
© December 2021| IJIRT | Volume 8 Issue 7 | ISSN: 2349-6002

IJIRT 153503 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 326

Gesture-Based Multi-Parameter Controller for Mac using

Machine Learning and Computer Vision

Vrushabh Sachin Shah

 Computer Science and Engineering, MIT World Peace University, Pune, India

Abstract - The proposed system uses a lightweight

framework called Media pipe which not only allows for

detection of hands but can classify whether it is the left

or right hand and represents this data as 21 data points

representing the various parts of the hand. With these

uniquely identified 21 data points for each hand, we can

identify different gestures and assign some functionality

for them. The system checks the position of fingers,

which of them are raised, and which are not to uniquely

identify the hand gestures. It is capable of controlling

multiple basic functionalities like increasing or

decreasing the volume level, controlling the brightness

intensity, a virtual mouse, zooming in and out, and

scrolling in all four directions. These functionalities are

divided between the gestures created by the left and right

hand. This particularly comes in handy when watching a

movie or video where the laptop is kept at a distance or

connected to a TV and reaching the keyboard to control

all these functionalities continuously becomes an

irritating task.

Index Terms - Machine Learning, Computer Vision,

Mac, Media Pipe, Gesture Detection, AppleScript.

I.INTRODUCTION

With the advancements in the field of machine

learning and computer vision, it has become possible

to perform tasks like face recognition, object

detection, pose estimation, etc. The proposed system

uses a lightweight, high fidelity machine learning

framework MediaPipe Hands which allows for hand

detection and tracking and is also capable of

classifying the left hand from the right.

It represents the detected hands in the form of 21

different data points which allows identifying the

fingers of the hand and their position uniquely. This

forms the basis for the working of the system, wherein

the position of the fingers is continuously monitored

to check for the different gestures, and when a

registered gesture is encountered the respective

functionality is performed. The system is capable of

controlling various basic functionalities without

requiring the use of the keyboard like controlling the

volume, brightness, mouse with clicking functionality,

zooming in and out on a particular screen, and

scrolling in all four directions. Since the number of

functionalities to be controlled is more these are split

up between gestures created by the left and right hand.

The left-hand gestures control volume and brightness

and the right-hand gestures control the mouse, zoom,

and scroll.

II. OBJECTIVES

The idea is to ease the use of basic functionalities

which we use frequently in our daily life without

requiring to always be near the keyboard but control

them using hand gestures as long as the user is in the

field of view of the webcam or can use a USB webcam

to operate these functionalities from a long distance.

1. Control volume level using hand gestures without

using the keyboard.

2. Increase or decrease the screen brightness.

3. Use the mouse functionality without using the actual

trackpad or mouse along with the click functionality.

4. Zoom in or out on a particular screen or photo using

hand gestures.

5. Scrolling left, right, up, or down as required without

the need for a keyboard or mouse.

III. HAND GESTURES AND THEIR RESPECTIVE

FUNCTIONALITIES

The proposed system uses a variety of hand gestures

created by the left and right hands to control the above-

mentioned functionalities. The webcam is

continuously monitoring for these gestures and when

encountered the respective activity is performed. The

below table shows the various hand gestures and the

functionalities mapped to them.

© December 2021| IJIRT | Volume 8 Issue 7 | ISSN: 2349-6002

IJIRT 153503 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 327

Hand Gesture Hand Functionality

Left Increase Volume

Left Decrease Volume

Left
Increase

Brightness

Left
Decrease

Brightness

Right Mouse

Right Left Click

Right Right Click

Right Zoom In

Hand Gesture Hand Functionality

Right Zoom Out

Table1. Hand Gestures and their Mapped

Functionalities

IV. METHODOLOGY

This section explains in detail the different

components in the system, their working, and the

technologies used. The system uses computer vision to

continuously monitor the user for hand gestures and

when detected perform the respective task.

Fig. 1. System Flowchart

The MediaPipe Hands framework plays the most

important role in detecting hand gestures. It utilizes

machine learning to capture 21 data points of a hand

in the frame. It uses various ML models working

together like palm detection and a hand landmark

model which works on the data returned by the palm

detection model to capture and return the 21 data

points representing hand landmarks. The 21 data

points referring to the various hand landmarks are

shown in Figure 2.

© December 2021| IJIRT | Volume 8 Issue 7 | ISSN: 2349-6002

IJIRT 153503 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 328

Fig. 2. 21 Hand Landmarks Returned by the Hand

Landmark Model

It returns a set of detected hands as a collection of 21

landmarks, where each landmark contains the data

about x, y, and z coordinates which are normalized in

the range [0.0, 1.0] with respect to image height and

width. To get the actual coordinates, these normalized

values are multiplied by the height and width of the

screen which can be obtained by using the size()

method of the pyautogui library. The x coordinates are

multiplied by the width and y coordinates are

multiplied by the height of the screen respectively. The

above ML pipeline also allows identifying left and

right hands uniquely, which allows us to split the

functionalities between the two hands.

The hand gestures can be uniquely identified by

checking which of the fingers of the hand are raised

and not, which can be inferred in either of the two

ways, firstly by calculating the Euclidean distance

between the fingertips represented by the 4th, 8th,

12th, 16th, 20th hand landmark from the wrist which

is represented by the 0th landmark, as seen in Figure

2. If the distance is greater than a specific threshold,

then the finger can be considered as raised otherwise

not. Another method is to check the y-coordinate at

points 6, 8, 10, 12, 14, 16, 18, and 20 as seen in figure

2. If the y-coordinate of the fingertips represented by

points 8, 12, 16, 20 is lesser than the y-coordinate at

points 6, 10, 14, 18, we can infer that the finger is

raised otherwise not. However, to detect whether the

thumb is raised or not we consider the x-coordinate.

For the right thumb, if the x-coordinate of point 4 is

less than that of point 0 as seen in Figure 2, we can

consider it to be raised otherwise not. For the left

thumb, however, if the x-coordinate of the 4th point is

greater than that of the 0th point it is considered to be

raised.

A. Volume Control

A variety of libraries are available to control the

volume for Windows and Linux systems but not for

Mac systems. So we have to make use of osascript

python library which allows us to run

Applescripts which allows automated control over

scriptable Mac applications and facilitate us to

automate key press or sending keystrokes.

Running the “get volume settings” command using

osascript gives us the current volume which can be

rounded to the nearest multiple of 10 and increase and

decrease in volume can be obtained by increasing or

decreasing the current volume in the increments or

decrements of 10 by using the osascript command “set

volume output volume x” where x values between 0 to

100.

For volume control to be activated the webcam checks

if the hand is left and its middle, ring, and the little

ringer are not raised and the thumb and index finger

are raised. Then the Euclidean distance between the

tips of index and thumb is calculated, if it is greater

than a threshold the volume increases in increments of

10, otherwise decreases in the decrements of 10.

B. Brightness Control

This functionality also makes use of the osascript

library and Applescripts as libraries to control the

brightness for Mac are not available directly. For this

to be activated the webcam checks if the hand detected

is the left hand and all its fingers are raised, if yes it

increases the brightness and if none are raised, then it

turns down the brightness. The brightness is controlled

by automating a keypress using AppleScript where

each keyboard key and functionality is assigned a key

code and the key code for increasing the brightness is

144 and for decreasing the brightness is 145. The

AppleScript for automating a keypress is as follows:

tell application “System Events”

key code x

 end tell

Where x is the key code of the key to be pressed or

functionality to be performed.

C. Mouse

The webcam looks for the right hand and checks if

only the index finger is raised if so then it enters the

mouse mode and the mouse cursor is moved along

with the movement of the hand. This is achieved using

pynput library which allows us to control the mouse

by setting its x and y coordinate. The problem however

with this setup is that while trying to reach the lower

© December 2021| IJIRT | Volume 8 Issue 7 | ISSN: 2349-6002

IJIRT 153503 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 329

part of the screen the hand goes out of the field of view

of the camera and tracking fails, so we define a

rectangular region smaller than the actual screen size

and interpolate the coordinates of this region to match

the actual screen size.

For the left click functionality, the webcam checks

whether the index and middle finger of the right hand

are raised, and for the right-click, it checks whether the

index, middle, and ring fingers are raised. The

scrolling functionality makes use of the mouse pointer

functionality itself, when the cursor is near any of the

screen boundaries like left, right, up, or down, it scrolls

in the respective direction using the keyboard control

available with pynput library.

D. Zooming Function

The webcam looks for the right hand and checks if

only the index finger and thumb are raised, and then

by calculating the Euclidean distance between the tips

of the index finger and thumb and by comparing it with

a threshold, it decides whether to zoom in or out. If the

distance is more than that of the threshold set, it zooms

in onto the current screen and zooms out otherwise.

The zoom is again controlled using AppleScript and

we automate the keypress “Command” and “+” for

zoom in and “Command” and “-” for zoom out, the

key code for which is 24 and 27 respectively.

V. CONCLUSION

The system allows for easy control over the basic and

commonly used functionalities like volume control,

brightness, mouse control, and zoom. This comes in

handy when the device is kept at a distance like when

watching a movie or connected to a TV etc. We don’t

need to reach the keyboard and mouse to control these

functionalities as long as we are in the field of view of

the camera. An extended USB Camera allows

controlling these functionalities from even larger

distances. The system also proves to be beneficial if

the keyboard and mouse stop working as we can still

control everything using this virtual mouse and an on-

screen keyboard.

REFERNCES

[1] https://google.github.io/mediapipe/solutions/han

ds

[2] https://www.makeuseof.com/tag/learn-automate-

mac-applescript-part-1-introduction/

[3] https://eastmanreference.com/complete-list-of-

applescript-key-codes

[4] https://ss64.com/osx/osascript.html

[5] https://pynput.readthedocs.io/en/latest/

