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Abstract - Medical images are usually utilized in clinics to 

produce visual representations of under-skin tissues in 

human bodies. Medical image synthesis strategies are 

developed to supply pictures that are very accurate and 

reasonable.  To produce diverse modalities of medical 

imaging with unique characteristics of visualization, 

different imaging protocols are used. The scanning of 

high-quality single modality images or homogeneous 

multiple modalities of images is very costly These 

strategies may be accustomed produce pictures of 

various varieties, counting on the particular desires of a 

given medical scenario. Among the various deep learning 

approaches, GANs and CycleGAN became significantly 

dominant for medical image synthesis in recent years. 

GAN and CycleGAN has provided new framework for 

medical image synthesis. this is often as a result of GANs 

offer a replacement technology and framework for the 

appliance of medical pictures. GANs do not need loads of 

labelled data to get correct data, which might be 

generated through competition between the generator 

and discriminator networks. Therefore, GANs are 

quickly proving to be a robust tool for machine learning 

and AI. X-rays, which create ionising radiation, are used 

in CT scans. According to research, this form of 

radiation may harm DNA and cause cancer. In this 

study, we present a method for converting an organ's 

MRI scan into a CT scan using cycleGan and a 

generative adversarial network. 

 

I.INTRODUCTION 

 

Image synthesis across other imaging modalities, such 

as PET and cone-beam CT (CBCT), is now feasible 

and a growing number of applications are benefiting 

from recent advancements in image synthesis 

techniques thanks to the quick progress in the fields of 

machine learning and computer vision over the last 20 

years. We can prevent the negative consequences of 

CT scan by converting an MRI scan into one. X-rays, 

a form of radiation known as ionising radiation, are 

used in CT scans. CT scan damages your cell DNA 

and it also increases the chances that they will turn 

cancereous. In this project, we offer a method for 

obtaining a CT scan by translating it from an MRI 

scan. To create a synthetic and similar medical image 

from an actual scan related to a certain organ, we will 

use the deep learning technique of GAN.  Synthetic 

data is information that is artificially manufactured 

rather than generated by real-world or actual events. 

 

II.PROBLEM DEFINITION 

 

There is a worldwide shortage of radiologists, At the 

same time, the number of radiology studies is 

increasing at an unprecedented rate. To keep pace , To 

keep pace, the average radiologist interpreting 

computed tomography (CT) and magnetic resonance 

imaging (MRI) examinations would need to read an 

image every three-to-four seconds of an eight-hour 

workday, according to one study. 

 

III.LITERATURE REVIEW 

 

Radiology and radiation oncology both make 

extensive use of image synthesis across and within 

medical imaging modalities. Its main goal is to 

improve clinical workflow by avoiding or substituting 

imaging procedures when they are impractical due to 

time, labour, or financial constraints; when exposure 

to ionising radiation is not permitted; or when image 

registration introduces unacceptably high levels of 

uncertainty between images taken using various 

modalities. These advantages have generated 

considerable interest in a variety of potential clinical 

applications, including positron emission tomography 

(PET)/MRI scanning and MRI-only radiation therapy 

treatment planning. This field has recently been 

dominated by deep learning, a large subfield of 

machine learning and artificial intelligence. To extract 

relevant features from images, deep learning uses 

neural networks with multiple layers containing large 
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numbers of neurons. For greater performance on 

various activities, various networks and architectures 

have been proposed. The majority of deep learning-

based picture synthesis techniques utilise a similar 

framework for image intensity mapping that is data-

driven. The process usually starts with a training stage 

when the network learns the mapping between the 

input and the target, followed by a prediction stage 

where the target is generated from the input. Deep 

learning-based methods are more generalizable than 

traditional model-based methods since the same 

network and architecture for a pair of image modalities 

can be applied to other pairs of image modalities with 

little alteration. This enables quick translation to 

numerous imaging modalities whose synthesis is 

helpful clinically. We have thoroughly examined new 

deep learning-based applications and methodologies 

for generating medical images. We specifically 

classify current literature according to deep learning 

techniques and highlight its contributions. Clinical 

applications are reviewed, together with any relevant 

restrictions and difficulties. Finally, a summary of 

current trends and future directions is included. 

 

Review of Existing Models, Approaches, Problems 

Generative Adversarial Networks (GANs): Impressive 

results in picture production [6, 39], image editing 

[66], and representation learning [39, 43, 37] have 

been attained by [16, 63]. For conditional image 

creation applications, such as text2image [41], image 

inpainting [38], and future prediction [36], as well as 

for other domains including movies [54] and 3D data 

[57], recent algorithms have used the same concept. 

The concept of an adversarial loss, which causes the 

generated images to be, in theory, indistinguishable 

from real photos, is essential to the success of GANs. 

Given that this is precisely the goal that much of 

computer graphics seeks to accomplish, this loss is 

especially powerful for jobs involving the creation of 

images. To learn the mapping, we use an adversarial 

loss so that translated images cannot be discriminated 

from those in the target domain. 

 

Image-to-Image Translation: The concept of image-to 

image translation goes back at least to Hertzmann et 

al.’s Image Analogies [19], who uses a non-parametric 

texture model [10] on a single input-output training 

image pair. More recent methods involve CNNs to 

learn a parametric translation function from a 

collection of input-output samples (e.g., [33]). Our 

method expands upon the "pix2pix" architecture 

developed by Isola et al. [22], which employs a 

conditional generative adversarial network [16] to 

learn a mapping from input to output images. Similar 

concepts have been used for a variety of tasks, 

including producing photos from sketches [44] or 

attribute and semantic layouts [25] or other sources. 

We learn the mapping without using paired training 

examples, in contrast to the previous research 

mentioned above. 

 

Unpaired Image-to-Image Translation : The unpaired 

context, where the objective is to link two data 

domains, X and Y, is likewise addressed by a number 

of other techniques. Rosales et al[42] .'s Bayesian 

framework incorporates a likelihood term derived 

from numerous style images, as well as a prior based 

on a patch-based Markov random field generated from 

a source image. A weight-sharing technique has been 

used more recently by CoGAN [32] and cross-modal 

scene networks [1] to develop a common 

representation across domains. A combination of 

variational autoencoders [27] and generative 

adversarial networks [16] is used by Liu et al. [31] to 

extend the architecture mentioned above concurrently 

with our approach. While the input and output may 

differ in "style," another line of concurrent work [46, 

49, 2] pushes them to share specific "content" traits. 

These techniques likewise make use of adversarial 

networks, but they include further words such class 

label space [2], image pixel space [46], and image 

feature space [49] to compel the output to be close to 

the input in the predefined metric space. Unlike the 

aforementioned methods, our formulation does not 

presume that the input and output must reside in the 

same low-dimensional embedding space, nor does it 

rely on any task-specific, predetermined similarity 

function between the two. Our approach is now a 

general-purpose answer to a variety of vision and 

graphics problems. 

 

IV.FORMULATION 

 

Our goal is to learn mapping functions between two 

domains X and Y given training samples {xi} N i=1 

where xi ∈ X and {yj}M j=1 where yj ∈ Y 1 . We 

denote the data distribution as x ∼ pdata(x) and y ∼ 

pdata(y). As illustrated in Figure 3 (a), our model 
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includes two mappings G : X → Y and F : Y → X. In 

addition, we introduce two adversarial discriminators 

DX and DY , where DX aims to distinguish between 

images {x} and translated images {F(y)}; in the same 

way, DY aims to discriminate between {y} and 

{G(x)}. Our objective contains two types of terms: 

adversarial losses [16] for matching the distribution of 

generated images to the data distribution in the target 

domain; and cycle consistency losses to prevent the 

learned mappings G and F from contradicting each 

other. 

 

 

Adversarial Loss: 

We apply adversarial losses [16] to both mapping 

functions. For the mapping function G : X → Y and its 

discriminator DY , we express the objective as: 

LGAN(G, DY , X, Y ) = Ey∼pdata(y) [log DY (y)] + 

Ex∼pdata(x) [log(1 − DY (G(x))], (1) where G tries to 

generate images G(x) that look similar to images from 

domain Y , while DY aims to distinguish between 

translated samples G(x) and real samples y. G aims to 

minimize this objective against an adversary D that 

tries to maximize it, i.e., minG maxDY LGAN(G, DY 

, X, Y ). We introduce a similar adversarial loss for the 

mapping function F : Y → X and its discriminator DX 

as well: i.e., minF maxDX LGAN(F, DX, Y, X). 

 

Cycle Consistency Loss: 

Adversarial training can theoretically learn mapping G  

And F  produce the same distributed output as the 

target.  Domains Y and X  (strictly speaking,  G and F 

must be probability functions) [15]. but, With enough 

capacity, the network can map the same thing Set of 

input images to a random sequence of images  Target 

domain to which each learned mapping can be moved 

Induces an output distribution that matches the target 

distribution. Therefore, the loss of the enemy alone 

cannot be guaranteed. The learned function can map  

individual input xi To Desirable output yi .. To further 

reduce the space of possible mapping functions,  the 

learned mappings functions should be cycle-

consistent: as shown in Figure 3 (b), for each image x 

from domain X, the image translation cycle should be 

able to bring x back to the original image, i.e., x → 

G(x) → F(G(x)) ≈ x. We call this forward cycle 

consistency. Similarly, as illustrated in Figure 3 (c), 

for each image y from domain Y , G and F should also 

satisfy backward cycle consistency: y → F(y) → 

G(F(y)) ≈ y. We incentivize this behavior using a cycle 

consistency loss: Lcyc(G, F) = Ex∼pdata(x) [kF(G(x)) 

− xk1] + Ey∼pdata(y) [kG(F(y)) − yk1]. (2) In 

preliminary experiments, we also tried replacing the 

L1 norm in this loss with an adversarial loss between 

F(G(x)) and x, and between G(F(y)) and y, but did not 

observe improved performance. 

 

Full Objective: 

Our full objective is:  

L(G, F, DX, DY ) =LGAN(G, DY , X, Y ) + LGAN(F, 

DX, Y, X) + λLcyc(G, F), where λ controls the relative 

importance of the two objectives. We aim to solve:      

G ∗ , F∗ = arg min G,F max Dx,DY L(G, F, DX, DY 

). 

Note that this model can be considered as training for 

two "autoencoders" [20]. Learn autoencoder  

F ◦ G: X → G ◦ F: Y → Y different from X. However, 

each of these autoencoders has a special internal 

structure. Image to oneself through intermediate 

representation. The image is translated into another 

domain. like that The setup can also be seen as a 

special case of a "hostile autoencoder" [34] training 

with hostile losses. An autoencoder bottleneck layer 

that matches any target distribution. In our case  

 X → X autoencoder is for domain Y. 

 

V.PROPOSED SOLUTION 

 

Our main aim is to convert the MRI scan of an organ 

into a CT scan of same organ. For this purpose, we 

opted the Deep Learning technique of Generative 

Adversarial Network. It is a class of machine learning 

framework that utilises the power of Neural Network. 

GAN utilizes two neural networks with competitive 

learning approach: (1) a Generator to produce a new 
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data from the input noise and (2) a Discriminator to 

discriminate this new data from the training data. 

These 2 neural networks compete with each other to 

become more and more accurate. The purpose of a 

GAN is to generate the data from scratch. For our 

solution we will use its image-to-image translation 

application.  

GAN Illustration of Architecture: In order to transform 

MRI data to CT scans, we use a Deep Learning 

architecture called CycleGAN. Unpaired image-to-

image translation is automatically trained using the 

CycleGAN approach. A unique variation on 

conventional GANs is cyclic GANs. They can also 

generate fresh samples of data, but they do so by 

altering samples of the input rather than starting from 

scratch. CycleGAN uses a cycle consistency loss to 

enable training without the need for paired data, and 

the models are developed using a set of images from 

the  source and target domains that are not associated 

in any way. With no one-to-one mapping between the 

source and target domains, it can translate from one 

domain to another. This straightforward method is 

effective and produces visually impressive outcomes 

across a variety of application domains. 

This method can be used, for instance, to change a 

lion's image into a tiger's image and vice versa. 

 

Cycle GAN: A CycleGan is a neural network that 

learns how to transform two spaces' worth of 

information.  One of them is change G(x). It changes 

over a given example x ∈ X into element of domain Y. 

The subsequent one is F(y), which changes sample 

components y ∈ Y into element of domain X. Two 

conventional GANs are used in order to learn F and G. 

A Generator network that learns how to change the 

data as needed is built into every GAN. The GAN's 

second generator and first generator, respectively, 

both learn how to compute F and G. Additionally, each 

generator is linked to a discriminator that develops the 

ability to discern between actual data y and synthetic 

data G. (x). 

VI.RESULTS 

 

Below are the results obtained after testing on the test 

images of our dataset. 

Real scan images: 

 
 

VII.CONCLUSION 

 

In conclusion we found a solution to our problem 

statement by using Cycle GAN to convert MRI and CT 

scans into one another. This in turn provides patients, 

doctors, and researchers to translate CT scans into 

MRI scans and vice versa. Thus, we have achieved 

unpaired image-to-image translation through the 

technique of Cycle GAN using Grayscale scan images. 
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