
© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154957 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 815

Overview of Compiler Design

Vikash Chauhan
1
, Vineet Patwal

2
, Dovkush

3

1,2,3
B. tech students Dronacharya College of Engineering, Gurgaon, Haryana

Abstract— Research in compiler construction has been

one of the main research areas in computer science.

Researchers in this domain try to understand how a

computer system and computer languages associates. A

compiler translates code written in human-readable

form (source code) to target code (machine code) that is

efficient and optimized in terms of time and space

without changing the meaning of the program. This

paper aims to explain what a compiler is and give an

overview of the stages involved in translating computer

programming languages.

Index Terms: compiler, assembler, phases of a compiler,

analysis, synthesis, types of a compiler.

INTRODUCTION

Assembly or high-level languages are the languages

used to write a program. However, a computer

system understands neither of these languages.

Therefore, a compiler is needed to translate the high-

level language. A high-level language is a language

written in a human-readable form with an easy-to-

read syntax. Examples of such languages are Java,

C#, C and many others. Any computer program

written in a high-level language is known as source

code. A compiler uses a source code as input,

processes it and produces an object code. This object

code is sometimes called machine code or target

code. A compiler is a computer system software that

translates source code into an intermediate code

which afterwards transformed into target code

without changing the meaning of the source code.

The result of this transformation must be efficient

and optimized in terms of time and space. The

interface between a computer programmer and a

computer system is the compiler and the operating

system. A compiler detects errors in the source code

during compilation processes and handle. There are

three types of error in computer programming. They

are syntax, runtime and logic error. The only detected

error during compilation processes is the syntax

error.

Fig 1: Language Processing Systems

 High-Level Language: - If a program contains

#define or #include it is called high-level

language (HLL). They are human readable but

not for machines.

 Pre-Processor: - The pre-processor removes all

the „#‟ directives by including state that is a

combination of machine instructions and some

other data required for the execution.

 Assembly Language – It is an intermediate state

that is a combination of machine instructions and

some other useful data needed for execution.

 Assembler – For every platform (Hardware +

OS) we will have an assembler. They are not

universal since for each platform we have one.

The output of the assembler is called an object

file. It translates assembly language to machine

code.

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154957 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 816

 Relocatable Machine Code – It can be loaded at

any point and can be run. The address within the

program will be in such a way that it will

cooperate with the program movement.

 Loader/Linker – It converts the relocatable code

into absolute code and tries to run the program

resulting in a running program or an error

message. Linker loads a variety of object files

into a single file to make it executable. Then

loader loads it in memory and executes it.

PHASES OF A COMPILER

Before a compiler translates source code to object

code, the source code undergoes a series of steps, and

these steps are called phases of a compiler. Each

stage performs a single and unique duty. A data

structure called a symbol table is needed to store the

output of each stage, and an error handler needs to be

present to keep tracks of errors encounter. The phases

of a compiler consist of six phases. These phases can

be regrouped into two major categories –

1.1 Analysis

1.2 Synthesis

Fig 2: Block Diagram of Compiler

2.1 ANALYSIS:

Analysis is further subdivided into three subparts as

follows:

1. Lexical Analysis

2. Syntax Analysis

3. Semantic Analysis

2.2 SYNTHESIS:

The output of the analysis part is used here to

produce the machine code. This section is also

divided into three subparts as follows:

1 Intermediate Code Generation

2 Code Optimization

3 Code Generation

LEXICAL ANALYSIS

Lexical analysis is the first stage of compiler design.

In this stage, the source code is scanned to remove

any whitespaces or comments. Then, the source code

is categorised into tokens (meaningful sequences of

lexical item). This stage is also called “scanning”.

A token may be composed of a single character or

sequence of character. A token is classified as being

either: Identifiers, Keywords Operators, Separators,

Liberals, and Comments. For each lexeme the

scanner produces a token as output in the

form<Token-name, attribute-value>

A lexical analyser either be implement using Regular

expression from automata theory and deterministic

finite automata (DFA). A Regular expression is used

to specify the token while deterministic finite

automata are used to recognise the token.

SYNTAX ANALYSIS

Syntax analysis is the second stage of compiler

construction. It is sometimes called a “parser or

parsing”. It constructs the parse tree. It takes all the

tokens produced in first stage one by one and uses

Context-free grammar to construct the tree. A

context-free grammar CFG notations are used to the

syntactic specification of any program. The goal of

parser is to determine the syntactical validity of a

source string.

There are certain rules associated with the derivation

tree.

 Any identifier is an expression

 Any number can be called an expression

 Performing any operations in the given

expression will always result in an expression.

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154957 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 817

For example, the sum of two expressions is also

an expression.

 The parse tree can be compressed to form a

syntax tree

Syntax error can be detected at this level if the input

is not in accordance with the grammar.

SEMANTIC ANALYSIS

Semantic Analysis is the third stage of compiler

construction. It verifies the parse tree, whether it‟s

meaningful or not. It furthermore produces a verified

parse tree. It also does type checking, Label

checking, and Flow control checking.

INTERMEDIATE CODE GENERATION

This is the fourth stage of compiler design. In this

phase, an intermediate machine-oriented code is

generated. It represents a program for some abstract

machine. The intermediate code is between a

program written in human-oriented and machine-

oriented.

CODE OPTIMIZER

This is the fifth stage of compiler design. The

intermediate code generated in the previous stage is

been optimized in this stage. The structure of the tree

that is generated by the parser can be rearranged to

suit the needs of the machine architecture to produce

an object code that runs faster. The optimization is

achieved by removing unnecessary lines of codes.

CODE GENERATOR

This is the sixth stage of compiler design. Code

generator is the last phase of a compiler construction

process. The code generator uses the optimized

representation of the intermediate code to generate a

machine code. This stage depends on the machine

architecture.

TYPES OF COMPILERS

1. Cross Compilers: - They produce an executable

machine code for a platform but, this platform is

not one on which the compiler is running.

2. Bootstrap Compilers: - These compilers are

written in a programming language that they

have to compile.

3. Source to source/trans compiler: - These

compilers convert the source code of one

programming language to the source code of

another programming language.

4. Decompiler: - It is just the reverse of the

complier; it converts the machine code into high

level language.

FEATURES OF A COMPILER

Features of a compiler are as follows:

 Compilation speed

 Good error detection

 Speed of machine code

 Checking the code correctly Grammarly

 The correctness of machine code

REFERENCE

[1] De Oliveira Guimarães, J. (2007). Learning

compiler construction by examples. ACM

SIGCSE Bulletin, 39(4), 70.

doi:10.1145/1345375.1345418

[2] Guilan, D., Suqing, Z., Jinlan, T., &Weidu, J.

(2002). A study of compiler techniques for

multiple targets in compiler infrastructures.

ACM SIGPLAN Notices, 37(6), 45.

doi:10.1145/571727.571735

[3] Jatin Chhabra, Hiteshi Chopra, Abhimanyu Vats

(2014). Research paper on Compiler

Design.International Journal of Innovative

Research in Technology (IJIRT), Volume 1,

Issue 5

[4] Zelkowitz, M. V. (1975). Third generation

compiler design. Proceedings of the 1975

Annual Conference on - ACM 75.

doi:10.1145/800181.810332

[5] Rudmik, A., & Lee, E. S. (1979). Compiler

design for efficient code generation and program

optimization. Proceedings of the 1979 SIGPLAN

Symposium on Compiler Construction

[6] Ross, D. T. [1967]. The AED free storage

package. Communications of the ACM,

10(8):481492.

[7] Rutishauser, H. [1952]. Automatische

Rechenplanfertigungbei Programm-gesteuerten

Niklaus Wirth This is a slightly revised version

of the book published by Addison-Wesley in

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154957 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 818

1996ISBN 0-201-40353-6Zürich, November

2005.

[8] Aho, Alfred V. and Ullman, Jeffrey D. [1972].

The Theory of Parsing, Translation,

[9] Aho, Alfred V. and Ullman, Jeffrey D. [1977].

Principles of Compiler Design.Addision.

