
© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 232

The SSL Hardware Acceleration for Rota Model and

Cryptographic Approach

Prof. Kavitha S Patil1, Dr. Indrajit Mandal2, Dr Seetharam K3

1Assistant Professor: ISE, Atria Institute of Technology, Bangalore, India
2Scientist, TCS, Bangalore, India

3Professor, CSE, Bangalore, India

Abstract- Based on data sensitivity over the networks at

transport layer, deploying the cryptographic[24]

approach by accelerating the SSL[15][11] is one the most

complicated area, over the years this issue of SSL

upgration and at TLS[4][5][22] is getting problematic for

proper metrics. Coming to cryptography and

security[24] the repetition of traditional approaches is

into the picture to broad cast the data based on the

discovered LOOK UP table[23]. So, to overcome the

challenges this work discovered a new model

DSSETA(Dynamic Secure Socket Layer Enability over

Transport layer with Acceleration). For security this

work discovered the ROTA (Regex)[base64] algorithm

for encryption and decryption. Accessing of the LOOK

UP table[23] is with a new and innovative approach

based on the kernel level interfaces with neighboring and

with routing addresses and with valid metric access

dynamically which can be enabled for broadcast of data

with valid key break through approach. ROTA[base64]

is a kind of REGEX model of approach which will

change the 6 bits break through to fully qualify to pad

dynamic character(s) to have satisfactory bit

quantization for decryption

Keywords: Look up table, encryption, SSL,TLS, routing,

cryptography, metrics

I.INTRODUCTION

In considering with the nature of SSL/TLS [4][5][22]

matches which gives extension and backward

adoptability between various versions. So, by

deploying the various cryptographic approaches[24]

with the same versions of SSL/TLS [4][5][22] will

lead to damage to transport of the data with loss of

sensitive information. So by maintaining proper and

valid LOOK UP table[23] which should accelerate the

migration of versions with the current metrics with

various environments. DSSETA will acts as a

controller for migration of versions at transport layer

by giving proper acceleration model to enable and

disable with respect to various parametric and with

proper attributes. So by enabling this kind of

acceleration, the security[24] will be increased with

auto initiative mechanism. First DSSETA will starts

fetching the hardware offset of the application

layer(for sample :X47F0Fxxx) by targeting the proper

DLL with current environment(normal OS or

VMware, cloud era) and starts controlling the all the

layer till session layer which is pre layer to transport

layer. So by enabling the proper LOOK UP[23]

metrics with the current parameters the security[24]

deployment begins with SSL[15][11] enability. By

putting the TLS[4][5][22] with SSL now the access to

data will be flown in the cryptographic[24] way.

Currently TLS(Transport layer security) [4][5][22] is

trend and predominant way to achieve the internet

security. So DSSETA will starts to accelerate the

cryptographic security[24] by enabling the

SSL[15][11] at TLS[4][5][22] with iterative LOOK

UP table[23] access. The ROTA(Regex)[base64]

security is enabled after the acceleration. Rota[base64]

is a model of approach to break the data into 6-bit

framing with neighboring bits as partner. With odd

ends data this approach will keep putting “=” to satisfy

the 6-bit framing partners.

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 233

Architecture:

Fig 1:Integrated Architecture Containg three Approaches

II LITERATURE SURVEY AND BACKGROUND

ON SSL/TLS

The protocol was first developed by Netscape

Communications when Mosaic was released in 1993.

In 1994 the first version was finished but due to major

flaws in the protocol it was only used internally and

never was released. Later that same year SSL[15][11]

was improved upon and launched with the web

browser Netscape Navigator as SSL version 2.

Initially SSL[15][11] was patent protected but the

patent was given away and made free to use.

SSL[15][11] 3.0 was released in 1995 in order to

correct security issues present in SSL 2.0 . For

example, complementing Message-Digest algorithm 5

(MD5)[25] with Secure Hash Algorithm 1 (SHA-

1)[25] as the cryptographic hash function. In parallel

to Netscape developing and releasing SSL[15][11],

Microsoft had been working on their own version

called Private Communication Technology (PCT).

Even though interoperability with SSL[15][11] was

supported, when another protocol called Secure

Transport Layer Protocol (STLP)[26] was proposed it

was clear that a single standardized protocol was

needed. The Internet Engineering Task Force

(IETF)[4][5] set up a work group dedicated to this and

from that point the protocol would be known as

TLS[4][5][22].

Turner and Polk on behalf of IETF[4][5] ruled

SSL[15][11] 2.0 not secure enough and that

TLS[4][5][22] never should negotiate use of

SSL[15][11] 2.0. Usage of MD5[25], no protection of

handshake messages, the message integrity and

encryption using the same key, and weakness in the

session making it easy to terminate by a man-in-the-

middle was named the major reasons. In June 2015

Barnes, Thomson, Pironti, and Langley deprecated the

SSL[15][11] 3.0 protocol as well, stating that it must

not be used. No suitable record protection mechanism,

key exchange vulnerability during renegotiation and

session resumption, cryptographic[24] primitives

relying on SHA-1 and MD5[25], and the inability to

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 234

adapt new features from newer protocols was named

the major reasons. None of these flaws are present in

any of the TLS[4][5][22] implementations.

The improved TLS[4][5][22] 1.0 was released but was

still very similar to SSL[15][11] 3.0 and could

basically be view as SSL 3.1 but under a single

standardized protocol. A much bigger update was

made when TLS[4][5][22] 1.1 was released in 2006.

One of the big changes was the change to the

Initialization Vector (IV) making it explicit instead of

implicit. This is to protect against Cipher Block

Chaining (CBC) attacks Just two years later in 2008

the TLS 1.2 was released. The MD5/SHA-1[25]

combination in both the Pseudorandom Function

(PRF) and digitally signed element was replaced with

a single hash. Also, the extensions definition and

Advanced Encryption Standard (AES) cipher suites

being merged in are named major differences.

A.Flow:

Algorithms and pseudo codes:

SSL Secure Enablity with hand shaking:

SSL[15][11] (Secure Sockets Layer) or more correctly

TLS[4][5][22] (Transport Layer Security) is an

important component in the secure delivery of web

applications. It provides for authentication (website to

client and optionally client to website) and protects the

traffic between clients and sites using encryption.

However, this protection comes at a cost as the

computational overhead involved in setting up each

client session is significant. Using a load balancer to

offload the SSL[15][11] processing removes this

overhead from the web servers, hardware acceleration

shown in the Fig 2 and frees up resources for web

application related tasks.

Fig 2: SSL Acceleration

SSL[15][11] protocol, does its fantastic job of

securing communication over the wire, with the help

of multiple layers of protocols, above TCP(And After

Application Layer).Always keep in mind that,

although HTTP protocol is the protocol, which highly

makes use of SSL, to secure communication.

SSL[15][11] is an application layer independent

protocol shown in the Fig 3. So you can use that with

any application layer Protocol.

Fig 3: Layer representation of SSL Handshake Protocol

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 235

Client Hello message content in SSL/TLS

Fig 4 shows the SSL handshake protocol where

following steps will be done

SSL VERSION NUMBER : the client sends a list of

ssl version it supports. And priority is given to the

highest version it supports

Random Data Number : Its made up of 32 bytes. 4

byte number made up from client's date & time plus

28 byte randomly generated number(this will be used

with server's random value made of date & time for

generating the "master secret", from which encryption

key will be derived).

SESSION ID: In order to enable client's resuming

capabilities this session ID is included.

CIPHER SUITS: RSA[27] algorithm is used for the

initial key exchange which will be done using public

key cryptography. And SHA[25] is used for MAC and

hashing. And also sends the encryption algo's

supported by the client like DES for example.

Compression Algorithm: this will include

compression algorithms details, if used.

Server Hello message in SSL/TLS

Version Number: Server selects an ssl version thats

supported by both the server and the client, and is the

highest version supported by both of them

Random Data: the server also generates a random

value using the server's date and time plus a random

number of 28bytes. Client will use this random value

and its own random value to generate the "master key"

Sesssion ID: There are three possiblities, with regard

to the session id. It all depends on the type of client-

hello message. If the client requires to resume a

previously created session, then both the client and

server will use the same session ID. But, if the client

is initiating a new session, the server will send a new

session ID. Sometimes a null session ID is also used,

where server will never support resuming the session,

so no session id's are used at all.

Cipher Suits: Similar to the version number selected

by the server, the server will select the best cipher suite

version supported by both of them.

Certificate: The server also sends a certificate, which

is signed and verified by a Certificate Authority, along

with the public key(Content encrypted with public key

can only be opened with a corresponding private key.

In this case, only the server can unlock it because, the

server has the private key for its public key).

A certificate signed by a certificate authority(a trusted

third party), consists the complete information about

the company using that certificate. The certificate

identity of many well known certificate authority is

made avialable to the web browser. Whenever a

certificate is received by the client's browser, it is

verified with the one it has from the certificate

authority. So this proves that, that the server which

claims, that it is "example.com" is infact correct.

Server Key Exchange: this step is taken by the server,

only when there is no public key shared along with the

certificate. If this key is used, this will be used to

encrypt the "Client Key Exchange Method"

Client Certificate request: This is seldom used,

because this is only used, when the client also needs to

get authenticated, by a client certificate.

Server Hello Done: this message from the server will

tell the client, that the server has finished sending its

hello message, and is waiting for a response from the

client.

Response from the client to server's hello message:

Client Certificate: The client sends a client certificate

back to the server. This step is only used when a client

certificate is requested by the server(through the server

hello message).

Client Key Exchange: This message is only sent, after

the client calculates, the premaster secret with the help

of the random values of both the server and the

client(Which was shared by both the server and the

client through the hello message).

"Client Key exchange" message, is sent by encrypting

it with the server's public key, which was shared

through the hello message. This message can only be

decrypted with the server's private key. If successful,

the server is authenticated.

The above explained things is depicted in the below

diagram.

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 236

Fig 4: SSL Handshake

the client will also send the SSL[15][11] protocol

version once again along with the "client key

exchange" method, so that the server can verify, this

version with the previous one send, so as to prevent a

man in the middle from changing the protocol version.

Mathematical model of SSL Hand shaking:

Client Hello

TLS[4][5][22] wraps all traffic in “records” of

different types. We see that the first byte out of our

browser is the hex byte 0x16 = 22 which means that

this is a “handshake” records shown in the Fig 5

Fig 5: Handshake Record

Server Hello

Server replies with a handshake record that’s a

massive two packets in size (2,551 bytes). The record

has version bytes of 0x0301 meaning that Amazon

agreed to our request to use TLS[4][5][22] 1.0. This

record has three sub-messages with some interesting

data shown in the Fig 6:

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 237

Fig 6: Server Hello Message

SSL handshaking signature verification:

People sometimes wonder if math has any relevance

to programming. Certificates give a very practical

example of applied math. Amazon’s certificate tells us

that we should use the RSA[27] algorithm to check the

signature. RSA[27] was created in the 1970’s by MIT

professors Ron Rivest, Adi Shamir, and Len Adleman

who found a clever way to combine ideas spanning

2000 years of math

development to come up with a beautifully simple

algorithm:

You pick two huge prime numbers “p” and “q.”

Multiply them to get “n = p*q.” Next, you pick a small

public exponent “e” which is the “encryption

exponent” and a specially crafted inverse of “e” called

“d” as the “decryption exponent.” You then make “n”

and “e” public and keep “d” as secret as you possibly

can and then throw away “p” and “q” (or keep them as

secret as “d”). It’s really important to remember that

“e” and “d” are inverses of each other.

Now, if you have some message, you just need to

interpret its bytes as a number “M.” If you want to

“encrypt” a message to create a “ciphertext”, you’d

calculate:

C ≡ Me (mod n)

This means that you multiply “M” by itself “e” times.

The “mod n” means that we only take the remainder

(e.g. “modulus”) when dividing by “n.” For example,

11 AM + 3 hours ≡ 2 (PM) (mod 12 hours). The

recipient knows “d” which allows them to invert the

message to recover the original message:

Cd ≡ (Me)d ≡ Me*d ≡ M1 ≡ M (mod n)

Just as interesting is that the person with “d” can

“sign” a document by raising a message “M” to the “d”

exponent:

Md ≡ S (mod n)

This works because “signer” makes public “S”, “M”,

“e”, and “n.” Anyone can verify the signature “S” with

a simple calculation:

Se ≡ (Md)e ≡ Md*e ≡ Me*d ≡ M1 ≡ M (mod n)

Public key cryptography algorithms like RSA[27] are

often called “asymmetric” algorithms because the

encryption key (in our case, “e”) is not equal to (e.g.

“symmetric” with) the decryption key “d”. Reducing

everything “mod n” makes it impossible to use the

easy techniques that we’re used to such as normal

logarithms. The magic of RSA[27] works because you

can calculate/encrypt C ≡ Me (mod n) very quickly,

but it is really hard to calculate/decrypt Cd ≡ M (mod

n) without knowing “d.” As we saw earlier, “d” is

derived from factoring “n” back to its “p” and “q”,

which is a tough problem.

Rota(Regex): This is a set of identical binary to

strings(text) encoded models that indicates binary data

with ASCII text format by converting/translating to

RADIX-64 notations.

Normally Rota[base64] models are widely used

whenever there is a need of binary data encoding that

needed to be encoded and transferred over the

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 238

networks which are framed to deal with string based

data. This step is to ensure that data has to remain

without alteration during broadcast. Rota[base64] is

ordinarily utilized as a part of a Rota[base64] encoding

takes the first double information and works on it by

partitioning it into tokens of three bytes. A byte

comprises of eight bits, so Rota[base64] takes 24bits

altogether. These 3 bytes are then changed over into

four printable characters from the ASCII standard.

The calculation's name Rota[base64] originates from

the utilization of these 64 ASCII characters. The

ASCII characters utilized for Rota[base64] are the

numbers 0-9, the letter sets 26 lowercase and 26

capitalized characters in addition to two additional

characters "+" and '/'.

The initial step is to take the three bytes (24bit) of

parallel information and split it into four quantities of

six bits. Since the ASCII standard characterizes the

utilization of seven bits, Rota[base64] just uses 6 bits

(comparing to 2^6 = 64 characters) to guarantee the

encoded information is printable and none of the

uncommon characters accessible in ASCII are utilized.

The ASCII change of 3-byte, 24-bit gatherings is

rehashed until the entire succession of unique

information bytes is encoded. To guarantee the

encoded information can be appropriately printed and

does not surpass the farthest point.

At the point when the quantity of bytes to encode is

not distinct by 3 (that is, if there are just a single or two

bytes of contribution for the last 24-bit square), then

the accompanying activity is performed: Add

additional bytes with esteem zero so there are three

bytes and play out the change to base64. On the off

chance that there was just a single huge information

byte, just the initial two Rota[base64] digits are picked

(12 bits), and if there were two critical info bytes, the

initial three Rota[base64] digits are picked (18 bits).

"=" characters may be added to make the last piece

contain four base64 characters.

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 239

Rota (encryption) algorithm:

Input raw string

Output base64 encoded format

Step1: initialization

∫ALPHABET = ∑25
0 𝐶𝐴𝑃𝑆(65 − 90) +

∑25
0 𝑆𝑀𝐴𝐿𝐿(97 − 122) +

∑9
0 𝑁𝑈𝑀𝐵𝐸𝑅𝑆(48 − 57) + ∑2

0 𝑆𝑃𝐶(43,67)

// all “ALPHABET” CONTAINS ASCII values for

capital letters, small letters, single digit numbers, ‘+’

and ‘/’ characters.

Step2:

Functionality:

To convert alphabets to ASCII codes

Input all available characters

Output all equivalent ASCII values

n 0

B0 0

B1 0

B2 0

∑𝑛
0 𝑏𝑢𝑓𝑓[] 0

∑𝑛
0 𝑎𝑟 0

𝑖 0

Iteration 0

Loop statement:

Count=0

For each C in ALPHABET

toInt (count) = TOINT (ALPHABET (i))

Count++

End loop

Size=SIZE (buff)

Iteration (((size+2)/3)*4)

Do while n in iteration

B0 buff

B1 (i <size)? buff++: 0

B2 (i < size)? buff++: 0

Masking

Mask=0X3F

ar = ALPHABET [(b0>>2) & mask]

ar= ALPHABET [(b0<<4) | ((b1&0XFF)>>4)) &

mask]

ar= ALPHABET [(b1<<2) | ((b2&0XFF)>>6)) &

mask]

ar = ALPHABET [b2 & mask]

End while

Padding:

If (size % 3=1)

ar “=”

ar “=”

Else if (size % 3=2)

ar “=”

else

size %3=0

End if

Decryption:

When decoding Rota[base64] Final text, 4 characters

are typically converted back to 3 bytes. The only

exceptions are when padding characters exist. A single

'=' indicates that the 4 characters will decode to only 2

bytes, while 2 '='s indicates that the 4 characters will

decode to only a single byte.

Example:

Input:

YW55IGNhcm5hbCBwbGVhcw==

Block with 2 '='s decodes to 1 character:

Output:

any carnal pleas

RotalFinal (decoding) algorithm:

Input string

Output ∑𝑛
0 𝑏𝑢𝑓𝑓(𝑏𝑦𝑡𝑒𝑠)

Initialization:

Buff 0

S string decode

N length of string

Mask 0XFF

If s [0] = ‘==’

Delta =2

Else if s [0] = ’=’

Delta =1

Else

Delta=0

End if

Loop

For I 0 step by 4 of in n

C0=Convert to Int [CharAt (i) in S]

C1=Convert to Int [CharAt (i+1) in S]

𝑏𝑢𝑓𝑓𝑒𝑟𝑖 (c0<<2) | (c1>>4) & mask

C2 Convert to Int [CharAt (i+2) in S]

𝑏𝑢𝑓𝑓𝑒𝑟𝑖+1 (c1<<4)|(c2>>2)&mask

C3=convert toInt [i+3]

𝑏𝑢𝑓𝑓𝑒𝑟𝑖++ = (c2<<6)! c3&mask

End loop

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 240

B Lookup table with Dynamic Secure Socket Layer

Enability over Transport layer with

Acceleration(FPGA):

A FPGA is an integrated circuit containing logic

blocks such as look-up tables (LUT) [23] and flip-

flops. As opposed to application specific integrated

circuit (ASIC), the FPGA[28] can be programmed by

the user to realize custom-designed logic.

Programming is accomplished using a hardware

descriptive language (HDL), such as VHDL or

Verilog. In the labs you have previously done, the

FPGA[28] has been pre-pre-programmed to provide

logic components such as AND gates and flip-flops

and the student connected these components together.

This experiment is designed to provide students with

more insight into the structure of a field programmable

gate array (FPGA)[28]. A look up table (LUT) [23] is

a memory with a one-bit output that essentially

implements a truth table where each input combination

generates a certain logic output. The input

combination is referred to as an address. The HDL

synthesizer implements an AND gate or other simple

logic function by programming the stored elements in

a LUT[23]. In this experiment, you will program three

pre-built LUTs[23] and develop a state machine to

implement the fox-duck-corn game described below.

When finished, you will be able to play the game. A

man went on a trip with a fox, a duck and an open can

of corn. He came upon a river and a tiny boat to cross

the river but he could only take himself and one other

- the fox, the duck, or the corn - at a time. He could not

leave the fox alone with the duck or the duck alone

with the corn. How does he get all safely over the

river?

Procedure:

1. Fox Logic - Complete the following next state table

shown in the Table 1 according to the game

description Definitions: curM (current state of the

man), curF (current state of the fox), inF (the control

input of bringing the fox over the river), nextF (next

state of the fox). Remember that the fox cannot move

unless the man is on the same side of the river as the

fox.

Table1: Next State Table of Fox Logic

Duck & Corn Logic - Upon further examination of the

game, it turns out that the next state table of the duck

and the corn shown in the Table 2 are very similar.

Design and write out the next state table of the duck

and the corn. As in Part 2, program LUT-2[23] and

LUT-3 with the truth table for the duck and corn

respectively. Connect LUT[23] outputs and inputs to

D-FFs to form a state machine.

Table2: Next State Table of Duck and Corn

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 241

C FPGAs[28] and Their Internal Architecture(Lookup

table)

Field Programmable Gate Arrays (FPGAs)[28] offer

a reconfigurable design platform which makes them

popular among digital designers. Typical internal

structure of FPGA[28] (Figure 8) comprises of three

major elements:

• Configurable Logic Blocks (CLBs), shown as

blue boxes in Figure 8 , are the resources of

FPGA[28] meant to implement logic functions.

Each CLB is comprised of a set of slices which

are further decomposable into a definite number

of look-up tables (LUTs) [23], flip-flops (FFs)

and multiplexers (Muxes).

• Input/Output Blocks (IOBs) available at

FPGA’s[28] periphery facilitate external

connections. These programmable blocks carry

signals ‘to’ or ‘from’ FPGA[28] chip. Figure 1

shows IOBs as a set of rectangular boxes enclosed

within the FPGA[28] boundary (violet colored

outer box).

• Switch Matrix (shown as red-colored lines in

Figure 8) is an interconnecting wire-like

arrangement within FPGA[28]. These offer

connectivity for the CLBs or provide dedicated

low impedance, minimum delay paths (for

example, global clock line).

Fig 8: FPGA Internal Architecture

C Mathematical model for Lookup table:

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 242

III RESULTS AND ANALYSIS

Fig 9:Practical analysis of handshaking with attacks with respect to hardware acceleration over browsers

Possible Outcomes: The following screen shot from PO1 ,PO2,PO3,PO4 and PO5 shows the possible outcome.

PO1:Transport Layer Hooked(LookUP Table Initiated)

PO2: RSA Security Underwater ROTA Activation at Transport Layer

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 243

PO3: SSL/TLS Hardware Acceleration Enabled

PO4: ROTA Security Key Generation

PO5: Fully Qualified LookUp Table with Pre and Post Acceleration with Double ROTA Key Generations.

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 244

IV CONCLUSION

Intel SGX offers a unique opportunity to perform

secure computation in otherwise untrusted

environments. An integral part of Intel SGX is the

ability to obtain an attestation on the properties of the

enclave and its platform. Integrating remote attestation

seamlessly with a standard secure channel protocol

greatly simplifies the use of remote attestation in

practice. We developed a library that conveniently

encapsulates the attestation flow and verification

behind a simple API. Using this interface, developers

can rely on the added assurance remote attestation

provides their application without having to deal with

the intricacies of implementing it correctly.

REFERENCE

[1] Connolly, L., Lang, M. & Tygar, D. (2014).

Managing Employee Security Behaviour in

Organisations: The Role of Cultural Factors and

Individual Values. ICT Systems Security and

Privacy Protection: 29th IFIP TC 11 International

Conference, SEC 2014, Marrakech, Morocco,

June 2-4, 2014. Proceedings. pp. 417-430. DOI:

10.1007/978-3-642-55415-5_35.

[2] Datainspektionen. (2008a). Säkerhet för

personuppgifter Datainspektionens allmänna råd.

Available online:

http://www.datainspektionen.se/Documents/fakta

broschyr-allmannaradsakerhet.pdf.

[3] Datainspektionen. (2008b). Statliga myndigheters

behandling av personuppgifter. Available online:

http://www.datainspektionen.se/lagar-och-

regler/personuppgiftslagen/eforvaltning/statliga-

myndigheters-behandling-av-personuppgifter/

[4] Dierks, T. and Rescorla, E. (2006). The Transport

Layer Security (TLS) Protocol Version 1.1.

Internet Engineering Task Force (IETF).

Available online:

https://tools.ietf.org/html/rfc4346.

[5] Dierks, T. and Rescorla, E. (2008). The Transport

Layer Security (TLS) Protocol Version 1.2.

Internet Engineering Task Force (IETF).

Available online:

https://tools.ietf.org/html/rfc5246

[6] http://www.hackinglinuxexposed.com/articles/20

020423.html

[7] http://www.extremetech.com/article2/0,3973,471

936,00.asp

[8] http://www.securityfocus.com/archive/1/286290/

2002-07-31/2002-08-06/0

[9] nFast Series, Thales.

http://iss.thalesgroup.com/Products/.

[10] NITROX security processor, Cavium Networks.

http://www.caviumnetworks.com/processor_secu

rity_nitrox-III.html.

[11] OpenSSL Engine.

http://www.openssl.org/docs/crypto/engine.html.

[12] Researchers crack 768-bit RSA. http://www.bit-

tech.net/news/bits/2010/01/13/researchers-crack-

768-bit-rsa/1.

[13] ServerIron ADX Series, Brocade.

http://www.brocade.com/products-

solutions/products/application-

delivery/serveriron-adx-series/index.page.

[14] Silicom Protocol Processor Adapter.

http://www.silicom-

usa.com/default.asp?contentID=676.

[15] SSL Acceleration Cards, CAI Networks.

http://cainetworks.com/products/ssl/rsa7000.htm.

[16] The AMD Fusion Family of APUs.

http://sites.amd.com/us/fusion/APU/Pages/fusion

.aspx.

[17] Security Architecture for the Internet Protocol.

RFC 4301, 2005.

[18] Netcraft SSL Survey.

http://news.netcraft.com/SSL-survey, 2009.

[19] Netcraft Web Server Survey.

http://news.netcraft.com/archives/2010/04/15/apr

il_2010_web_server_survey.html, 2009.

[20] NVIDIA’s Next Generation CUDATMCompute

Architecture: FermiTM.

http://www.nvidia.com/content/PDF/fermi_white

_papers/NVIDIA_Fermi_Compute_Architecture

_Whitepaper.pdf, 2009.

[21] S. Agarwal, V. N. Padmanabhan, and D. A.

Joseph. Addressing email loss with suremail:

Measurement, design, and evaluation. In

USENIX ATC, 2007.

[22] G. Apostolopoulos, V. Peris, and D. Saha.

Transport Layer Security: How much does it

really cost? In IEEE Infocom, 1999.

[23] Nen-Fu Huang, Shi-Ming Zhao. A Novel IP-

Routing lookup Scheme and Hardware

Architecture for Multigigabit Switching Routers.

© September 2022| IJIRT | Volume 9 Issue 4 | ISSN: 2349-6002

IJIRT 156609 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 245

In IEEE Journal on Selected Areas in

Communications, 1999.

[24] S. Sridar, S. Smys. Intelligent Security

Framework for IOT Devices Cryptography based

End-to-End Security Architecture. In

International Conference on Inventive Systems

and Control, 2017.

[25] Anak Agung Putri Ratna, Prima Dewi

Purnamasari, Ahmad Shaugi, Muhammad

Salman. Analysis and Comparision of MD5 and

SHA-1 Algorithm Implementation in Simple-O

Authentication based Security System. In

International Conference on QiR, 2013.

[26] A. ALexandrov, V. Monov. Method for WSN

clock Syncronization based on Optimized SLTP

Protocol. In 25th Telecommunication

Forum,2017.

[27] Qing Liu, Yunfei Li, Lin Hao,Hua Peng. Two

Efficient Variants of the RSA Cryptosystem. In

International Conference on Computer Design

and Applications, 2010.

[28] Chenguang Guo, Yanlong Zhang,Lei Chen, Tao

Zhou,Xuewu Li, Min Wang, Zhiping Wen. A

Novel Application of FPGA-based Partial

Dynamic Reconfiguration System with CBSC. In

VIII Southern Conference on Programmable

Logic, 2012.

