means 

Clustering 

[6] presents in detail a notion of definition of 

Uncertainty of K-Means Clsutering. It is detailed as 

follows: 

Cluster Level Uncertainty 

Lower & Upper Bound Uncertainty implies that each 

point of 
thp

 Cluster,  i.e., pC
has an Uncertainty of 

( ) ( )( )
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on the Upper Side, when the Uncertainty points 
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(representing the various feature data points) are 

clustered using K-Means Clustering Algorithm. 

Here, 
( )

i
jtyUncertaini  is the value of the Uncertainty 

of the 
thi  feature data point computed using 

thj
 

approach, 
( )( )

i
Ciall

jtyUncertainiMin
p

 is the Minimum 

value of the Cluster pC
. 

( )( )
i

Ciall
jtyUncertainiMax

p  is 

the Maximum value of value of the Cluster pC
.  
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This uncertainty is the Cluster Level Uncertainty of 

the point after the points have been clustered using K-

Means Algorithm. This macro group level uncertainty 

is useful because it represents the uncertainty of a 

feature data point with respects to all the points of the 

cluster or group to which it belongs wherein these 

points resemble each other more than the points 

outside of the Cluster.  

 

IV PROPOSED THEORY 

 

Definition of Uncertainty of K-Means Clustering 

We propose the following definition of Uncertainty of 

K-Means Clustering: 
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where ix
 is the 

thi  data point of the data set 

considered on which we perform K-Means Clustering 

(Algorithm), 

( )
jixtyUncertaini%
 is the % Uncertainty of the 

thi  data point at the 
thj

 run of the K-Means 

Clustering Algorithm,  

i  is the Average of the Centroids of the Clusters to 

which the data point ix
 belonged to in the 10 runs of 

the K-Means Clustering Algorithm  

and ijx
 is the Centroid of the Cluster to which the data 

point ix
 belongs to in the 

thj
 run of the K-Means 

Clustering Algorithm.  

Criterion for Applicability of the K-Means Clustering 

Algorithm 

We compute a value given by 
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where ix
 is the 

thi  data point, 

n  is the number of data points of the data set 

considered on which we perform K-Means Clustering 

(Algorithm) 

We now say,  
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then the data point ix
 has passed the K-Means 

applicability criterion. Here, w  is the number of runs 

of the K-Means Clustering Algorithm. 

, then K-Means Clustering Algorithm can be said 

applicable on the considered data set. 

 

Note of Insight 

It should be noted that here, in our study, we have 

considered 10 runs of which only distinct random 

centroid initialization happened only 3 times. And 

there exist 
!)(!

!

KnK

n
CK

n

−
=

 number of possible 

distinct cases available for random centroid 

initializations, K being the number of Clusters 

considered. Hence, if we wish to have very reliable 

applicability criterion, we need to consider large 

number of runs of the K-Means Clustering Algorithm. 

 

V RESULTS & CONCLUSIONS 

 

The results and conclusions are detailed as follows: 
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Table 1: Cluster Assignments 

  Cluster Assignments 

Sl. No Prime Number Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9  Run 10 

1 2 2 5 3 3 5 3 1 4 2 1 

2 3 2 5 3 3 5 3 1 4 2 1 

3 5 2 5 3 3 5 3 1 4 2 1 

4 7 2 5 3 3 5 3 1 4 2 1 

5 11 2 5 3 3 5 3 1 4 2 1 

6 13 2 5 3 3 5 3 1 4 2 1 

7 17 1 4 3 1 1 1 5 3 2 5 

8 19 1 4 2 1 1 1 5 3 2 5 

9 23 1 4 2 1 1 1 5 3 2 5 

10 29 1 4 2 1 1 1 5 3 5 5 

11 31 1 4 2 1 1 1 5 3 5 5 

12 37 3 2 2 2 3 4 2 1 5 2 

13 41 3 2 2 2 3 4 2 1 5 2 

14 43 3 2 2 2 3 4 2 1 5 2 

15 47 3 2 1 2 3 4 2 1 5 2 

16 53 3 2 1 2 3 4 2 2 3 2 

17 59 4 3 1 5 2 2 3 2 3 3 

18 61 4 3 1 5 2 2 3 2 3 3 

19 67 4 3 5 5 2 2 3 2 3 3 

20 71 4 3 5 5 2 2 3 2 4 3 

21 73 4 3 5 5 2 2 3 2 4 3 

22 79 5 1 5 4 4 5 4 5 4 4 

23 83 5 1 4 4 4 5 4 5 4 4 

24 89 5 1 4 4 4 5 4 5 1 4 

25 97 5 1 4 4 4 5 4 5 1 4 

Table 2 – Cluster Centroids 

  Cluster Centroids  
Sl. 

No 

Prime 

Number Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9  Run 10 Average 

1 2 6.833 6.833 9.625 6.833 6.833 6.833 6.833 6.833 11.11 9.625 7.8191 

2 3 6.833 6.833 9.625 6.833 6.833 6.833 6.833 6.833 11.11 9.625 7.8191 

3 5 6.833 6.833 9.625 6.833 6.833 6.833 6.833 6.833 11.11 9.625 7.8191 

4 7 6.833 6.833 9.625 6.833 6.833 6.833 6.833 6.833 11.11 9.625 7.8191 

5 11 6.833 6.833 9.625 6.833 6.833 6.833 6.833 6.833 11.11 9.625 7.8191 

6 13 6.833 6.833 9.625 6.833 6.833 6.833 6.833 6.833 11.11 9.625 7.8191 

7 17 23.8 23.8 9.625 23.8 23.8 23.8 23.8 23.8 11.11 9.625 19.696 

8 19 23.8 23.8 9.625 23.8 23.8 23.8 23.8 23.8 11.11 9.625 19.696 

9 23 23.8 23.8 34 23.8 23.8 23.8 23.8 23.8 11.11 34 24.571 

10 29 23.8 23.8 34 23.8 23.8 23.8 23.8 23.8 38 34 27.26 

11 31 23.8 23.8 34 23.8 23.8 23.8 23.8 23.8 38 34 27.26 

12 37 44.2 44.2 34 44.2 44.2 44.2 44.2 44.2 38 34 41.54 

13 41 44.2 44.2 34 44.2 44.2 44.2 44.2 44.2 38 34 41.54 

14 43 44.2 44.2 34 44.2 44.2 44.2 44.2 44.2 38 34 41.54 

15 47 44.2 44.2 55 44.2 44.2 44.2 44.2 44.2 38 55 45.74 

16 53 44.2 44.2 55 44.2 44.2 44.2 44.2 44.2 60 55 47.94 

17 59 66.2 66.2 55 66.2 66.2 66.2 66.2 66.2 60 55 63.34 

18 61 66.2 66.2 55 66.2 66.2 66.2 66.2 66.2 60 55 63.34 

19 67 66.2 66.2 72.5 66.2 66.2 66.2 66.2 66.2 60 72.5 66.84 

20 71 66.2 66.2 72.5 66.2 66.2 66.2 66.2 66.2 76.5 72.5 68.49 

21 73 66.2 66.2 72.5 66.2 66.2 66.2 66.2 66.2 76.5 72.5 68.49 

22 79 87 87 72.5 87 87 87 87 87 76.5 72.5 83.05 

23 83 87 87 89.666 87 87 87 87 87 76.5 89.666 86.4832 

24 89 87 87 89.666 87 87 87 87 87 93 89.666 88.1332 

25 97 87 87 89.666 87 87 87 87 87 93 89.666 88.1332 
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Table 3 – Percentage Uncertainties of Clustering Assignments of The First 25 Primes Over 10 Runs of the K-Means 

Clustering Algorithm 

Percentage Uncertainty of The First 25 Primes Listed Vertically for the 10 Runs of the K-Means Clustering Algorithm 

Average 

% U Run 

1 

% U  

Run 2 

% U  

Run 3 

% U  

Run 4 

% U  

Run 5 

% U  

Run 6 

% U  

Run 7 

% U 

Run 8  

% U  

Run 9 

% U  

Run 10 

7.8191 12.61143 12.61143 -23.096 12.61143 12.61143 12.61143 12.61143 12.61143 -42.088 -23.096 

7.8191 12.61143 12.61143 -23.096 12.61143 12.61143 12.61143 12.61143 12.61143 -42.088 -23.096 

7.8191 12.61143 12.61143 -23.096 12.61143 12.61143 12.61143 12.61143 12.61143 -42.088 -23.096 

7.8191 12.61143 12.61143 -23.096 12.61143 12.61143 12.61143 12.61143 12.61143 -42.088 -23.096 

7.8191 12.61143 12.61143 -23.096 12.61143 12.61143 12.61143 12.61143 12.61143 -42.088 -23.096 

7.8191 12.61143 12.61143 -23.096 12.61143 12.61143 12.61143 12.61143 12.61143 -42.088 -23.096 

19.696 -20.8367 -20.8367 51.13221 -20.8367 -20.8367 -20.8367 -20.8367 -20.8367 43.59261 51.13221 

19.696 -20.8367 -20.8367 51.13221 -20.8367 -20.8367 -20.8367 -20.8367 -20.8367 43.59261 51.13221 

24.571 3.137845 3.137845 -38.3745 3.137845 3.137845 3.137845 3.137845 3.137845 54.7841 -38.3745 

27.26 12.69259 12.69259 -24.7249 12.69259 12.69259 12.69259 12.69259 12.69259 -39.3984 -24.7249 

27.26 12.69259 12.69259 -24.7249 12.69259 12.69259 12.69259 12.69259 12.69259 -39.3984 -24.7249 

41.54 -6.40347 -6.40347 18.15118 -6.40347 -6.40347 -6.40347 -6.40347 -6.40347 8.521907 18.15118 

41.54 -6.40347 -6.40347 18.15118 -6.40347 -6.40347 -6.40347 -6.40347 -6.40347 8.521907 18.15118 

41.54 -6.40347 -6.40347 18.15118 -6.40347 -6.40347 -6.40347 -6.40347 -6.40347 8.521907 18.15118 

45.74 3.366856 3.366856 -20.2449 3.366856 3.366856 3.366856 3.366856 3.366856 16.92173 -20.2449 

47.94 7.801418 7.801418 -14.7267 7.801418 7.801418 7.801418 7.801418 7.801418 -25.1564 -14.7267 

63.34 -4.51531 -4.51531 13.16704 -4.51531 -4.51531 -4.51531 -4.51531 -4.51531 5.273129 13.16704 

63.34 -4.51531 -4.51531 13.16704 -4.51531 -4.51531 -4.51531 -4.51531 -4.51531 5.273129 13.16704 

66.84 0.95751 0.95751 -8.46798 0.95751 0.95751 0.95751 0.95751 0.95751 10.23339 -8.46798 

68.49 3.343554 3.343554 -5.85487 3.343554 3.343554 3.343554 3.343554 3.343554 -11.6951 -5.85487 

68.49 3.343554 3.343554 -5.85487 3.343554 3.343554 3.343554 3.343554 3.343554 -11.6951 -5.85487 

83.05 -4.75617 -4.75617 12.70319 -4.75617 -4.75617 -4.75617 -4.75617 -4.75617 7.886815 12.70319 

86.4832 -0.59757 -0.59757 -3.68025 -0.59757 -0.59757 -0.59757 -0.59757 -0.59757 11.54351 -3.68025 

88.1332 1.285781 1.285781 -1.73919 1.285781 1.285781 1.285781 1.285781 1.285781 -5.5221 -1.73919 

88.1332 1.285781 1.285781 -1.73919 1.285781 1.285781 1.285781 1.285781 1.285781 -5.5221 -1.73919 

Table 4 – Silhouette Widths of Clusters Gotten by the K-Means Clustering Algorithm Runs 

Silhouette Widths (Cluster Evaluation) 

Run Instance Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Average 

1 0.4187 0.6339 0.5012 0.5144 0.4829 0.5163 

2 0.4861 0.5012 0.5164 0.4187 0.6339 0.5172 

3 0.4301 0.3795 0.6365 0.4015 0.5064 0.4928 

4 0.4208 0.5042 0.6372 0.4829 0.5183 0.5188 

5 0.4371 0.5164 0.5012 0.4861 0.6488 0.5244 

6 0.4260 0.5210 0.6372 0.5062 0.4912 0.5222 

7 0.6488 0.5043 0.5144 0.4829 0.4408 0.5248 

8 0.5012 0.5196 0.4187 0.6339 0.4912 0.5186 

9 0.5020 0.6153 0.4424 0.4028 0.5018 0.5173 

10 0.6444 0.4223 0.4957 0.4015 0.3975 0.4967 

For our data set, we have LHS = 
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hence as per the proposed criterion we cannot apply 

K-Means Clustering Algorithm on the considered data 

set for best results. 

 

Percentage Uncertainty Plots 

The following are the Percentage Uncertainty Plots of 

Clustering Assignments of The First 25 Primes Over 

10 Runs of the K-Means Clustering Algorithm: 
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Fig 2 - Percentage Clustering Uncertainty Plot for the 

First Prime Number 

Fig 3 - Percentage Clustering Uncertainty Plot for the 

Seventh Prime Number 

Fig 4 - Percentage Clustering Uncertainty Plot for the 

Ninth Prime Number 

 

Fig 5 - Percentage Clustering Uncertainty Plot for the 

Tenth Prime Number 

Fig 6 - Percentage Clustering Uncertainty Plot for the 

Twelfth Prime Number 

Fig 7 - Percentage Clustering Uncertainty Plot for the 

Fifteenth Prime Number 

 
Fig 8 - Percentage Clustering Uncertainty Plot For 

The Sixteenth Prime Number 

Fig 9 - Percentage Clustering Uncertainty Plot for the 

Seventeenth Prime Number 
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Fig 10 - Percentage Clustering Uncertainty Plot for 

the Nineteenth Prime Number 

 
Fig 11 - Percentage Clustering Uncertainty Plot for 

the Twentieth Prime Number 

 
Fig 12 - Percentage Clustering Uncertainty Plot for 

The Twenty Secondth Prime Number 

 
Fig 13 - Percentage Clustering Uncertainty Plot for 

The Twenty Third Prime Number 

 
Fig 14 - Percentage Clustering Uncertainty Plot for 

The Twenty Fourth Prime Number 

 

The Uncertainty Plots of the 2nd Prime through 6th 

Prime are same as that of the 1st Prime. 

The Uncertainty Plot of the 8th Prime is same as that 

of the 7th Prime. 

The Uncertainty Plot of the 11th Prime is same as that 

of the 10th Prime. 

The Uncertainty Plots of the 13th Prime through 14th 

Prime are same as that of the 12th Prime. 

The Uncertainty Plot of the 18th Prime is same as that 

of the 17th Prime. 

The Uncertainty Plot of the 21st Prime is same as that 

of the 20th Prime. 

The Uncertainty Plot of the 25th Prime is same as that 

of the 24th Prime. 

Also, the Elbow Plots of all the 10 Runs of the K-

Means Clustering Algorithm indicated that 5 is the 

Optimal Number of Clusters to be considered. 
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