
© March 2023| IJIRT | Volume 9 Issue 10 | ISSN: 2349-6002

IJIRT 158733 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1032

The brain behind CharLando

Omkar Singh, Pratyush Tiwary, Anurag Pandey, Akash Chatterjee

Department of DS, Thakur College of Science and Commerce Mumbai, India

Abstract: The use of chatbots evolved rapidly in

numerous fields in recent years, including Marketing,

Supporting Systems, Education, Health Care, Cultural

Heritage, and Entertainment. In this paper, we present

the algorithms used to create CharLando and how we

tried several algorithms before using Levenshtein

distance. Next, we discussed how the whole system is

designed, where we tried to segment the system into 2

parts and explain them separately. Moreover, we

highlight how the program is not dependent on the

distances algorithm. Furthermore, we also talked

about the elements used to teach CharLando.

Keywords – charlando, rule-based chatbot, chatbot

package, chatbot.

I. INTRODUCTION

Artificial Intelligence (ΑΙ) increasingly integrates

our daily lives with the creation and analysis of

intelligent software and hardware, called intelligent

agents. Intelligent agents can do various tasks

ranging from labor work to sophisticated operations.

A chatbot is a typical example of an AI system and

one of the most elementary and widespread

examples of intelligent Human-Computer

Interaction (HCI). It is a computer program, which

responds like a smart entity when conversed with

through text or voice and understands one or more

human languages by Natural Language Processing

(NLP). In the lexicon, a chatbot is defined as “A

computer program designed to simulate

conversation with human users, especially over the

Internet”. Chatbots are also known as smart bots,

interactive agents, digital assistants, or artificial

conversation entities.

Chatbots can mimic human conversation and

entertain users but they are not built only for this.

They are useful in education, information retrieval,

business, and e-commerce. They became so popular

because chatbots have many advantages for users

and developers. Most implementations are platform-

independent and instantly available to users without

needed installations. Contact to the chatbot is spread

through a user’s social graph without leaving the

messaging app the chatbot lives in, which provides

and guarantees the user’s identity. Moreover,

payment services are integrated into the messaging

system and can be used safely and reliably and a

notification system re-engages inactive users.

Chatbots are integrated with group conversations or

shared just like any other contact, while multiple

conversations can be carried forward in parallel.

Knowledge in the use of one chatbot is easily

transferred to the usage of other chatbots, and there

are limited data requirements. Communication

reliability, fast and uncomplicated development

iterations, lack of version fragmentation, and limited

design efforts for the interface are some of the

advantages for developers too.

CharLando is an advanced python package that

streamlines the creation of complex chatbots, and its

user interface makes it accessible to non-technical

users as well. This paper will provide an in-depth

examination of the workings of CharLando, as well

as explore potential areas for improvement.

Furthermore, the paper will scrutinize the package's

internal architecture and how it determines the

correct rule to activate based on the user's input. The

paper will also outline the trials and errors we

encountered in developing the package and how we

arrived at its current state.

II. ALGORITHMS/TECHNIQUES.

A. Cosine Similarity

So in the beta version of CharLando we decided to

use cosine similarity. Cosine similarity is a measure

of similarity between two sequences, in our cases,

these sequences will be strings. The algorithm loops

through each rule’s cases and required words to map

the similarity between the query and the cases or

required words. This technique was not used later on

© March 2023| IJIRT | Volume 9 Issue 10 | ISSN: 2349-6002

IJIRT 158733 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1033

as cosine similarity is not a good measure of

similarity between 2 sentences. It is generally used

to find similarities between 2 vectors.

Fig. 1 Cosine Similarity Formula

Fig. 2 Cosine Distance

B. SequenceMatcher

 In the second version, we used python’s inbuilt

SequenceMatcher class. This class can be used for

comparing pairs of input sequences. The basic idea

is to find the longest contiguous matching

subsequence (LCS) that contains no “junk”

elements. This does not yield minimal edit

sequences but does tend to yield matches that “look

right” to people. This was removed in the later

version because of its poor performance.

Let’s say we want to compare the following strings.

1. “Charlando is a chatbot python package”,

2. “Chatbot”

To anyone the natural match is chatbot, as follows:

Charlando is a chatbot python package

……………....chatbot………………..

However, the LCS will match it as follows

Charlando is a chatbot python package

Cha……………...tbot………………..

Since longer common subsequences may appear less

natural to a human expert than a shorter one.

Therefore we argue the fact that SequenceMatcher

tries to find out the output which is more human-

friendly.

We also no longer use it because the result may

depend on the order of the arguments passed.

Fig. 3 SequenceMatcher FlowChart

C. Levenshtein distance

The Levenshtein distance is a string metric for

measuring the difference between two sequences.

Informally, the Levenshtein distance between two

words is the minimum number of single-character

edits (insertions, deletions, or substitutions) required

to change one word into the other. The current

version of CharLando uses this to measure the

similarity between queries and cases.

Fig. 4 Levenshtein Distance Formula

III. DESIGN

CharLando uses 2 different approaches to detect a

single rule for activation. The first approach is where

the previously introduced algorithms come into

play. For a given query, CharLando iterates through

each rule and its cases, for each case it finds

similarity between case and the query. This

similarity is stored in a list, which is later on

aggregated such that only the max similarity remains

in the list. The image below nicely explains how this

works in a graphical manner.

© March 2023| IJIRT | Volume 9 Issue 10 | ISSN: 2349-6002

IJIRT 158733 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1034

Fig. 5 CharLando’s Case Logic

Here in the later part we are referring to similarity as

score because required_words doesn’t use the

concept of similarity, instead they give score based

on the occurrences of the words. In this diagram, we

are also missing the pre-processing stage that

happens at the time of digestion. Now that we know

how cases contribute to a rule’s activation, let’s take

a look at how required_words contribute to a rule’s

activation.

Fig. 6 CharLando’s RequiredWords Logic

A lot of magic happens in the process

requiredWords stage, there variables are removed

from the list, optional words are broken down and

all words are converted into lowercase. The compare

and score words try to score query based on

requiredWords.

Finally, after all the cases and requiredWords

processes a rule along with variables and confidence

© March 2023| IJIRT | Volume 9 Issue 10 | ISSN: 2349-6002

IJIRT 158733 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1035

is returned, predict_raw function returns a dictionary

of scores and variables which is later on processed

by the predict function to activate a rule.

IV. RESULT/OUTCOME

Fig. 7 CharLando’s Homepage

Fig. 8 CharLando’s App Dashboard Page

Fig. 9 CharLando’s Rule Editor Page

V. CONCLUSION

Minimal human interference in the use of devices is

the goal of our world of technology. Chatbots can

reach out to a broad audience on websites and be

more effective than humans. At the same time, they

may develop into a capable information-gathering

tools. They provide significant savings in the

operation of customer service departments.

Creating a chatbot that is flexible enough to change

according to your needs is still pretty tough. You can

use if-else statements to create a chatbot but it will

not be very flexible and scalable, and the developer

experience will be very bad. CharLando tries to fix

these issues by making it easy for anyone to create a

chatbot in minutes without losing the flexibility and

control over how their bot acts. Even though there

are several libraries like chatterbot but they are no

longer supported and are not in the active

development phase, which makes CharLando a

suitable choice for making chatbots with future

support. You can still use Keras to train a custom

chatbot that can act very humanely but that will

introduce a lot of problems, like in order to change a

specific behavior of your bot you will have to train

the whole model which makes it very inefficient. We

try to solve this problem by removing the training

phase totally and making it so that the bot doesn’t

have to be updated anytime there is a change.

Future work of this research would be exploring in

detail how to implement a translation service that

will make chatbots language independent. It would

also be interesting to try different similarity

algorithms.

REFERENCE

[1] Adamopoulou, Eleni, and Lefteris

Moussiades. "An overview of chatbot

technology." IFIP International Conference

on Artificial Intelligence Applications and

Innovations. Springer, Cham, 2020.

[2] Cosine similarity. (2023, January 13). In

Wikipedia.

https://en.wikipedia.org/wiki/Cosine_similari

ty

[3] Levenshtein distance. (2022, December 22).

In Wikipedia.

https://en.wikipedia.org/wiki/Levenshtein_dis

tance

[4] Jaiswal, Nikhil. “SequenceMatcher in

Python.” Medium, April 2019,

towardsdatascience.com/sequencematcher-in-

python-6b1e6f3915fc.

