
© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156571 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 246

Checkpointing Techniques for Distributed Mobile

Systems

Dr Deepak Uprety1, Naheeda zaib2, Saiba Jan3

1,2,3Computer science and engineering, Nims University

Abstract- Checkpoint and rollback recovery are well-

known techniques for handling failures in distributed

systems. As the number of processors increases, so does

the failure rate. Therefore, it is important to develop

efficient checkpoint and recovery algorithms to handle

such large-scale system failures so that these systems can

be fully utilized. We presented a new communication-

induced checkpoint algorithm that helps reduce

contention in accessing stable memory to store

checkpoints.

Keywords: routing, ad-hoc network, communication

guidance, checkpoint, distribution system.

1.INTRODUCTION

In our algorithm, processes involved in distributed

computation can independently initiate consistent

global checkpoints by saving their current state, called

temporary checkpoints. Other processes involved in

the computation learn to initiate consistent global

checkpoints through information piggybacked in

application messages or limited control messages as

needed [4]. When the process sees the start of a new

consistent global checkpoint, it takes a temporary

checkpoint after processing the message. Temporary

checkpoints taken may be flushed to stable storage if

there is no contention for access to stable storage.

Preliminary checkpoints, along with message logs

stored in stable storage, form a consistent global

checkpoint.

2.REVIEW OF LITERATURE

In our algorithm, processes involved in distributed

computation can independently initiate consistent

global checkpoints by saving their current state, called

temporary checkpoints. Other processes involved in

the computation learn to initiate consistent global

checkpoints through information piggybacked in

application messages or limited control messages as

needed [4]. When the process sees the start of a new

consistent global checkpoint, it takes a temporary

checkpoint after processing the message. Temporary

checkpoints taken may be flushed to stable storage if

there is no contention for access to stable storage.

Preliminary checkpoints, along with message logs

stored in stable storage, form a consistent global

checkpoint.

3.SCOPE OF THE STUDY

The scope of this research is defined as checkpoint-

based rollback recovery [10]. It is one of the widely

used techniques in various fields such as scientific

computing, databases, telecommunications, and

critical applications in distributed systems.

4.OBJECTIVES OF THE STUDY

1.System Model

A disbursed computation includes N sequential

processes, denoted through P0, P1, P2, ..., and PN-1,

jogging concurrently on many computer systems in a

network. Processes do now no longer share worldwide

reminiscence or the worldwide bodily clock. Message

passing is the simplest way processes talk with every

other. Computation is asynchronous. Each technique

evolves at its personal rate, and messages are

transmitted over communique channels with finite

however arbitrary transmission delays. The channel is

believed to be FIFO and the computation is piecewise

deterministic. Our set of rules generates a restricted

variety of manipulate messages [22] and collects

constant worldwide manipulate factors simplest while

needed.

2. Consistent Global Checkpoints

Process execution is modelled by three types of events:

message-sending events, message-receiving events,

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156571 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 247

and internal events. Process states depend on each

other through inter communication. The global control

points for distributed computation are a set of control

points, including control points from each process

involved in distributed computation [26]. An orphan

message M that impacts the global checkpoint is a

message for which a received event (M) has been

recorded in the global checkpoint, but a corresponding

sent event (M) has not been recorded. A global

checkpoint is said to be consistent if there are no

orphaned messages associated with it. Figure 5.2

shows two global checkpoints S1 and S2. S1 is a

consistent global checkpoint, but M5 is an orphan

message relative to S2, so S2 is not a consistent global

checkpoint. Next, we introduce the algorithm.

Fig 1 Global Checkpoints

3. Notations for algorithms

Below is the notation used to describe the algorithm

and its correctness proof. • Ci, k indicates the

(permanent) local control point occupied by Pi. It

consists of his two parts, a preliminary checkpoint CTi

that records the state of the process, and a set of log

messages log Seti associated with the checkpoint. -

CTi, k indicates a preliminary control point obtained

from Pi with control point sequence number k. It is

usually first stored in memory and flushed to stable

storage after logging the relevant logs (log Seti, k). -

log Seti, k indicates a set containing all messages sent

and received by Pi after the preliminary control point

CTi, k was acquired and before the control point Ci,

kis completed. Therefore, Ci, k= CTi, k∪logSeti, k.•

CFEi, k indicates the event representing the last

operation of checkpoint Ci, k. Therefore, all messages

send/receive events in logSeti, k precede CFEi, k. For

every event e of Pi, e−hb→Ci, k⇐⇒e−hb→CFEi, k.A

Lamport event, −hb→, that occurred before relation

[6] is defined as the transitive closure of the union of

the other two relations: −hb→ = (−xo→ ∪ −m→) +.

The −xo→ relationship captures the order in which

process-local events are executed. The i event

(denoted by ep, i) of each process Pp is always

executed before the (i + 1) event: ep, i−xo → ep, i+1.

The relationship −→m indicates the relationship

between send and receive events of the same message.

If a is the sending event of a message and b is the

corresponding receiving event of the same message,

then a−→m is b [23]. • Sk denotes a global checkpoint

consisting of checkpoints with sequence number k

from each process. Therefore Sk= {Ci, k|i∈ {0, 1, N −

1}}.

4. Basic Idea behind this algorithm

To illustrate the basic idea behind this algorithm, we

use the Spatio-temporal diagram of distributed

computation [20], which consists of four processes,

shown in Figure 5.4. P0, P1, P2, and P3 are the four

processes involved in the computation. Initially, the

status of each method is normal, and the initial

checkpoint with sequence number 0 is indicated by the

filled rectangular box in the diagram. Suppose P0

initiates a consistent global checkpoint by taking a

preliminary checkpoint CT0,1. After taking

checkpoint CT0,1, it changes the status from regular

to tentative and starts logging in memory all the

messages it sends and receives until that checkpoint

exits. P0 then sends message M2 to her P1. Upon

receiving M2, P1 signals that P0 has acquired CT0,1.

So after processing M2, P1 gets preliminary

checkpoint CT1,1, and P1's status changes from

normal to introductory.

Similarly, P2 and P3 occupy preliminary checkpoints

CT2,1 and CT3,1 after receiving messages

M4 and M3, respectively. P1 knows that the status of

P0 and P1 is tentative before message M3 is sent. P1

piggybacked this information onto M3.

P3, therefore, knows that the status of P0, P1, and P3

is tentative before message M5 is sent. Upon receiving

M5, P2 knows that all processes are in uncertain status.

At this point, P2 resumes checkpoint sequence number

1 by deleting preliminary checkpoints CT2,1 (if not

already run) and the set of logged messages {M5, M6}

to stable storage. Done. And C2,1= CT2,1 ∪ {M5,

M6}. The "F" mark in the diagram indicates the event

that finalizes the current pre-checkpoint. When a

process completes an intermediate checkpoint, its

status becomes healthy (after a process has taken an

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156571 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 248

intermediate checkpoint, it can only take another

intermediate checkpoint after it has completed and

already taken intermediate checkpoint). Increase). A

consistent global checkpoint S1 = {C0,1, C1,1, C2,1,

C3,1} was recorded.

Fig 2 An example illustrating the basic idea behind our

algorithm

5 Data Structures

Each process Pi manages the following data structures:

1. csn i: an integer variable containing the sequence

number of the current checkpoint of process Pi. The

sequence number of the probe representing the initial

state of Pi is 0. The Pi first configures csnito0. csni is

incremented when a new intermediate checkpoint is

taken.

2. stat i: A variable representing the current status of

process Pi. Process status can be either provisional or

normal. The status of process Pi is updated as follows:

The Pi's status is initially set to normal. As soon as the

Pi acquires a provisional control point, the Pi's status

is changed to provisional. After the Pi realizes that the

status of all processes is temporary (through

information piggybacked in the application's

message), the Pi returns its state to normal after the

current temporary checkpoint is completed. return.

3. logSet i: The set of messages logged after the Pi

takes a temporary checkpoint. Once the statiis is

provisionally set, the Pi will set logSetito to empty and

start logging messages sent and received by the Pi to

logSeti. The logSet therefore contains messages sent

and received by the Pi after the preliminary checkpoint

was taken and before the checkpoint was completed.

When the process status changes from temporary to

normal, the temporary checkpoint and corresponding

LogSetia are flushed to stable storage.

4. tentSet i: A tentative set of processes held on the Pi.

If statii is set to normal, tentSetii is set to empty.

PitentSetito sets {Pi} when Pi captures a tentative

control point. When Pi receives the message, it

determines that tentSetito is the union of tentSeti and

preprocessing is piggybacked on the message. So, this

set contains a set of processes that have taken interim

checkpoints, to the best of the Pi's knowledge.

5 allPSet: This is the set of all processes i.e. {P0, P1,

PN-1}.

5.6 The Checkpointing Algorithm

Assume that every process takes an initial checkpoint

that represents the initial state of the process. The

initial checkpoint sequence number is set to 0. Also, if

the status is transient, the process cannot take a new

checkpoint [7].

5.CONSISTENT GLOBAL CHECKPOINTING

INITIATION

Any process with a healthy status can take a new

temporary checkpoint, thus starting a consistent global

checkpoint. When process Pi takes a provisional

checkpoint, it changes its state from normal to

provisional, increments the checkpoint sequence

number csni and assigns it as the provisional

checkpoint sequence number, clears logSetito, and

initializes tentSetito {Pi}. At any given time, tentSeti

is the set of all processes that, to Pi's knowledge, have

taken a tentative checkpoint that matches Pi's current

tentative checkpoint. After the Pi takes a preliminary

checkpoint, it will start logging all sent and received

messages to logSet i until the state returns to normal.

Csni and tentSetia are piggybacked on all application

messages.

Sending Messages

Each process Pi piggybacks the current values of csni,

stati and tentSeti into each application message. The

csni value piggybacked into the message helps the

receiver determine if the sender has taken a new

temporary checkpoint. This will start a concurrent or

new consistent global checkpoint. These values

piggybacked on message M are called M.csn, M. stat,

and M. tent Set respectively.

Receiving Messages

In our algorithm, each process can independently

occupy preliminary control points at the same time. A

process completes an interim checkpoint when it

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156571 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 249

learns (via a message received from the process) that

all other processes have taken interim checkpoints that

match the most recent interim checkpoint. After

completing the latest preliminary checkpoint Ci, k,

process Pi may take the next preliminary checkpoint

Ci, k+1 before any other process completes the

preliminary checkpoint corresponding to Ci, k. I can

do it.

Case (1) M. stat=stati=normal. In this case, neither Pi

nor Pji knows about the start of a new consistent global

checkpoint, so no additional action needs to be taken

beyond processing M.

Case (2) M. stat= stati= tentative. In this case, both Pi

and Pj have taken a new tentative checkpoint

concurrently. The following four subcases arise:

In subcase (a) M.csn xss=removed

xss=removed>csni+ 1. In this case, Pj completed the

checkpoint with sequence number csni+ 1. This is

impossible because csni is Pi's last temporary

checkpoint sequence number. So, this case does not

occur. Therefore, this case is not shown in the formal

description of the algorithm.

Subcase (b) M.csn= csni. In this case, Pi and Pj have

acquired control points that belong to the same global

control point Scsni. In this case, to know how many

processes M was processed first and then took a

temporary checkpoint belonging to the global

checkpoint Scsni, Pi is the tent Update set. Once the

updated tent set matches all her PSets, the Pi will log

a message and complete the preliminary checkpoint.

Subcase (c) M.csn = csni+1. In this case, before

sending M, Pj completed a checkpoint with sequence

number csni and also took an intermediate checkpoint

with sequence number M.csn. So, Pi knows that every

process already has a temporary control point that

belongs to the global control point Scsni.

Subcase (d) M.csn>csni+ 1. In this case, Pj has

completed the control point with sequence number

csni+ 1. This is impossible because csni is Pi's last

temporary checkpoint sequence number. Thus, this

scenario does not materialize. Therefore, this case is

not shown in the formal description of the algorithm.

Commits a temporary checkpoint associated with a

consistent global checkpoint with the specified

sequence number. Preliminary checkpoints, along

with the saved message log, are called process

checkpoints and are assigned the same sequence

number as the saved preliminary checkpoints. A

formal description of the basic checkpoint algorithm is

shown in Figure 5.6.

When Pi starts

csni=0; stati= normal.

Procedure: takeTentativeCheckpoint (i: integer)

/* Initialization */

csni= csni+1; stati= tentative;

tentSeti= {Pi};

logSeti=Ø;

 /* Include the process id in the set */

/* Initialize the message log to empty set */

Take tentative checkpoint CTi, csni.

When Pi starts to take a checkpoint

takeTentativeCheckpoint (i).

When Pi sends a message M to Pj

M.csn= csni; /* Piggy-back current value of csni, stati, and tentSetiwith the message */

M.stat= stati; M. tentSet= tentSeti; if stati== tentative then logSeti= logSeti∪ {M}; Send (M).

When Pi receives a message M from Pj

if stati== normal then

Process M.

if M. stat== tentative then

if M.csn== csni+1 then

takeTentativeCheckpoint(i);

/* Pjhas initiated a new consistent global checkpoint */

logSeti= logSeti∪{M}; tentSeti= M.

tentSet∪tentSeti.

/* Log the received message */

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156571 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 250

else /*stati== tentative */

logSeti= logSeti∪ {M}; if M. stat== normal

then

/* Log the received message */

if M.csn== csnithen /* Pjhas finalized the checkpoint Cj, csni*/

Flush logSeti− {M} and CTi, csnito the stable storage;/* Pi finalizes its checkpoint Ci, csni*/stati= normal.

Process M.

else/* M. stat== tentative */

ifM.csn== csnithen/* Pjhas taken the checkpoint CTj, csnibefore sending the message */

Process M.

tentSeti= M. tentSet∪tentSeti.

iftentSeti== allPSetthen /* Each process Pkhas already taken CTk, csni*/stati= normal.

Flush logSeti and CTi, csni to the stable storage.

else ifM.csn == csni + 1 then /* Pj has finalized Cj, csni and took a new tentative checkpoint after that */

stati = normal; /*So, Pi finalizes Ci, csni, excludes M from the log and takes a new tentative checkpoint */

Flush logSeti − {M} and CTi, csni to the stable storage.

Process M.

takeTentativeCheckpoint(i).

logSeti = logSeti∪ {M}.

tentSeti = M. tentSet∪tentSeti.

Figure 5.6: The Basic Checkpointing Algorithm

6.CONCLUSION

This article introduced a new communication-induced

checkpointing algorithm that makes all checkpoints a

consistent global checkpoint. In this algorithm, each

process first saves a preliminary checkpoint to

memory and removes it to stable memory after there is

no contention for access to regular memory or after the

initial checkpoint completes. Messages sent or

received after the process has taken a preliminary

checkpoint are logged in memory until the primary

checkpoint is conducted. Previous checkpoints can be

flushed to stable storage at any time before they are

finished, thus reducing/eliminating network steady

storage contention caused by multiple processes

saving checkpoints simultaneously. Furthermore,

unlike existing communication-directed checkpoint

algorithms, this algorithm generally does not force

processes to checkpoints before processing received

messages to prevent wasted checkpoints. So, a process

can process the first received message and then take a

checkpoint. This improves message response time. It's

also useful for methods to get essential regularly

scheduled checkpoints at these times.

REFERENCE

[1] Wikipedia Ipv6

[2] Andrew D. Birreland Bruce J. Nelson.

Implementing remote procedure calls. ACM

Transactionson ComputerSystems,2(1):39–59,

February 1984.

[3] Suparna Biswasand Sarmisthat Neogy”. Snapshot

and Recovery Using Node Mobility among Clusters

in Mobile Ad Hoc Network” springer “Volume 176

of the series Advances in Intelligent Systems and

Computing pp 447-456, 2010

[4] Yogita Khatri “Distance-based Asynchronous

recovery approach in mobile computing

environment” International Journal of Distributed

and Parallel Systems (IJDPS) Vol.3, No.3, May

2012

[5] P.K. Suri and Menu Satya “An efficient snapshot

protocol for mobile distributed systems”, cilistol 1,

issue 2: page no 109-114 (2012)

[6] K. Mani Chand and Leslie Lamport. Distributed

snapshots: Determining global states of distributed

systems. ACMTransactions on Computer Systems,

3(1):63–75, February1985.

[7] B. Gupta et.al,” A Low-Overhead Non- Block

Checkpointing Algorithm for Mobile Computing

Environment”, GPC 2006, LNCS 3947, pp. 597-

608, 2006

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156571 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 251

[8] Cao G. and Singhal M., “Mutable Snapshots: A

New Snapshot Approach for Mobile Computing

systems," IEEE Transaction on Parallel and

Distributed Systems, vol. 12, no. 2, pp. 157 -172,

February 2001.

[9] Ni, W., S. Vrbsky and S. Ray, Pitfalls in Distributed

Non-blocking Checkpointing, Journal of

Interconnection Networks, Vol. 1 No. 5, pp. 47-78,

March 2004

[10] P. Ramanathan and K.G. Shin, “Use of Common

Time Base for Checkpointing and Rollback

Recovery in a Distributed System,” IEEE Trans.

Software Eng., vol. 19, no. 6, pp. 571–583, June

1993

[11] L.M. Silva and J.G. Silva, “Global Checkpointing

for Distributed Programs,” Proc. 11th Symp.

Reliable Distributed Systems, pp. 155–162, Oct.

1992.

[12] Suparna Biswas &SarmisthaNeogy “A mobility-

based checkpointing protocol for mobile computing

system”, IJCSIT vol 2, no. 1, Feb 2010.

[13] J.L. Kim and T. Park, “An Efficient Protocol for

Checkpointing Recovery in Distributed Systems,”

IEEE Trans. Parallel and Distributed Systems, vol.

5, no. 8, pp. 955–960, Aug. 1993

[14] Wood., W.G., “A Decentralized recovery control

protocol”, IEEE Symposium on Fault-Tolerant

Computing, 1981.

[15] Storm R., and Termini, S., “Optimistic recovery in

distributed systems”, ACM Trans. Computer

Systems, Aug 1985, pp. 204-226.

[16] Rachit Garg &Parveen Kumar” Low overhead

checkpointing protocols for mobile distributed

systems: A Comparative STUDY" International

Journal of Engineering Science and Technology,

Vol. 2(7), 2010, 3267 -3276

[17] Bidyut Gupta, Shahram Rahimi, and ZipingLiu., “A

New high performance checkpointing approach for

mobile computing system”, CSNS International

Journal of Computer Science and Network Security,

VOL 6, N05B May 2006

[18] Cao G. and Singhal M., “On the Impossibility of

min-process nonblocking checkpointing and an

efficient checkpointing algorithm for mobile

computing systems”, Proceedings of International

Conference on Parallel Processing, August 1998,

pp. 37-44.

[19] R.C. Gass, B. Gupta, “An Efficient checkpointing

scheme for mobile computing systems”, European

Simulation Symposium, Oct 2001 (18-20), pp.1-6

[20] Carroll Morgan. Global and logical time in

distributed algorithms. Information Processing

Letters, 20:189–194, May 1985

[21] SuparnaBiswas&SarmisthaNeogy “A mobility-

based checkpointing protocol for mobile computing

system”, IJCSIT vol 2, no. 1, Feb 2010. Kapoor et

al., International Journal of Advanced Research in

Computer Science and Software Engineering 6(5),

May- 2016, pp. 65-73© 2016, IJARCSSE All

Rights Reserved Page | 72

[22] M. Raynal. About logical clocks for distributed

systems. Operating Systems Review,26(1):41–48,

January 1992

[23] K.M. Chandy, L. Lamport, Distributed snapshots:

determining global states of distributed systems,

ACMTrans. Compute. Systems 3 (1) (1985) 63–75

[24] Lalit Kumar, and R K Chauhan., "Pitfalls in a

minimum process coordinated checkpointing

protocols for mobile distributed", ACCST Journal

of Research, Volume III, No. 1, 2005 pp. 51-56.

[25] Prof. S. M. Tidke, RuchaRavindraGalgali

"Predicting resource allocation in a distributed

environment by using online predictive approach a

review” International Journal of Advanced

Research in Computer and Communication

Engineering, Vol. 2, Issue 12, December 2013

[26] Parveen Kumar “A Minimum process global state

detection scheme for mobile distributed systems

“IJEST, vol. 2(7),2010, 2853-2858

[27] J.L.kim& T. park “An Efficient Protocol for

Checkpointing Recovery in Distributed Systems”,

IEEE Transactions on Parallel and Distributed

Systems, Vol -4, Aug.1993, Page 955-960

[28] Richard Koo, Sam Toueg, “Checkpointing and

rollback-recovery for distributed systems (1987)

Published in, Software Engineering, IEEE

Transactions on (Volume: SE-13, Issue: 1)

[29] Acharya A., “Structuring distributed algorithms and

services for networks with mobile hosts”, Ph.D.

Thesis, Rutgers University, 1995.

[30] Cao G. and Singhal M., “On Coordinated

checkpointing in Distributed Systems”, IEEE

Transactions on Parallel and Distributed Systems,

vol. 9, no.12, pp. 1213-1225, Dec 1998.

[31] RuchiTuli, Parveen Kumar, “The Design and

performance of a checkpointing scheme for mobile

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156571 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 252

ad hoc networks", Springer-Verlag CCIS 203, pp

204-212, 2011.

[32] NunoNeves and W. Kent Fuchs. “Adaptive

recovery for mobile environments”, in Proc.IEEE

High-Assurance Systems Engineering Workshop,

October 21-22, 1996, pp.134

[33] Elnozahy E.N., Alvisi L., Wang Y.M., and Johnson

D.B., "A Survey of rollback-recovery protocols in

message-passing systems," ACM Computing

Surveys, vol. 34, no. 3, pp. 375-408, 2002.

[34] Taesoon Park, Namyoon Woo and Heon Y. Yeom,

"An Efficient Recovery Scheme for Fault-Tolerant

Mobile Computing Systems", FGCS- 19, 2003

Kumar, P.," A Low-cost hybrid coordinated

checkpointing protocol for mobile distributed

systems", Mobile Information Systems pp 13-32,

Vol. 4, No. 1.,2007.

[35] Pushpendra Singh, Gilbert Cabillic, “A

Checkpointing algorithm for mobile computing

environment”, LNCS, No. 2775, pp 65-74, 2003.

