
© December 2022| IJIRT | Volume 9 Issue 7 | ISSN: 2349-6002

IJIRT 157535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 542

FPGA Implementation of Efficient Advance Encryption

Standard (AES) for High Power Drive Applications

K.S. Kavin1, P. Subha Karuvelam2, P. Kavitha3, P. Malathi4

1,3,4Research Scholar, Department of Electrical and Electronics Engineering, Government College of

Engineering, Tirunelveli, Tamilnadu-627007
2Professor, Department of Electrical and Electronics Engineering, Government College of Engineering,

Tirunelveli, Tamilnadu-627007

Abstract—The paper presents an efficient reconfigurable

hardware implementation of Advance Encryption

Standard (AES) algorithm on Field Programmable Gate

Array (FPGA); using High Level Language (HLL)

approach with less hardware resources. The FPGA

platform used for AES implementation is Xilinx Atlys

Virtex-6. Time-to-market is one of the key factors for any

design in FPGA and digital system designing industry.

This time can be reduced considerably with HLL

approach. The presented algorithm is designed on a HLL

tool, namely Xilinx system generator. It is very user

friendly despite giving detailed control in designing the

required system design. For actual testing and hardware

implementation of the algorithm, the HLL-tool generates

a bit file that can be directly burnt on the FPGA. To get

the implementation of design on hardware, the presented

work uses a similar approach to directly map the System

Generator described design on FPGA. The presented

work emphasizes on optimization for less hardware

utilization. The presented design uses approximately just

one thousand slices and about half a century of BRAMs.

Keywords — AES, System Generator, FPGA,

reconfigurable computing, HLL

I. INTRODUCTION

An important aspect to be considered with the

evolution of internet in the current information age is

secrecy and privacy. Cryptography provides

confidentiality and reliability to data during

communication. It is used in different application

which includes e-commerce, wireless

communications, cellular networks, online banking,

computerized networks etc. Cryptography is related to

the study of secret writing i.e. conversion of plaintext

into cipher-text [1], so that the information can only be

retrieved by the desired entity over an unsecured

channel. The cipher text cannot be transform into

intelligible form (plaintext) unless receiver has a

cipher key. Since a few decades, digital hardware

design technology has become more similar to

software design and has evolved tremendously with

the introduction of reconfigurable platforms like

FPGA [2]. The reconfigurable platform provides

perfect customization of the hardware with time and

cost effective solutions unlike Application Specific

Integrated Circuit (ASIC) [3]. ASIC belongs to

configurable platform but it configures permanently

and provides high performance for a specific

application. However, ASICs do not provide hardware

reconfiguration flexibility. Whereas, software

provides reprogrammable flexibility for different

applications but lacks in performance and efficiency

as compared to ASICs. The reconfigurable platform

like FPGA fills the gap to achieve a balance between

hardware and software in terms of performance and

flexibility. FPGA provides improved performance

than software implementation; and it can also be

reconfigured.

It executes the hardware design efficiently over

software by minimizing the time required to process

the algorithm. Due to the merits described, FPGAs can

be considered to implement the cryptographic

algorithms [4]. The presented work shows efficient

implementation of AES algorithm using High Level

Language (HLL) approach i.e. Xilinx System

Generator [5] on FPGA. The proposed FPGA platform

for the implementation of this work is Xilinx Atlys

Vertix-6. The reconfigurable platform using system

generator provides the better way in designing of

hardware. System generator has environment similar

to Simulink in which Xilinx blocks are used in the

architecture of hardware. It generates the file for

synthesis and simulation; and also provides access to

© December 2022| IJIRT | Volume 9 Issue 7 | ISSN: 2349-6002

IJIRT 157535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 543

FPGA blocks used in the design. The paper is

organized as follows. Section 2 contains the

explanation of Advance Encryption Standard, Section

3 gives description of proposed AES implementation

using Xilinx System Generator and Section 4 is on the

synthesis and results obtained from the presented

work. Finally, the conclusion from the work and

results obtained is presented in Section 5.

II. PROPOSED METHOD

A. Design considerations

The Rijindael algorithm is selected for Advanced

Encryption Standard over Data encryption standard

and was published by NIST-National Institute of

Standards and Technology as FIPS PUB 197, in

November 2001. The AES handles 128 bit block of

data with variable length of the key size 128, 192, 256

bits. The number of rounds depends on the selection

of key size i.e. 10, 12 or 14 rounds for key size 128,

192 and 256 bits, respectively.

Fig. 1. AES rounds

B. Implementation

The proposed AES encryption function is designed

and implemented using the Xilinx System Generator

for MATLAB. The Figure 2 shows the outline of the

structure. The implementation uses a pipelined

architecture, as shown in Figure 4; which is most

commonly used reconfigurable architectures for

implementation of encryption functions. Xilinx

System Generator for MATLAB provides flexibility

in design and scalability in FPGA chip selection.

Fig. 2. Proposed AES encryption function block

It is a pipeline architecture of AES-128 encryption

function which consist of 10 rounds. Each round is

implemented separately enclosed in a subsystem,

comprising of five transformations i.e. SubBytes,

ShiftRows, MixColumns, AddRoundKey and Key

Generation shown in Figure 3; where MixColumns is

eliminated in the final round. The initial round is just

AddRoundKey transformation in which input state is

XOR-ed with the initial round key. Registers are

placed in the algorithm at the end of each round for

better performance. The Plaintext and Key are defined

in separate subsystems each as shown in Figure 2; in

which each column of the state can be defined

separately as shown in Figure 3. This allows for easy

handling of inputs.

Fig. 3. Structure of each round

© December 2022| IJIRT | Volume 9 Issue 7 | ISSN: 2349-6002

IJIRT 157535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 544

Fig. 4. Sub-System of Plain-text

1) Subbytes and Shiftrows

There are two basic methods for generating SubBytes

of AES, either by using multiplicative inverse or by

using memory. Here we used BRAM method to

implement AES SubBytes with multiplexing

technique in order to make it more efficient in term of

resource utilization. An input of 28-bits arranged in

four words of 32-bits is given directly to the SubBytes

block. The details of proposed SubBytes architecture

are shown in Figure 5. The scheme uses memory

efficient SubBytes with the help of Counter, Mux

Blocks, Dual-Port RAM and Time Division

Demultiplex Blocks from Xilinx System Generator.

We used Dual-Port RAM in order to store the 256

lookup values. The Counter is used by Mux Block to

select from inputs accordingly. The Mux Block selects

the desired input on the basis of counter value which

is then connected to Dual Port RAM. The Dual-Port

RAM is configured as Block RAM to access 8-bit

lookup values corresponding to the 8-bit input

addresses. Dual-Port RAM is operated in “no read on

write” mode. The input bytes are delivered to the

address pins addra [7:0] and addrb[7:0] of BRAM

while corresponding lookup values will be taken from

the output pins A [7:0] and B [7:0] of the Dual-Port

RAM. Input of constant zero is given to the data input

and write enable pins of the RAM as they are not

required in our architecture. In order to extract 8-bit

data from 32-bit input, Bit Basher Block has been used

as shown in Fig.8. We are able to extract specific 8-bit

data required for Dual-Port RAM’s input addresses.

Shifting is achieved by simply rearranging the wires in

Round module as marked.

Fig. 5. System generator sub bytes modules

Fig. 6. System Generator Shift Rows structure

© December 2022| IJIRT | Volume 9 Issue 7 | ISSN: 2349-6002

IJIRT 157535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 545

2) MixColumns

In MixColumns block, input data is multiplied with a

constant matrix consisting of three numbers 1, 2 and 3

only. The design laid down to perform this operation

uses data to directly pass through connection wire for

multiplication with 1. Multipliers of "2" and "3" are

designed to carry out the multiplication. The

architecture of Mix Columns is shown in Figure 7.

Rather than using conventional multiplications, the

shift and add method has been applied for matrices

multiplication; by u sing shift block to minimize the

utilization cost. Multiplier of 2 is made using shift

block where left shift is applied to data which results

in the multiplication by number “2” as shown in Figure

10. It should satisfy the condition of irreducible

polynomial, that the number should be less than 255.

So, if the result exceeds from number 255, then mod

27(in decimal) or mod 1b (in hexa-decimal) is applied

on the results of multiplication. It is done so by using

bitwise XOR operator in order to get the number

within the range of 255 as shown in Figure 8.

Fig. 7. Mix-column structure

Fig. 8. Multiplier2 internal structure

Multiplier of 3 is designed by dividing the number ‘3”

into (2+1) where multiplication by number “2” is done

by "Multiplier 2" and the resultant number is added

with the state matrix by using XOR operation as

shown in Figure 9.

Fig. 9. Multiplier 3 internal structure

3) Round Key Generation

In Round key, firstly 128 to 8 bit conversion is carried

out with BitBasher block. The first word (1st Column)

of 32-bit of Round key is generated by substitution of

last word(4th column) of key state matrix using

SubBytes block. The result of SubBytes is then rotated

by simply rearranging the connecting wires. The

rotated word is XORed with 1st column of key and

round constant for the generation of 1st word of Round

Key, as shown in Figure 10. As per AES Algorithm,

the 1st word of Round key is then used to generate

other words by using XOR operation.

Fig. 10. 1st word generation of round key

© December 2022| IJIRT | Volume 9 Issue 7 | ISSN: 2349-6002

IJIRT 157535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 546

4) AddRoundKey

In AddRoundKey, Bitwise XORing between result

from MixColumns and RoundKey is done. Here the

expression blocks are used for XOR operation. Also

BitBasher for 128 to 32 bit and 32 to 8 bit conversion

is used as shown in Figure 11.

Fig. 11. Add round key internal structure

III. RESULT

The hardware implementation results are targeted for

Xilinx Virtex-6 xc6vsx315t-3ff1156 FPGA. The

design has been implemented using Xilinx System

Generator tool in MATLAB and the generated verilog

code (.v file) and testbench are then synthesized and

simulated using Xilinx ISE Foundation 14.1 and

Mentor Graphic ModelSim, respectively. The design

occupies 50 BRAM’s and 1002 numbers of slices out

of 49200 (2%). It operates on 254.453MHz frequency

and offers latency of 3.930ns.

© December 2022| IJIRT | Volume 9 Issue 7 | ISSN: 2349-6002

IJIRT 157535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 547

Fig. 12. Generated output in modelsim

Table 1. Comparison of FPGAs

Table 2. Final results

Parameters Observation

Number of BRAMs 50

Number of Slices 1002 out of 49200 (2%)

Latency 3.930ns

IV. CONCLUSIONS

The paper presents reconfigurable platform used with

Highlevel language approach and the work presented

here uses efficient implementation of AES using

Xilinx System Generator; the approach not only

reduces the overall utilization but also gives good

enough clock frequency and latency. This paper shows

performance comparison to the various FPGA

(Verilog) implementations. It is the user friendly

design for HLL users and gives fast design to market.

REFERENCES

[1] W. Stalling, “Cryptography and Network Security

Principles and Practices”, Prentice Hall, sixth

edition, 2013.

[2] L. Floyd, “Digital Fundamental with VHDL,”

Pearson Education, pp.362-368, 2003.

[3] Standard, Data Encryption. "Data encryption

standard." Federal Information Processing

Standards Publication 112, 1999.

[4] J. Zambreno, D. Honbo, A. Choudhary, R. Simha

and B. Narahari, “High-performance software

protection using reconfigurable

architectures”, Proceedings of the IEEE, vol. 94,

no. 2, pp.419-431, 2006.

[5] N. A. Saqib, C. K. Koc, A .D. Pérez, F.

Rodriguez-Henriquez, “Cryptographic

Algorithms on Reconfigurable Hardware”,

Signals and Communication Technology,

Springer, vol. 26, pp. 362, 2007.

