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Abstract: Machine Learning is an indispensable part of 

Artificial Intelligence. It is the investigation of projects 

that makes computer to express like humans. Machine 

learning has come into existence as an important 

innovation with its adequate number of uses. 

Reinforcement Learning is one of the major applications 

of Machine Learning that enables machines and software 

agents to work explicitly and also resolve the conduct 

within a definite situation to maximize its performance. 

Due to the aspect of self-improving, web-based learning 

and less programming effort Reinforcement Learning 

becomes an intelligent agent in core technologies. With 

the advancement of more robust and efficient 

algorithms, there is still a requirement for more work to 

be done. Thus, the main aim of this study is to provide 

the review of Reinforcement Learning and its 

applications by utilizing various algorithms from 

Machine learning perspective. 
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REINFORCEMENT LEARNING 

 

Reinforcement Learning is a feedback-based Machine 

learning technique in which an agent learns to behave 

in an environment by performing the actions and 

seeing the results of actions. For each good action, the 

agent gets positive feedback, and for each bad action, 

the agent gets negative feedback or penalty. In 

Reinforcement Learning, the agent learns 

automatically using feedbacks without any labelled 

data, unlike supervised learning. Since there is no 

labelled data, so the agent is bound to learn by its 

experience only. RL solves a specific type of problem 

where decision making is sequential, and the goal is 

long-term, such as game-playing, robotics, etc. The 

agent interacts with the environment and explores it by 

itself. The primary goal of an agent in reinforcement 

learning is to improve the performance by getting the 

maximum positive rewards. 

The agent learns with the process of hit and trial, and 

based on the experience, it learns to perform the task 

in a better way. Hence, we can say that "Reinforcement 

learning is a type of machine learning method where 

an intelligent agent (computer program) interacts with 

the environment and learns to act within that." How a 

Robotic dog learns the movement of his arms is an 

example of Reinforcement learning. It is a core part 

of Artificial intelligence, and all AI agent works on the 

concept of reinforcement learning. Here we do not 

need to pre-program the agent, as it learns from its own 

experience without any human intervention. 

Example: Suppose there is an AI agent present within 

a maze environment, and his goal is to find the 

diamond. The agent interacts with the environment by 

performing some actions, and based on those actions, 

the state of the agent gets changed, and it also receives 

a reward or penalty as feedback. The agent continues 

doing these three things (take action, change 

state/remain in the same state, and get feedback), and 

by doing these actions, he learns and explores the 

environment. The agent learns that what actions lead 

to positive feedback or rewards and what actions lead 

to negative feedback penalty. As a positive reward, the 

agent gets a positive point, and as a penalty, it gets a 

negative point. 

 
 

KEY FEATURES OF REINFORCEMENT 

LEARNING 

 

In RL, the agent is not instructed about the 

environment and what actions need to be taken. It is 

based on the hit and trial process. The agent takes the 

next action and changes states according to the 

feedback of the previous action. The agent may get a 

delayed reward. The environment is stochastic, and the 

agent needs to explore it to reach to get the maximum 

positive rewards. 

 

APPROACHES TO IMPLEMENT 

REINFORCEMENT LEARNING 

 

There are mainly three ways to implement 

reinforcement-learning in ML, which are: 

1. Value-based: 

The value-based approach is about to find the 

optimal value function, which is the maximum 

value at a state under any policy. Therefore, the 

agent expects the long-term return at any state(s) 

under policy π. 

2. Policy-based: 

Policy-based approach is to find the optimal 

policy for the maximum future rewards without 

using the value function. In this approach, the 

agent tries to apply such a policy that the action 

performed in each step helps to maximize the 
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future reward. The policy-based approach has 

mainly two types of policy: 

o Deterministic: The same action is produced by 

the policy (π) at any state. 

o Stochastic: In this policy, probability 

determines the produced action. 

3. Model-based: In the model-based approach, a 

virtual model is created for the environment, and 

the agent explores that environment to learn it. 

There is no particular solution or algorithm for 

this approach because the model representation is 

different for each environment. 

 

ELEMENTS OF REINFORCEMENT LEARNING 

 

There are four main elements of Reinforcement 

Learning, which are given below: 

1. Policy 

2. Reward Signal 

3. Value Function 

4. Model of the environment 

1) Policy: A policy can be defined as a way how an 

agent behaves at a given time. It maps the perceived 

states of the environment to the actions taken on those 

states. A policy is the core element of the RL as it alone 

can define the behavior of the agent. In some cases, it 

may be a simple function or a lookup table, whereas, 

for other cases, it may involve general computation as 

a search process. It could be deterministic or a 

stochastic policy: 

For deterministic policy:a=π(s) 

For stochastic policy: π(a | s) = P[At =a | St = s] 

 

2) Reward Signal: The goal of reinforcement learning 

is defined by the reward signal. At each state, the 

environment sends an immediate signal to the learning 

agent, and this signal is known as a reward signal. 

These rewards are given according to the good and bad 

actions taken by the agent. The agent's main objective 

is to maximize the total number of rewards for good 

actions. The reward signal can change the policy, such 

as if an action selected by the agent leads to low 

reward, then the policy may change to select other 

actions in the future. 

 

3) Value Function: The value function gives 

information about how good the situation and action 

are and how much reward an agent can expect. A 

reward indicates the immediate signal for each good 

and bad action, whereas a value function specifies the 

good state and action for the future. The value function 

depends on the reward as, without reward, there could 

be no value. The goal of estimating values is to achieve 

more rewards. 

 

4) Model: The last element of reinforcement learning 

is the model, which mimics the behavior of the 

environment. With the help of the model, one can 

make inferences about how the environment will 

behave. Such as, if a state and an action are given, then 

a model can predict the next state and reward. 

The model is used for planning, which means it 

provides a way to take a course of action by 

considering all future situations before actually 

experiencing those situations. The approaches for 

solving the RL problems with the help of the 

model are termed as the model-based approach. 

Comparatively, an approach without using a model is 

called a model-free approach. 

 

WORKING OF REINFORCEMENT LEARNING 

 

To understand the working process of the RL, we need 

to consider two main things: 

Environment: It can be anything such as a room, maze, 

football ground, etc. 

Agent: An intelligent agent such as AI robot. 

Let's take an example of a maze environment that the 

agent needs to explore. Consider the below image: 

 
In the above image, the agent is at the very first block 

of the maze. The maze is consisting of an S6 block, 

which is a wall, S8 a fire pit, and S4 a diamond block. 

The agent cannot cross the S6 block, as it is a solid 

wall. If the agent reaches the S4 block, then get the +1 

reward; if it reaches the fire pit, then gets -1 reward 

point. It can take four actions: move up, move down, 

move left, and move right. The agent can take any path 

to reach to the final point, but he needs to make it in 

possible fewer steps. Suppose the agent considers the 

path S9-S5-S1-S2-S3, so he will get the +1-reward 

point. The agent will try to remember the preceding 

steps that it has taken to reach the final step. To 

memorize the steps, it assigns 1 value to each previous 

step.  

Consider the below step: 

 
Now, the agent has successfully stored the previous 

steps assigning the 1 value to each previous block. But 

what will the agent do if he starts moving from the 

block, which has 1 value block on both sides? 

Consider the below diagram: 
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It will be a difficult condition for the agent whether he 

should go up or down as each block has the same 

value. So, the above approach is not suitable for the 

agent to reach the destination. Hence to solve the 

problem, we will use the Bellman equation, which is 

the main concept behind reinforcement learning. 

 

The Bellman Equation 

The Bellman equation was introduced by the 

Mathematician Richard Ernest Bellman in the year 

1953, and hence it is called as a Bellman equation. It 

is associated with dynamic programming and used to 

calculate the values of a decision problem at a certain 

point by including the values of previous states. 

It is a way of calculating the value functions in 

dynamic programming or environment that leads to 

modern reinforcement learning. 

The key-elements used in Bellman equations are: 

o Action performed by the agent is referred to as "a" 

o State occurred by performing the action is "s." 

o The reward/feedback obtained for each good and 

bad action is "R." 

o A discount factor is Gamma "γ." 

The Bellman equation can be written as: 

V(s) = max [R(s,a) + γV(s`)]   

Where, 

V(s)= value calculated at a particular point. 

R(s,a) = Reward at a particular state s by performing 

an action. 

γ = Discount factor 

V(s`) = The value at the previous state. 

In the above equation, we are taking the max of the 

complete values because the agent tries to find the 

optimal solution always. 

So now, using the Bellman equation, we will find 

value at each state of the given environment. We will 

start from the block, which is next to the target block. 

For 1st block: 

V(s3) = max [R(s,a) + γV(s`)], here V(s')= 0 because 

there is no further state to move. 

V(s3)= max[R(s,a)]=> V(s3)= max[1]=> V(s3)= 1. 

For 2nd block: 

V(s2) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 

1, and R(s, a)= 0, because there is no reward at this 

state. 

V(s2)= max[0.9(1)]=> V(s)= max[0.9]=> V(s2) =0.9 

For 3rd block: 

V(s1) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 

0.9, and R(s, a)= 0, because there is no reward at this 

state also. 

V(s1)= max[0.9(0.9)]=> V(s3)= max[0.81]=> V(s1) 

=0.81 

For 4th block: 

V(s5) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 

0.81, and R(s, a)= 0, because there is no reward at this 

state also. 

V(s5)= max[0.9(0.81)]=> V(s5)= max[0.81]=> V(s5) 

=0.73 

For 5th block: 

V(s9) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 

0.73, and R(s, a)= 0, because there is no reward at this 

state also. 

V(s9)= max[0.9(0.73)]=> V(s4)= max[0.81]=> V(s4) 

=0.66 

Consider the below image: 

 
Now, we will move further to the 6th block, and here 

agent may change the route because it always tries to 

find the optimal path. So now, let's consider from the 

block next to the fire pit. 

 
Now, the agent has three options to move; if he moves 

to the blue box, then he will feel a bump if he moves 

to the fire pit, then he will get the -1 reward. But here 

we are taking only positive rewards, so for this, he will 

move to upwards only. The complete block values will 

be calculated using this formula.  

Consider the below image: 
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TYPES OF REINFORCEMENT LEARNING 

 

There are mainly two types of reinforcement learning, 

which are: 

o Positive Reinforcement 

o Negative Reinforcement 

Positive Reinforcement: 

The positive reinforcement learning means adding 

something to increase the tendency that expected 

behavior would occur again. It impacts positively on 

the behavior of the agent and increases the strength of 

the behavior. 

This type of reinforcement can sustain the changes for 

a long time, but too much positive reinforcement may 

lead to an overload of states that can reduce the 

consequences. 

 

Negative Reinforcement: 

The negative reinforcement learning is opposite to the 

positive reinforcement as it increases the tendency that 

the specific behavior will occur again by avoiding the 

negative condition. 

It can be more effective than the positive 

reinforcement depending on situation and behavior, 

but it provides reinforcement only to meet minimum 

behavior 

 

Representing the agent state 

We can represent the agent state using the Markov 

State that contains all the required information from 

the history. The State St is Markov state if it follows 

the given condition: 

P[St+1 | St ] = P[St +1 | S1,......, St] 

The Markov state follows the Markov property, which 

says that the future is independent of the past and can 

only be defined with the present. The RL works on 

fully observable environments, where the agent can 

observe the environment and act for the new state. The 

complete process is known as Markov Decision 

process, which is explained below: 

 

Markov Decision Process 

Markov Decision Process or MDP, is used 

to formalize the reinforcement learning problems. If 

the environment is completely observable, then its 

dynamic can be modeled as a Markov Process. In 

MDP, the agent constantly interacts with the 

environment and performs actions; at each action, the 

environment responds and generates a new state. 

 
MDP is used to describe the environment for the RL, 

and almost all the RL problem can be formalized using 

MDP. 

MDP contains a tuple of four elements (S, A, Pa, Ra): 

o A set of finite States S 

o A set of finite Actions A 

o Rewards received after transitioning from state S 

to state S', due to action a. 

o Probability Pa. 

MDP uses Markov property, and to better understand 

the MDP, we need to learn about it. 

 

Markov Property: 

It says that "If the agent is present in the current state 

S1, performs an action a1 and move to the state s2, 

then the state transition from s1 to s2 only depends on 

the current state and future action and states do not 

depend on past actions, rewards, or states." 

Or, in other words, as per Markov Property, the current 

state transition does not depend on any past action or 

state. Hence, MDP is an RL problem that satisfies the 

Markov property. Such as in a Chess game, the players 

only focus on the current state and do not need to 

remember past actions or states. 

 

Finite MDP: 

A finite MDP is when there are finite states, finite 

rewards, and finite actions. In RL, we consider only 

the finite MDP. 

 

Markov Process: 

Markov Process is a memoryless process with a 

sequence of random states S1, S2, ....., St that uses the 

Markov Property. Markov process is also known as 

Markov chain, which is a tuple (S, P) on state S and 

transition function P. These two components (S and P) 

can define the dynamics of the system. 

Reinforcement Learning Algorithms 

Reinforcement learning algorithms are mainly used in 

AI applications and gaming applications. The main 

used algorithms are: 

 

Q-Learning: 

Q-learning is an Off policy RL algorithm, which is 

used for the temporal difference Learning. The 

temporal difference learning methods are the way of 

comparing temporally successive predictions. It learns 

the value function Q (S, a), which means how good to 

take action "a" at a particular state "s." 

The below flowchart explains the working of Q- 

learning: 
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o State Action Reward State action (SARSA): 

SARSA stands for State Action Reward State action, 

which is an on-policy temporal difference learning 

method. The on-policy control method selects the 

action for each state while learning using a specific 

policy. The goal of SARSA is to calculate the Q π (s, 

a) for the selected current policy π and all pairs of (s-

a). The main difference between Q-learning and 

SARSA algorithms is that unlike Q-learning, the 

maximum reward for the next state is not required for 

updating the Q-value in the table. In SARSA, new 

action and reward are selected using the same policy, 

which has determined the original action. The SARSA 

is named because it uses the quintuple Q (s, a, r, s', 

a'). Where, s: originalstate, a:Original action, r:reward 

observed while following the states, s' and a': New 

state, action pair. 

 

Deep Q Neural Network (DQN): 

As the name suggests, DQN is a Q-learning using 

Neural networks. For a big state space environment, it 

will be a challenging and complex task to define and 

update a Q-table. To solve such an issue, we can use a 

DQN algorithm. Where, instead of defining a Q-table, 

neural network approximates the Q-values for each 

action and state. 

Now, we will expand the Q-learning. 

 

Q-Learning Explanation: 

Q-learning is a popular model-free reinforcement 

learning algorithm based on the Bellman equation. The 

main objective of Q-learning is to learn the policy 

which can inform the agent that what actions should 

be taken for maximizing the reward under what 

circumstances. It is an off-policy RL that attempts to 

find the best action to take at a current state. The goal 

of the agent in Q-learning is to maximize the value of 

Q. The value of Q-learning can be derived from the 

Bellman equation. Consider the Bellman equation 

given below: 

 
In the equation, we have various components, 

including reward, discount factor (γ), probability, and 

end states s'. But there is no any Q-value is given so 

first consider the below image: 

 
In the above image, we can see there is an agent who 

has three values options, V(s1), V(s2), V(s3). As this is 

MDP, so agent only cares for the current state and the 

future state. The agent can go to any direction (Up, 

Left, or Right), so he needs to decide where to go for 

the optimal path. Here agent will take a move as per 

probability bases and changes the state. But if we want 

some exact moves, so for this, we need to make some 

changes in terms of Q-value. Consider the below 

image: 

 
Q- represents the quality of the actions at each state. 

So instead of using a value at each state, we will use a 

pair of state and action, i.e., Q(s, a). Q-value specifies 

that which action is more lubricative than others, and 

according to the best Q-value, the agent takes his next 

move. The Bellman equation can be used for deriving 

the Q-value. 

To perform any action, the agent will get a reward R(s, 

a), and also he will end up on a certain state, so the Q 

-value equation will be: 

 
Hence, we can say that, V(s) = max [Q(s, a)] 

 
The above formula is used to estimate the Q-values in 

Q-Learning. 

 'Q' in Q-learning 

The Q stands for quality in Q-learning, which means it 

specifies the quality of an action taken by the agent. 

Q-table: 

A Q-table or matrix is created while performing the Q-

learning. The table follows the state and action pair, 

i.e., [s, a], and initializes the values to zero. After each 

action, the table is updated, and the q-values are stored 

within the table. The RL agent uses this Q-table as a 

reference table to select the best action based on the q-

values. 
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