
© November 2022 | IJIRT | Volume 9 Issue 6 | ISSN: 2349-6002

IJIRT 157208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 229

Improving the Efficiency of Regression Test Case

Prioritization for Large Scale Workflow SOA

GT RAMYA

Department of CSE, JNTUCEA(Autonomous) Ananthapuramu

Abstract— Large software system development is a

difficult and error-prone process. Any level of development

may have errors, thus it's important to find and fix them as

soon as we can to prevent further development and lower

verification costs. To define necessary characteristics and

evaluate their influence on the development process,

quality engineers must be involved in the process from the

very beginning. So, software testing provides accuracy and

quality of the software product and services under the test.

Many web services are service-oriented workflow

applications with different functions. Web Service

Business Process Execution Language (WSBPEL) has

become the standard architecture for all service

applications online. These applications often suffer from

failures or defects, especially during the service evolution

of service composition. Although costly, regression testing

is a crucial part of software maintenance. Regression

testing verifies altered software and makes sure that the

added features did not create unforeseen faults. In the

existing system, WSBPEL activity dependencies such as

correlation and synchronization dependencies are

proposed. For analyzing the internal structure changes

module dependency technology is used and modification

impact analysis is used for test case Prioritization of service

oriented applications. Program slicing techniques are the

foundation of the majority of regression test selection

methods. In the existing system slicing technique is used

for prioritizing regression test cases. But, it does not

support large scale workflow applications. It is important

to propose an LSBPEL (Large Scale Business Process

Execution Language) technique after studying the demand

for large scale and many service-oriented workflow

applications. In comparison to conventional approaches

that address single service test case priority, the suggested

solution is more efficient.

Indexed Terms— Regression Testing, Test Case

Prioritization, BPEL, Large Scale Applications.

I. INTRODUCTION

Change is inevitable in any engineering discipline. In

software Engineering it is even more important when

it comes to the quality. To provide good quality of the

product, software testing plays a vital role in

delivering such. Software Testing validates whether a

product fulfills clients needs or not. Large-scale

programming is now an established technology in

service computing. All service applications in the

internet space now use WSBPEL as their standard

design. The previous ten years have seen significant

changes in software design and development

activities. Traditionally, software systems were

created to function in a known, unchanging

environment [1].

A maintenance lifecycle (the "design, development,

and deployment" of a new Version) was used

whenever software had to be upgraded in order to

enhance its quality or satisfy new needs [1]. Costly

maintenance activities and an unacceptable time to

market were the results of this strategy. The same

consolidated testing techniques that have been used for

years on conventional systems also apply to service-

centric systems. Primarily, the idea that a combination

of unit, integration, system, and regression testing is

needed to gain confidence that a system will deliver

the expected functionality [2]. Software maintenance

is becoming very important and more expensive day

by day. When the software is modified during

maintenance phases, retesting is performed and this

process is nothing but the Regression Testing [3]. It

aims at detecting potential faults caused by software

changes, and is the de facto approach. It reruns test

cases from existing test suites to ensure that no

previously working function has failed as a result of

the modification. Although many researchers point out

that frequent executions of regression tests are crucial

in successful application development, rerunning the

regression test suite for large and complex systems

may take days and even weeks, which is time-

consuming again [3]. When running the test suite and

identifying issues, it is preferable to identify failures

as soon as possible to save expenses. Regression

© November 2022 | IJIRT | Volume 9 Issue 6 | ISSN: 2349-6002

IJIRT 157208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 230

testing methodologies must be used effectively as a

result [5].

Various application sources involved in various

projects are taken into one unit and built as a single

application. Once the application is ready for testing,

the test suite will be prepared and types of testing to be

performed will be listed out i.e., Black Box testing,

White Box testing, Unit Testing, Regression Testing,

Retesting etc.,. When the test selection is done, then

priority of the selection to be done. Post prioritizing

the test selection, execution takes place based on

priority [5]. So, test case Prioritization is important in

regression testing as shown in following Fig. 1.

Fig. 1: Test Case Prioritization in Regression Testing

II. SOFTWARE TESTING

Running an application with the goal of identifying

software problems is known as software testing (errors

or other defects). Demand for software applications

has elevated the level of quality control for newly

generated software. It has been regarded as the phase

of the software development life cycle that is the most

crucial. Software items can be examined through

testing to determine the discrepancy between real and

desired circumstances and to evaluate the software's

attributes.

III. RELATED WORK

The issue of addressing changes regarding the non-

functional behavior of software services controlled by

external organizations—and hence regarded as black-

box artifacts—is addressed in this study by Epifani, I.,

et al. The author presents a statistical method for

identifying change points as well as a description of

the execution trail brought on by client invocations.

The author additionally created a change-point

analysis tool as a component of the KAMI framework

"a toolset" and used simulations to test the approach.

As a consequence, the relationship between the length

of the trace and the range of probabilities included in

the models as well as the distance between various

change-points (in a multiple change-point scenario) is

carried out [1]. Numerous prioritizing strategies

arrange test cases according to the specific programme

statements they cover.

IV. PROPOSED WORK

In this proposed work, scheduling approach for the test

case Prioritization is used. The proposed grid based

computing application is more effective than

traditional which covers single service test case

priorities. It has been determined in this study that

regression testing is the kind of testing used to find

software defects that arise as a result of modifications

made to the product. After reviewing the various test

case priority methods, it was determined that the

BPEL algorithm was the most effective method for

Prioritization. The BPEL method will be improved in

the future to increase the accuracy of mistake

identification during regression testing. Software

testing is a crucial step in ensuring the accuracy,

completeness, and utility of user requirements and

specifications [1]. A technique is used to ensure that

the programme is error-free [2]. Regression testing is

one of the approaches used in software testing. It is a

technique that keeps track of new software updates

and ensures that the upgrades won't have an impact on

the functionality of the product as it now exists [3].

This requires ensuring that none of the software

modifications interfere with the already-existing

functions.

The process of regression testing is started with the

first release of the product, so it is said to be a

maintenance activity in software development process

models. Any change request, software, or service

update or next release of the same product leads to the

regression testing [4]. The change in requirement leads

to the code modifications. After the source code is

modified, regression testing is commenced; any

regression error during regression testing is looped

© November 2022 | IJIRT | Volume 9 Issue 6 | ISSN: 2349-6002

IJIRT 157208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 231

back to code modification [3]. The regression errors

include the bugs like software enhancement problems,

configuration mismatches, substitution errors,

structural failures in code, and service unavailability

or failures. After the completion of regression testing,

the new version of software has been released as

shown in the fig. Likewise, test case Prioritization

technique segregates the test cases based on some

adequacy measures results to lower testing costs and

improve testing process efficiency, but TCP does not

exclude test cases from actual test suites. Test case

selection technique eliminates repeated test cases from

test suites. The primary goal of test case reduction

techniques is to reduce the number of test cases in the

test suite, which raises the price of regression testing.

The goals of selection and prioritizing are the same,

but Prioritization techniques organize test suites.

Fig. 2 : Maintenance Process Model

The above Fig. 2 shows the Software Coding and

Testing Stages through Maintenance Process Model

where the objectives of regression test case

Prioritization techniques were widely characterized in

the literature as N-release development, continuous

quality upgrades, continuous development, and

continuous integration [8].

Fig. 3: Proposed Testing Architecture

Advantages:

• A large number of service-oriented workflow

applications are provided.

• Provides priority-based testing choices

• First, high priority selection is made throughout the

testing procedure.

• Selects the top priority items to be handled first.

V. METHODOLOGY

The priority problem is to map every i T onto some j i

S to achieve minimum execution cost and complete

the workflow execution within the deadline D . We

solve the scheduling problem with priority concept by

following the divide-and-conquer technique and the

methodology is listed below:

Step 1. Discover available services and predict

execution time for every task.

Step 2. Group workflow tasks into task partitions.

Step 3. Distribute users’ overall deadline into every

task partition.

Step 4. Query available time slots, generate optimized

priority plans and make advance reservations based on

the local optimal solution of every task partition.

Algorithm:

Methods Used:

The goal of test case Prioritization is to enhance the

likelihood and rate of fault detection if the test cases

are in order during regression testing, in accordance

with specified performance goals and determinants.

Prioritizing test cases can help risk-based testing's risk

© November 2022 | IJIRT | Volume 9 Issue 6 | ISSN: 2349-6002

IJIRT 157208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 232

analysis process. The following objectives can be

addressed via test case Prioritization:

• The testers seek to raise the chance of finding flaws

early in the regression testing and to boost the rate

of fault identification.

• Increases the identification of high-risk problems

and finds them early in the regression testing

process.

• Increases the probability of finding regression

errors when the code changes during the first

regression testing phase.

• Increases the pace at which they test the system's

coverable code coverage.

• Increase the speed to develop their confidence in

the reliability of the system.

Table 1:Table Showing Non Prioritization and

Prioritization Ratios

VI. EXPERIMENTAL RESULTS

Experimental setup for this study is discussed in this

section. Experimentation is performed by using the

system with the following specifications: Intel Core

i7 processor with 8 GB RAM, and Java as a language.

Selected datasets with details are used for showing test

case priority.

Fig. 4: List of Bugs with their Priority Levels

In Fig. 4 showing various bugs listed in working

projects with priorities , based on project and bug

priorities, solutions will be worked out by

programmers in rectifying. Figure showing project

name, bug and priority columns which are noted in

various levels.

Fig. 5: Chart Showing Various Team Members with

Bug Management

In Fig. 5, chart showing various team size noted in

various projects based on the team size and bugs noted,

priorities will be assigned for faster and better access.

Fig. 6: Report Showing Solved and Unsolved Bugs

on Priority

In Fig. 6, showing various bugs listed in working

projects with priorities and status showing solved and

pending bugs, based on project and bug priorities

solution is solved and worked out by programmers.

Figure showing project name, bug, priority and

solution columns which are noted in various levels.

© November 2022 | IJIRT | Volume 9 Issue 6 | ISSN: 2349-6002

IJIRT 157208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 233

VII. CONCLUSION AND FUTURE WORK

Test case prioritizing is a technique used in regression

testing to increase the effectiveness of error detection

in changed service-oriented workflow systems by

switching the order in which test cases are run. This

study suggests a novel test case prioritizing

methodology for regression test cases in grid-based

computing systems as well as a workflow scheduling

approach for service-oriented workflow applications.

Instead of using the FIFO concept, which requires

important projects to wait in order to fix bugs, the

proposed grid-based computing applications are more

effective than the conventional ones. In the suggested

strategy, each project is given a priority, and critical

projects whose flaws affect single service test case

priorities are fixed first.

REFERENCES

[1] N. B. Ellison, V. Jessica, G. Rebecca, and L.

Cliff, “Cultivating social resources on social

network sites: facebook relationship

maintenance behaviours and their role in social

capital processes,” Journal of Computer-

Mediated Communication, vol. 19, no. 4, pp.

855–870, 2014.

[2] R. Kazmi, D. Abang Jawawi, R. Mohamad, and

I. Ghani, “Effective regression test case

selection: a systematic literature review,” ACM

Computing Surveys, vol. 50, no. 2, pp. 1–32,

2017.

[3] J. Ahmad and S. Baharom, “Factor determination

in prioritizing test cases for event sequences: a

systematic literature review,” Journal of

Telecommunication, Electronic and Computer

Engineering, vol. 10, no. 1–4, pp. 119–124,

2018.

[4] R. D. Adams, “Nondestructive testing,” in

Handbook of Adhesion Technology, Springer,

Berlin, Germany, 2018.

[5] M. Khatibsyarbini, A. M. Isa, D. N. A. Jawawi,

and R. Tumeng, “Test case Prioritization

approaches in regression testing: a systematic

literature review,” Information and Software

Technology, vol. 93, pp. 74–93, 2018.

[6] E. Cruciani, B. Miranda, R. Verdecchia, and A.

Bertolino, “Scalable approaches for test suite

reduction,” in Proceedings of the 41st

International Conference on Software

Engineering, Montreal, Canada, May 2019.

[7] G. P. Sagar and P. Prasad, “A survey on test case

Prioritization techniques for regression testing,”

Indian Journal of Science and Technology, vol.

10, no. 10, pp. 1–6, 2017.

[8] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-

scale empirical comparison of static and dynamic

test case Prioritization techniques,” in

Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of

Software Engineering, New York, NY, USA,

November 2016.

[9] JUnit, Java Testing, 2016, http://junit.org/junit4/.

[10] V. Neethidevan and G. Chandrasekaran,

“Database testing using Selenium web driver–a

case study,” International Journal of Pure and

Applied Mathematics, vol. 118, no. 8, pp. 559–

566, 2018.

[11] Z. Sultan, S. Nazir Bhatti, S. Asim, and R. Abbas,

“Analytical review on test cases Prioritization

techniques: an empirical study,” International

Journal of Advanced Computer Science and

Applications, vol. 8, no. 2, 2017.

[12] B. Jiang and W. K. Chan, “Input-based adaptive

randomised test case Prioritization: a local beam

search approach,” Journal of Systems and

Software, vol. 105, pp. 91–106, 2015.

[13] F. Harrou, Y. Suna, B. Taghezouitb, A. Saidic,

and M.-E. Hamlatid, “Reliable fault detection

and diagnosis of photovoltaic systems based on

statistical monitoring approaches,” Renewable

Energy, vol. 116, pp. 22–37, 2018.

