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Abstract— This research presents an innovative 

metadata framework design for big data models in 

Cloudera Data Lakes across AWS, Azure, and GCP 

cloud platforms. The study focuses on migrating 

metadata using Data Vault data models, utilizing 

PySpark and SparkSQL for analysis. 

As big data environments grow in complexity, accurate 

metadata migration becomes crucial. This study explores 

best practices and automation tools for efficient 

metadata migration in large-scale environments. 

The research evaluates unique features of AWS, Azure, 

and GCP, including data storage, processing, security, 

and cost-effectiveness. It also assesses scalability and 

usability for managing big data in Cloudera Data Lakes 

with Data Vault data models. 

Findings show that AWS offers extensive services and 

tools, while Azure and GCP provide cost-effective 

options. AWS benefits from a large partner and 

developer network, aiding in managing big data in 

Cloudera Data Lakes with Data Vault models. 

This study provides innovative insights into metadata 

framework design and the capabilities of AWS, Azure, 

and GCP for big data management in Cloudera Data 

Lakes, aiding organizations in selecting the appropriate 

cloud platform. 

 

Index Terms—Cloud Platforms AWS Azure GCP , Big 

Data Environments, Cloudera,  Metadata Migration, 

PySpark,  SparkSQL 

 

I. INTRODUCTION 

 

In recent years, the exponential growth of data 

generated by organizations has posed significant 

challenges in managing and storing such vast volumes 

of information. To tackle these challenges, [1] cloud-

based solutions have gained increasing popularity. 

Amazon Web Services (AWS), Microsoft Azure, and 

Google Cloud Platform (GCP) are prominent cloud 

service providers offering solutions for managing and 

processing big data.[2] 

Cloudera Data Lakes have emerged as one of the most 

popular big data management solutions, adopted by 

numerous organizations for their data storage and 

analysis needs. However, migrating metadata from 

Cloudera Data Lakes can be a complex process. 

Utilizing Data Vault data models can simplify this 

migration process, providing a more efficient 

solution.[3] 

This paper aims to provide a comparative analysis of 

AWS, Azure, and GCP, the three leading cloud service 

providers, for migrating metadata of big data in 

Cloudera Data Lakes using Data Vault data models. 

The analysis will consider crucial factors such as cost, 

ease of use, scalability, security, and performance. The 

goal is to provide a comprehensive comparison that 

assists organizations in making informed decisions 

when choosing a cloud platform for their big data 

needs.[4] 

Metadata migration plays a critical role in ensuring the 

accuracy and completeness of transferred data within 

any big data environment. [5] Automation tools 

greatly streamline this process, but it is essential to 

follow best practices to ensure the quality, governance, 

and security of the migrated data. This review 

examines the best practices for metadata migration in 

big data environments using automation tools, with a 
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particular focus on data quality, data governance, and 

data security considerations.[6] 

 

The key contributions of this research paper include: 

In-depth analysis of AWS, Azure, and GCP 

capabilities for managing big data workloads, 

particularly within Cloudera Data Lakes and Data 

Vault data models. 

Comparison of automation tools and frameworks 

available for each cloud platform, evaluating features, 

ease of use, and suitability for specific use cases. 

Review of best practices for migrating metadata in big 

data environments using automation tools, including 

considerations for data quality, data governance, and 

data security. 

Study of the PySpark framework and its capabilities 

for processing large datasets, including optimization 

techniques for performance and scalability. 

Evaluation of trade-offs between different storage and 

compute options available on each cloud platform, 

including object storage, block storage, and compute 

instances. 

Comparison of pricing models and cost structures 

among AWS, Azure, and GCP, highlighting strategies 

for optimizing costs in big data workloads. 

Discussion of challenges and opportunities associated 

with integrating multiple cloud platforms into a 

unified big data ecosystem, addressing data 

integration, movement, and synchronization across 

diverse cloud environments. 

PySpark, a powerful open-source data processing 

framework, provides a Python interface to Apache 

Spark, a distributed computing system designed for 

processing large-scale datasets. PySpark is widely 

used for big data processing due to its ability to handle 

large datasets efficiently by distributing the workload 

across multiple nodes in a cluster. This parallel 

processing capability significantly reduces the time 

required for data processing tasks.[7] 

In the context of this research, PySpark can be 

leveraged to reduce the number of job columns from 

4200 to equal amounts of 330 job master and 

aggregated metadata.csv files. This achievement is 

made possible by harnessing PySpark's data 

processing capabilities, including filtering, 

aggregating, and transforming data.[8] 

To implement this solution, AWS Glue, Azure Data 

Factory, or GCP Dataproc can be utilized for 

workflow orchestration. These cloud services provide 

a platform for running PySpark jobs at scale and 

managing the execution of PySpark workflows.[9] 

Potential use cases for customers benefiting from this 

solution include: 

Financial institutions processing large volumes of 

transactional data for fraud detection and risk 

management. 

Retail companies analyzing customer purchase 

patterns to optimize pricing and marketing strategies. 

Healthcare organizations processing patient data for 

clinical research and drug discovery. 

Manufacturing companies 

 

II. PYSPARK FOR METADATA AGGREGATION 

 

Best Practices for Metadata Migration in Big Data 

Environments: 

The given code is using PySpark to merge three data 

frames (DF1, DF2, and DF3) and select specific 

columns based on the job_name column present in 

DF1 and join it with the job_name column present in 

the job master data frame. The merged data is then 

used to create aggregated metadata. Here is a brief 

explanation of the code:[10] 

The code imports required PySpark libraries such as 

SparkSession, SparkConf, functions, col, and lit. It 

also imports the pandas and re libraries. Then, it sets 

the Spark log level to "ERROR" to minimize log 

messages. 

The code reads three CSV files (job_master_data.csv, 

jobs_column_list.csv, and linked_job_name_data.csv) 

using the spark.read.format() method and loads them 

into three PySpark data frames (df1, df2, and df3) 

using option("header", "true") to indicate that the first 

row of the CSV file contains the column names. 

The data frames are then registered as temporary 

tables using the createOrReplaceTempView() method. 

The code defines a list c containing all the column 

names that need to be selected from the merged data 

frame. The data frames are then aliased as a, b, and c. 

The join() method is used to join the three data frames 

on the job_name column. df1 is joined with df2 on 

job_name column using a left join, and df2 is joined 

with df3 on job_name column using a left join. The 

resulting data frame contains all columns from df1, b, 

and c. The select() method is used to select the 

required columns specified in the c list from the 

merged data frame. The resulting data frame is then 

sorted in ascending order based on the job_name 
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column. Finally, the resulting data frame is collected 

and stored in separate variables based on their 

respective column names using collect() method and 

multiple v variables (e.g., v0, v1, etc.). 

Overall, the given code uses PySpark to merge three 

data frames and select specific columns based on 

job_name column present in DF1 and join it with the 

job_name column present in the job master data frame. 

The merged data is then used to create aggregated 

metadata. 

Understand the source and destination environments: 

Before beginning a metadata migration, it is essential 

to thoroughly understand both the source and 

destination environments. This includes identifying 

the type and format of the metadata being migrated, 

the systems and applications involved, and any 

dependencies or constraints that may impact the 

migration process. 

This Python code reads three CSV files as PySpark 

DataFrames, joins them, and selects certain columns. 

Here is a brief description of the steps: 

The CSV files are read as PySpark DataFrames: df1 

from file df1_job_master_lst, df2 from file 

df2_job_column_lst, and df3 from file 

df3_job_linked_lst. The delimiter used is, and the 

header row is considered in all three cases. 

The three DataFrames are registered as temporary 

views with the names d1, d2, and d3. 

The columns to select are defined in a list named c. 

Aliases are created for the three DataFrames: a for df1, 

b for df2, and c for df3. 

The DataFrames are joined in the following order: df1 

and df2 on the condition that a.job_name = 

b.job_name, and df2 and df3 on the condition that 

b.job_name = c.job_name. The join type is left, so all 

rows from df1 are included in the result. 

The resulting DataFrame is selected by column names 

from both the df2 and df3 DataFrames. 

The resulting DataFrame is sorted by the job_name 

column in ascending order. 

The resulting DataFrame is not returned or saved, but 

its content can be collected to a local variable, which 

seems to be the purpose of the following lines of code 

that initialize a large number of empty lists (v0 to v45). 

These lists are likely used to store the selected columns 

from the DataFrame. 

These are import statements used in Python code for 

working with Apache Spark's Structured APIs, 

specifically the PySpark library for Python. Here's a 

brief explanation of each line:  

from pyspark.sql import SparkSession: This line 

imports the SparkSession class from the pyspark.sql 

module. A SparkSession is the entry point to Spark 

functionality and allows you to create DataFrames, 

register DataFrames as tables, execute SQL queries, 

and more. 

from pyspark.conf import SparkConf: This line 

imports the SparkConf class from the pyspark.conf 

module. SparkConf is a configuration object that sets 

various Spark parameters. 

from pyspark.sql import functions as F: This line 

imports the functions module from the pyspark.sql 

package and renames it as F. The functions module 

contains a wide range of built-in functions that can be 

applied to columns in a Spark DataFrame. 

from pyspark.sql.functions import col: This line 

imports the col function from the 

pyspark.sql.functions module. col is a function that 

returns a column from a DataFrame based on the 

column name. 

from pyspark.sql.functions import lit: This line 

imports the lit function from the pyspark.sql.functions 

module. lit is a function that creates a literal value that 

can be used as a column in a DataFrame.[11] 

 

III. BIG DATA ANALYSIS IN CLOUD 

PLATFORMS 

 

Comparing AWS, Azure, and GCP cloud platforms for 

the migration of metadata of big data in Cloudera Data 

Lake in Data Vault Data Models can be done by 

evaluating their features, capabilities, and pricing. 

AWS, Azure, and GCP all offer services for big data 

storage and processing, but each platform has its 

strengths and weaknesses. For example, AWS has a 

strong presence in the big data market with services 

such as Amazon S3, Redshift, and EMR. Azure has 

also made significant investments in big data services 

with offerings such as Azure Data Lake Storage and 

Azure HDInsight. GCP, on the other hand, has a strong 

focus on machine learning and analytics with services 

like BigQuery and Dataflow.[12] 

When it comes to migrating metadata in Cloudera 

Data Lake, each platform has its own approach. AWS 

[13] has a service called AWS Glue that allows you to 

automate the discovery, cataloging, and migration of 

data. Azure offers Azure Data Factory and Azure 
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Databricks for data integration and transformation. 

GCP offers Cloud Data Fusion for data integration and 

Cloud Dataproc for data processing. 

In terms of pricing, all three platforms offer a pay-as-

you-go model, but the specific costs vary based on 

usage and the services used. It's important to consider 

the total cost of ownership when evaluating cloud 

platforms for big data migration. 

Overall, it's important to consider the specific 

requirements and goals of your big data migration 

project when evaluating cloud platforms. Each 

platform has its strengths and weaknesses, and the best 

choice will depend on your unique needs. [15] 

 

IV. BIG DATA CAPABILITIES IN CLOUD 

PLATFORM  

 

Develop a migration plan: A well-defined migration 

plan is critical for ensuring the successful transfer of 

metadata. This plan should include a detailed timeline, 

clear objectives, and a comprehensive list of tasks to 

be completed. It should also identify any potential 

risks or challenges that may arise during the migration 

process and include contingency plans to address 

them. 

 

4.1 AWS offerings for Cloudera big data  

Amazon Web Services (AWS) offers a broad range of 

services for managing big data workloads, including 

those in the context of Cloudera Data Lakes and Data 

Vault data models. 

AWS offers Amazon EMR (Elastic MapReduce), a 

fully-managed service that makes it easy to process 

vast amounts of data using Apache Hadoop and Spark. 

Amazon EMR supports many Hadoop ecosystem tools 

and frameworks, including Pig, Hive, HBase, Flink, 

and Presto. It also integrates with Amazon S3 (Simple 

Storage Service) and other AWS services for data 

storage, processing, and analysis. 

For managing data in Cloudera Data Lakes, AWS 

offers Amazon S3, which provides highly scalable, 

durable, and secure object storage for data lakes. AWS 

also offers Amazon Redshift, a fully-managed data 

warehouse service that makes it easy to analyze data 

using standard SQL and business intelligence (BI) 

tools. 

For data modeling, AWS offers Amazon Athena, a 

serverless interactive query service that makes it easy 

to analyze data in Amazon S3 using standard SQL. 

AWS also offers AWS Glue, a fully-managed ETL 

(Extract, Transform, and Load) service that makes it 

easy to prepare and load data for analytics. 

For security, AWS offers a broad range of services, 

including AWS Identity and Access Management 

(IAM), AWS Key Management Service (KMS), AWS 

CloudTrail, and AWS Config. These services help 

customers to control access to their data, encrypt data 

at rest and in transit, monitor and audit activity, and 

comply with regulations and standards. 

Overall, AWS provides a comprehensive set of 

services and tools for managing big data workloads, 

including those in the context of Cloudera Data Lakes 

and Data Vault data models. AWS's services are 

highly scalable, flexible, and secure, and integrate well 

with other AWS services and 

tools.[16,17,18,19,20,21] 

 

4.2. Azure offerings for Cloudera big data  

Azure provides several services for managing big data 

workloads in the context of Cloudera Data Lakes and 

Data Vault data models. Some of the key capabilities 

are: 

Azure HDInsight: This is a fully-managed cloud 

service that makes it easy to process big data using 

popular open-source frameworks such as Hadoop, 

Spark, and Hive. It integrates with Cloudera Data 

Lakes and provides built-in connectors to Azure Data 

Lake Storage and other Azure services. 

Azure Data Lake Storage: This is a scalable and secure 

data lake solution that can store and analyze large 

volumes of data from different sources. It integrates 

with HDInsight and provides high-performance access 

to data using Hadoop Distributed File System (HDFS) 

and Blob Storage APIs. 

Azure Synapse Analytics: This is a cloud-based 

analytics service that combines big data and data 

warehousing to provide a unified experience for data 

integration, exploration, and analytics. It integrates 

with HDInsight and provides built-in connectors to 

Azure Data Lake Storage and other Azure services. 

Azure Databricks: This is a collaborative, cloud-based 

platform for data engineering, data science, and 

machine learning. It provides a unified experience for 

working with big data using Spark and other popular 

open-source frameworks. It integrates with Azure 

services such as HDInsight, Data Lake Storage, and 

Synapse Analytics. 
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Azure Stream Analytics: This is a real-time data 

streaming service that can process millions of events 

per second from different sources. It integrates with 

HDInsight and provides built-in connectors to Azure 

Event Hubs, IoT Hub, and other Azure services. 

Overall, Azure provides a comprehensive set of 

services for managing big data workloads in the 

context of Cloudera Data Lakes and Data Vault data 

models. These services are designed to be scalable, 

secure, and cost-effective, and can help organizations 

derive valuable insights from their big data.[22] 

 

4.3 GCP offerings for Cloudera big data  

Google Cloud Platform (GCP) offers various services 

and tools for managing big data workloads in the 

context of Cloudera Data Lakes and Data Vault data 

models. Some of these capabilities include: 

Storage and Data Management: GCP provides 

multiple storage options for big data, such as Cloud 

Storage, Cloud Bigtable, and Cloud Spanner. Cloud 

Storage is an object storage service that offers 

unlimited storage capacity and allows for efficient data 

management. Cloud Bigtable is a NoSQL database 

service that can handle large amounts of data with low 

latency, while Cloud Spanner is a globally distributed 

relational database that provides strong consistency 

and horizontal scaling. 

Data Processing: GCP provides various tools for 

processing big data, such as Dataflow, Dataproc, and 

BigQuery. Dataflow is a managed service for building 

data pipelines that can handle both batch and stream 

processing. Dataproc is a managed service for running 

Apache Hadoop and Spark jobs on a cluster, while 

BigQuery is a fully managed, serverless data 

warehouse that allows for high-performance querying 

and analysis of large datasets. 

 

Security: GCP offers various security features to 

protect big data workloads, such as Identity and 

Access Management (IAM), Cloud Key Management 

Service (KMS), and Cloud Data Loss Prevention 

(DLP). IAM allows for fine-grained access control of 

GCP resources, while KMS provides centralized key 

management and cryptographic operations. Cloud 

DLP helps to detect and protect sensitive data in big 

data workloads. 

 

Cost-Effectiveness: GCP offers various cost-effective 

options for managing big data workloads, such as pre-

emptible VMs, committed use discounts, and 

sustained use discounts. Pre-emptible VMs are short-

lived instances that can be used for batch processing at 

a lower cost, while committed use discounts offer 

savings for sustained usage of VMs. Sustained use 

discounts provide automatic discounts based on the 

amount of usage of certain GCP services over time. 

Overall, GCP provides a comprehensive set of 

services and tools for managing big data workloads in 

the context of Cloudera Data Lakes and Data Vault 

data models.[23] 

 

V. BIG DATA TOOLS AND FRAMEWORKS 

 

Ensure data quality: Ensuring the quality of the 

migrated metadata is essential to maintaining data 

accuracy and completeness. This includes verifying 

the consistency and validity of the data, as well as 

identifying and addressing any errors or discrepancies. 

Automated data profiling and validation tools can help 

ensure data quality and accuracy. 

Establish data governance: Effective data governance 

is critical to ensuring the security, privacy, and 

compliance of the migrated data. This includes 

implementing policies and procedures to manage data 

access, usage, and retention, as well as establishing 

clear roles and responsibilities for data management 

and oversight. 

Implement data security measures: Protecting the 

security of the migrated data is essential to preventing 

unauthorized access, data breaches, and other security 

threats. This includes implementing data encryption, 

access controls, and other security measures to ensure 

the confidentiality and integrity of the data. 

5.1 AWS big data tool and framework 

The advent of big data has led to a proliferation of 

tools and frameworks for processing and analyzing 

large datasets. AWS offers a variety of tools and 

services for managing big data workloads, and there 

are also numerous open-source and third-party tools 

available that can be used in conjunction with AWS. 

In this paper, we will provide a comparison of various 

automation tools and frameworks available for AWS, 

focusing on their features, ease of use, and suitability 

for specific use cases. 

 

5.1.1 AWS Native Tools and Services 

AWS Glue: 
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Overview: AWS Glue is a fully managed extract, 

transform, and load (ETL) service that makes it easy 

to prepare and load data for analytics. It provides 

automated discovery, cataloging, and transformation 

of data, allowing users to create and run ETL jobs at 

scale. 

Features: Key features of AWS Glue include data 

cataloging, job authoring, job execution, data 

transformation, and integration with various data 

sources and destinations. 

 

Use Cases: AWS Glue is commonly used for data 

preparation and ETL processes in data lakes, data 

warehousing, log analysis, data migration, and data 

integration scenarios. 

 

Amazon EMR: 

Overview: Amazon Elastic MapReduce (EMR) is a 

cloud-based big data platform that simplifies the 

processing and analysis of large datasets. It provides a 

managed Hadoop framework along with other popular 

distributed computing frameworks like Spark, HBase, 

and Presto. 

 

Features: Amazon EMR offers features such as 

automatic scaling, flexible data storage options, data 

encryption, monitoring and management tools, and 

integration with various data sources and analytics 

tools. 

 

Use Cases: Amazon EMR is used for a wide range of 

big data use cases, including log analysis, data 

warehousing, machine learning, real-time analytics, 

and processing large-scale data pipelines. 

 

Amazon Redshift: 

Overview: Amazon Redshift is a fully managed data 

warehousing service designed for analyzing large 

datasets. It provides high-performance, columnar 

storage, and parallel query execution to deliver fast 

query performance on large-scale data. 

 

Features: Key features of Amazon Redshift include 

columnar storage, automatic compression, parallel 

query execution, data ingestion options, security and 

encryption, and integration with popular business 

intelligence tools. 

 

Use Cases: Amazon Redshift is commonly used for 

business intelligence and data analytics applications, 

including reporting and dashboards, ad-hoc queries, 

data exploration, and complex analytics tasks on large 

datasets. 

 

5.1.2 Third-Party Tools and Frameworks 

Apache Hadoop: 

Overview: Apache Hadoop is an open-source 

framework for distributed processing and storage of 

large datasets across clusters of computers. It provides 

a scalable and fault-tolerant solution for processing 

and analyzing big data. 

Features: Hadoop consists of two core components - 

the Hadoop Distributed File System (HDFS) for 

storing data across multiple machines, and the 

MapReduce programming model for distributed 

processing. It also includes various ecosystem projects 

like YARN, Hive, Pig, and HBase for additional 

functionalities. 

Use Cases: Apache Hadoop is used for a wide range 

of use cases, including data warehousing, log 

processing, recommendation systems, fraud detection, 

sentiment analysis, and large-scale data processing in 

various industries. 

Apache Spark: 

Overview: Apache Spark is an open-source, 

distributed computing system designed for processing 

and analyzing large-scale datasets. It provides an in-

memory computing engine that enables faster data 

processing and supports a wide range of data 

processing tasks. 

Features: Spark offers a unified framework for batch 

processing, interactive queries, streaming data, and 

machine learning. It provides APIs in multiple 

programming languages, including Scala, Java, 

Python, and R, and supports various data sources and 

machine learning libraries. 

Use Cases: Apache Spark is used in diverse use cases, 

such as real-time analytics, machine learning, graph 

processing, ETL (Extract, Transform, Load) pipelines, 

fraud detection, log analysis, and recommendation 

systems. 

Apache Kafka: 

Overview: Apache Kafka is a distributed streaming 

platform designed for handling real-time data feeds 

and building scalable data pipelines. It provides high-

throughput, fault-tolerant, and scalable messaging 

capabilities. 
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Features: Kafka enables the publishing and 

subscribing of streams of records in real-time. It 

provides features like fault tolerance, scalability, 

durability, low latency, and the ability to process 

streaming data with exactly-once semantics. 

Use Cases: Apache Kafka is widely used in use cases 

such as real-time stream processing, event sourcing, 

log aggregation, messaging systems, activity tracking, 

and change data capture. 

Apache Flink: 

Overview: Apache Flink is an open-source, stream 

processing framework for distributed, high-

throughput, and fault-tolerant data processing. It 

supports both batch and stream processing paradigms 

and provides low-latency processing capabilities. 

Features: Flink offers event-time processing, stateful 

computations, fault tolerance, and support for 

iterative and interactive analysis. It also integrates 

with various data sources and sinks, and provides 

APIs in multiple programming languages. 

Use Cases: Apache Flink is used in use cases such as 

real-time analytics, fraud detection, anomaly 

detection, continuous ETL, real-time monitoring, and 

dynamic data pipelines. 

Ease of use: User interface, deployment, and 

management 

 

Features: Data processing, analytics, and storage 

Suitability for specific use cases: Real-time 

processing, batch processing, and data warehousing 

AWS provides a vast array of tools and services for 

managing big data workloads, and there are also 

numerous third-party tools and frameworks available. 

The choice of tool or framework depends on the 

specific use case and requirements. In this paper, we 

have provided an overview and comparison of various 

automation tools and frameworks available for AWS, 

focusing on their features, ease of use, and suitability 

for specific use cases.[24] 

 

5.2 Azure big data tool and framework 

Azure offers several big data automation tools and 

frameworks for managing data processing and 

analysis at scale. Here are some of the key tools and 

their features: 

Azure Data Factory: Azure Data Factory is a cloud-

based data integration service that allows you to 

create, schedule, and manage data pipelines. It 

supports various sources and destinations, including 

on-premises data sources, cloud data sources, and 

SaaS applications. Data Factory allows you to 

transform and manipulate data using various activities 

such as transformations, data flows, and machine 

learning models. It also offers built-in connectors for 

popular data services such as Azure Blob Storage, 

Azure Data Lake Storage, and Azure SQL Database. 

 

Azure Databricks: Azure Databricks is a fast, easy, 

and collaborative Apache Spark-based analytics 

platform. It allows you to process and analyze large 

datasets using a scalable, distributed computing 

environment. Databricks integrates with Azure 

services such as Azure Blob Storage, Azure Data Lake 

Storage, and Azure SQL Database, and offers built-in 

connectors for various data sources, including Hadoop 

Distributed File System (HDFS), Apache Cassandra, 

and Amazon S3. Databricks provides an interactive 

workspace for data scientists and data engineers to 

collaborate, build, and deploy data-driven 

applications. 

 

HDInsight: Azure HDInsight is a cloud-based service 

for big data processing and analytics. It supports 

several open-source big data technologies such as 

Hadoop, Spark, Hive, HBase, and Storm. HDInsight 

offers various deployment options, including 

interactive and batch query processing, machine 

learning, and real-time stream processing. It integrates 

with Azure services such as Azure Blob Storage, 

Azure Data Lake Storage, and Azure SQL Database, 

and provides built-in connectors for various data 

sources such as Oracle, MySQL, and Teradata. 

 

Azure Stream Analytics: Azure Stream Analytics is a 

cloud-based service for processing and analyzing real-

time streaming data. It allows you to analyze and gain 

insights from real-time data streams from various 

sources such as IoT devices, social media, and other 

applications. Stream Analytics integrates with Azure 

services such as Azure Blob Storage, Azure Data Lake 

Storage, and Azure SQL Database, and provides built-

in connectors for various data sources such as Azure 

Event Hubs, Azure IoT Hub, and Azure Stream 

Analytics Input. 

 

Azure Synapse Analytics: Azure Synapse Analytics is 

an analytics service that brings together big data and 

data warehousing into a single service. It offers a 
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unified experience for data preparation, data 

management, and data warehousing, and supports 

various big data and data warehousing technologies 

such as Apache Spark, SQL Server, and Azure SQL 

Database. Synapse Analytics integrates with Azure 

services such as Azure Blob Storage, Azure Data Lake 

Storage, and Azure Data Factory, and provides built-

in connectors for various data sources such as Oracle, 

SQL Server, and Teradata. 

In terms of ease of use, Azure offers a user-friendly 

interface and easy integration with other Azure 

services. The Azure portal provides a single interface 

for managing all Azure services, including big data 

services. Azure also offers various templates and pre-

built solutions for common big data scenarios. 

Overall, Azure's big data automation tools and 

frameworks offer a range of capabilities for managing 

data processing and analysis at scale, making it 

suitable for various use cases.[25] 

 

5.3. GCP big data tool and framework 

Google Cloud Platform (GCP) offers a variety of 

automation tools and frameworks for managing big 

data workloads. Here are some of the key ones: 

Google Cloud Dataflow: A fully-managed service 

for developing and executing data processing 

pipelines. It supports both batch and stream processing 

and can handle data in a variety of formats. 

Google Cloud Dataproc: A fully-managed service 

for running Apache Hadoop and Spark clusters. It can 

be used for processing large amounts of data and can 

scale dynamically based on workload. 

Google BigQuery: A serverless, fully-managed data 

warehouse for analytics. It is designed to handle large 

datasets and provides fast query performance. 

Google Cloud Composer: A managed workflow 

orchestration service that allows you to author, 

schedule, and monitor workflows. It supports popular 

open source workflow engines like Apache Airflow. 

TensorFlow: An open source machine learning 

library developed by Google. It can be used for 

building and training machine learning models for 

various use cases. 

When comparing these tools and frameworks, it’s 

important to consider factors such as ease of use, 

scalability, cost, and suitability for specific use cases. 

For example, Cloud Dataflow is a good choice for 

stream processing and real-time analytics, while 

Dataproc is a better fit for batch processing of large 

datasets. BigQuery is ideal for ad-hoc analytics and 

business intelligence, while TensorFlow is well-suited 

for machine learning and AI applications. Ultimately, 

the choice of tool or framework will depend on the 

specific needs and goals of the organization.[26] 

 

VI. REVIEW OF BIG DATA MIGRATION 

 

An evaluation of the trade-offs between different 

storage and compute options available on each cloud 

platform, including object storage, block storage, and 

compute instances. 

Cloud platforms offer a range of storage and 

compute options to meet the needs of big data 

workloads. Object storage, block storage, and compute 

instances are three of the most common options 

available. This study evaluates the trade-offs between 

these different options on each of the major cloud 

platforms: AWS, Azure, and GCP. 

The study examines the performance, scalability, 

cost-effectiveness, and ease of use of each option on 

each platform. It also considers the specific use cases 

for which each option is best suited. 

The results of the study indicate that object storage 

is the most cost-effective and scalable option for 

storing large volumes of unstructured data. Block 

storage is better suited for workloads that require high-

performance storage for structured data. Compute 

instances are ideal for workloads that require large 

amounts of processing power and memory. 

The study also highlights the importance of 

selecting the right storage and compute options for 

specific use cases. For example, a workload that 

involves frequent access to small files may be better 

suited to object storage, while a workload that requires 

high-performance processing of structured data may 

require block storage. 

Overall, this study provides insights into the trade-

offs between different storage and compute options on 

each cloud platform, helping organizations make 

informed decisions when selecting the right options 

for their big data workloads.[27] 

 

VII. PYSPARK FRAMEWORK 

 

PySpark is a popular distributed computing 

framework for processing large datasets using Apache 

Spark. In this study, we will explore the capabilities of 
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PySpark and how to optimize PySpark code for 

performance and scalability. 

We will first provide an overview of PySpark and 

its architecture, including its use of RDDs (Resilient 

Distributed Datasets) and the DataFrame API. We will 

also discuss the advantages of PySpark for big data 

processing, such as its ability to handle complex data 

processing tasks and its support for various data 

formats and data sources. 

Next, we will explore techniques for optimizing 

PySpark code for performance and scalability. This 

will include a discussion of partitioning and caching, 

which are key techniques for improving PySpark 

performance. We will also explore the use of broadcast 

variables and accumulator variables, which can 

improve PySpark performance in certain scenarios. 

In addition to discussing PySpark optimization 

techniques, we will also explore common PySpark use 

cases and best practices for PySpark development. 

This will include an overview of PySpark libraries and 

tools, such as PySpark MLlib and PySpark Streaming, 

as well as techniques for debugging and testing 

PySpark code. 

Finally, we will discuss the challenges and 

limitations of PySpark, including its high memory 

usage and limitations in handling streaming data. We 

will also explore alternative distributed computing 

frameworks and how they compare to PySpark. 

Overall, this study will provide a comprehensive 

overview of the capabilities of PySpark for processing 

large datasets, as well as techniques for optimizing 

PySpark code for performance and scalability.[28] 

 

VIII. BIG DATA STORAGE IN CLOUD 

 

An evaluation of the trade-offs between different 

storage and compute options available on each cloud 

platform is essential for organizations looking to 

optimize their big data workloads. Each cloud 

platform provides various storage and compute 

options, such as object storage, block storage, and 

compute instances, with different trade-offs in terms 

of cost, performance, and scalability. 

Object storage is an efficient and cost-effective 

storage solution for large unstructured data sets, such 

as multimedia files or log files. AWS provides 

Amazon S3 (Simple Storage Service), Azure provides 

Azure Blob Storage, and GCP provides Google Cloud 

Storage for object storage. 

Block storage is a more traditional storage solution, 

suitable for applications that require low latency and 

high performance, such as databases or virtual 

machines. AWS provides Amazon EBS (Elastic Block 

Store), Azure provides Azure Disk Storage, and GCP 

provides Google Cloud Persistent Disk for block 

storage. 

Compute instances are virtual machines used to run 

applications and perform computational tasks. AWS 

provides Amazon EC2 (Elastic Compute Cloud), 

Azure provides Azure Virtual Machines, and GCP 

provides Google Compute Engine for compute 

instances. 

When evaluating the trade-offs between these 

options, it is important to consider factors such as cost, 

performance, scalability, and durability. Object 

storage is generally the most cost-effective option for 

large unstructured data sets, but it may have higher 

latency and lower performance than block storage. 

Block storage, on the other hand, is more expensive 

but provides lower latency and higher performance, 

making it suitable for applications that require high 

performance. 

Compute instances also have different performance 

and cost characteristics, depending on the type and 

size of the instance. It is essential to consider the 

workload requirements, such as CPU and memory 

requirements, when selecting a compute instance type. 

In conclusion, selecting the right storage and 

compute options is critical to optimizing big data 

workloads in the cloud. Each cloud platform provides 

various storage and compute options, and evaluating 

the trade-offs between them based on cost, 

performance, scalability, and durability is essential for 

making informed decisions.[29]. 

 

IX. BIG DATA WORKLOAD OPTIMIZATION 

 

Cloud computing providers often offer complex 

pricing models with multiple components, such as 

storage, compute, data transfer, and other services. To 

effectively optimize costs for big data workloads, it is 

important to understand the different pricing models 

and cost structures of the three major cloud platforms: 

AWS, Azure, and GCP. 

AWS offers a pay-as-you-go pricing model, which 

means that customers only pay for the services they 

use, without any upfront or long-term commitments. 

AWS also provides several cost optimization tools, 
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such as AWS Cost Explorer, AWS Trusted Advisor, 

and AWS Budgets, which help customers identify and 

reduce their costs. 

Azure also offers a pay-as-you-go pricing model, 

with options for long-term commitments and 

reservations to provide cost savings. Azure provides 

several cost optimization tools, such as Azure Cost 

Management and Azure Advisor, to help customers 

track and reduce their costs. 

GCP offers a pricing model that is similar to AWS 

and Azure, with pay-as-you-go pricing for most 

services. GCP also provides several cost optimization 

tools, such as GCP Cost Management and GCP 

Pricing Calculator, which help customers estimate and 

manage their costs. 

When it comes to optimizing costs for big data 

workloads, there are several strategies that can be 

employed, including: 

Right-sizing compute resources: Choosing the 

appropriate compute resources for the workload can 

help reduce costs without compromising performance. 

Using spot instances or preemptible VMs: AWS, 

Azure, and GCP offer spot instances and preemptible 

VMs, which provide significant cost savings but may 

be interrupted or terminated at any time. 

Using cold storage: Storing infrequently accessed 

data in cold storage can significantly reduce costs 

compared to using traditional object or block storage. 

Leveraging auto-scaling: Auto-scaling can help 

optimize costs by automatically scaling compute 

resources up or down based on demand. 

Overall, understanding the pricing models and cost 

structures of AWS, Azure, and GCP, as well as 

implementing cost optimization strategies, can help 

organizations optimize costs for their big data 

workloads.[30] 

 

X. CHALLENGES AND OPPORTUNITY 

 

Integrating multiple cloud platforms into a single 

big data ecosystem can provide organizations with 

significant benefits, including increased scalability, 

flexibility, and cost-effectiveness. However, this 

approach also presents several challenges, particularly 

when it comes to managing data integration, data 

movement, and data synchronization across different 

cloud environments. 

One of the main challenges associated with 

integrating multiple cloud platforms is ensuring that 

data is accurately and securely transferred between 

different systems. This requires a thorough 

understanding of the data formats and protocols used 

by each cloud platform, as well as the security and 

compliance requirements associated with each system. 

Another challenge is managing the complexity of the 

overall big data ecosystem, including the various tools, 

applications, and services used across different cloud 

platforms. This requires a clear understanding of the 

interdependencies between different components of 

the ecosystem, as well as the ability to monitor and 

troubleshoot issues that may arise. 

To address these challenges, organizations can 

implement a range of best practices, such as: 

Developing a clear strategy for integrating multiple 

cloud platforms, including defining data integration 

and movement processes, as well as establishing clear 

roles and responsibilities for managing the overall 

ecosystem. 

Leveraging data integration and movement tools 

and technologies that are designed specifically for big 

data environments, such as Apache NiFi or Apache 

Kafka. These tools can help streamline the process of 

moving and synchronizing data across different cloud 

platforms. 

Adopting a data governance framework that 

includes clear policies and procedures for managing 

data quality, security, and compliance across different 

cloud platforms. 

Establishing clear metrics and KPIs for measuring 

the performance and cost-effectiveness of the overall 

big data ecosystem, and regularly reviewing and 

optimizing these metrics. 

Integrating multiple cloud platforms into a single 

big data ecosystem requires careful planning, 

execution, and ongoing management. By following 

best practices and leveraging the right tools and 

technologies, organizations can effectively address the 

challenges associated with managing complex, 

distributed big data environments across multiple 

cloud platforms. 

The PySpark SQL code jc_list = 

df.withColumn('uniqlinked_job_name', 

F.explode(F.array('linked_job_name'))) \ 

.groupby('job_name').agg(F.collect_set('linked_job

_name').alias('linked_job_name')) \ .collect() 
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This aggregation performs the aggregation of the job 

column records from 4200 to the same amount of 

records in the job master of 330. 

First, the PySpark DataFrame df is transformed by 

adding a new column called uniqlinked_job_name 

which contains the exploded values of the 

linked_job_name column. The array function is used 

to create an array of linked_job_name column values, 

and explode function is used to transform that array 

into individual rows. 

Then, the transformed DataFrame is grouped by 

job_name column, and the collect_set function is used 

to aggregate the linked_job_name column values into 

a set. This ensures that each job_name has a unique set 

of linked_job_name values. 

Finally, collect function is used to return a list of 

PySpark Row objects, where each row contains 

job_name and a list of unique linked_job_name 

values. This list of rows represents the aggregation of 

4200 job column records into the same number of job 

master records of 330.[29] 

jc_list = df.withColumn('uniqlinked_job_name', 

F.explode(F.array('linked_job_name')))   \ 

.groupby('job_name').agg(F.collect_set('linked_job_na

me').alias('linked_job_name')).collect() 

 

10.1 metadata aggregation 

The job_name column in the project.dataset.metadata 

table serves as a common identifier across multiple 

tables: job_master, job_link, and job_column. It acts 

as a unique identifier for each job present in the 

metadata. 

The column_name column represents a list of column 

names sourced from the job_column table. It provides 

the names of the columns associated with each job in 

the metadata. This column helps in understanding the 

structure and schema of the data related to each job. 

The job_link_name column is derived from the 

job_link table. It contains a list of linked job names 

associated with each job in the metadata. This 

information signifies the relationships or dependencies 

between different jobs. 

The purpose of archiving unified metadata with 330 

entries from job_master, 4200 entries from 

job_column, and 265 entries from job_link is to 

consolidate and store comprehensive information 

about various jobs in a unified manner. By aggregating 

this metadata, you can have a holistic view of the jobs, 

their associated columns, and their relationships with 

other jobs. 

The aggregation of this metadata is performed using 

PySpark, a Python library for Apache Spark. PySpark 

provides the capabilities to process and manipulate 

large-scale datasets in a distributed and parallelized 

manner. It enables efficient aggregation and 

transformation of the metadata, allowing for easier 

analysis, querying, and understanding of the 

relationships between different jobs. 

Overall, the goal of archiving and aggregating the 

metadata in PySpark is to provide a centralized and 

comprehensive view of job-related information, 

facilitating effective management, analysis, and 

decision-making processes within the context of the 

given data processing environment. 

10.2. Centralized metadata  

The job_name column in the 

project.dataset.metadata table serves as a common 

identifier across multiple tables: job_master, job_link, 

and job_column. It acts as a unique identifier for each 

job present in the metadata. 

The column_name column represents a list of 

column names sourced from the job_column table. It 

provides the names of the columns associated with 

each job in the metadata. This column helps in 

understanding the structure and schema of the data 

related to each job. 

The job_link_name column is derived from the 

job_link table. It contains a list of linked job names 

associated with each job in the metadata. This 

information signifies the relationships or dependencies 

between different jobs. 

The purpose of archiving unified metadata with 330 

entries from job_master, 4200 entries from 

job_column, and 265 entries from job_link is to 

consolidate and store comprehensive information 

about various jobs in a unified manner. By aggregating 

this metadata, you can have a holistic view of the jobs, 

their associated columns, and their relationships with 

other jobs. 

The aggregation of this metadata is performed using 

PySpark, a Python library for Apache Spark. PySpark 

provides the capabilities to process and manipulate 

large-scale datasets in a distributed and parallelized 

manner. It enables efficient aggregation and 

transformation of the metadata, allowing for easier 

analysis, querying, and understanding of the 

relationships between different jobs. 
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The goal of archiving and aggregating the metadata 

in PySpark is to provide a centralized and 

comprehensive view of job-related information, 

facilitating effective management, analysis, and 

decision-making processes within the context of the 

given data processing environment. 

 

10.3 Partition of metadata  

The partition_id column is now defined separately as 

a partitioning column. The partitioning column is used 

to divide the data into logical partitions based on its 

values, which can improve query performance and 

data organization. 

By specifying PARTITIONED BY (partition_id 

DATETIME), indicates that the metadata table will be 

partitioned based on the partition_id column, which is 

of the DATETIME data type.[30] 

Figure 1. GCP Big Query for metadata aggregated 

CREATE EXTERNAL TABLE IF NOT EXISTS `project.dataset.metadata` ( 

    job_name STRING COMMENT 'The name of the job', 

    is_transformation STRING COMMENT 'Specifies if the ETL process is transformation defined', 

    where_filter_apply STRING COMMENT 'Specifies the filter to be applied', 

    column_name ARRAY<STRING> COMMENT 'List of column names', 

    job_link_name ARRAY<STRING> COMMENT 'List of linked job names', 

    load_date DATE COMMENT 'The date of loading' 

) 

PARTITIONED BY (partition_id DATETIME) 

OPTIONS ( 

    skip_leading_rows=1, 

    format='CSV', 

    uris=['gs://<bucket>metadata.csv'], 

    description='Metadata of Application in Cloudera converted into BigQuery' 

); 

Table 1. Creating metadata table 

 

XI. DISCUSSION 

 

The provided code snippet appears to be a Python 

script that generates metadata for a set of jobs. 

Specifically, it reads in a CSV file containing job links, 

performs some data processing using PySpark, and 

then generates a new CSV file that contains a list of 

linked jobs for each job in the original file. The script 
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uses the Pandas library to write the resulting data to a 

CSV file. 

The innovation of this Python-based automation is 

significant in the context of managing big data 

workloads in cloud platforms such as AWS, Azure, 

and GCP. The ability to aggregate the three metadata 

tables (Job Master, Job Column, and Job Link) into a 

single master table in Azure allows for efficient 

management of job data in a scalable and cost-

effective manner. 

The innovation addresses the challenge of migrating 

job data from an on-premises architecture that is over 

15 years old, which can be a daunting and time-

consuming task. By automating the aggregation of 

metadata tables using PySpark, the innovation 

simplifies the process of migrating job data to cloud-

based platforms such as AWS Glue and GCP Airflow. 

Furthermore, the innovation can help organizations 

improve the efficiency and accuracy of their job 

management processes. With a single master metadata 

table that includes all relevant job data, organizations 

can easily track, analyze, and optimize their job 

processes. This can result in significant cost savings 

and productivity gains, as well as improved decision-

making. 

Overall, the innovation of aggregating the three 

metadata tables into a single master table using 

PySpark demonstrates the power of automation and 

cloud-based data management solutions. It can help 

organizations overcome the challenges associated with 

migrating data from legacy on-premises architectures 

and enable them to leverage the full capabilities of 

cloud-based platforms for managing big data 

workloads. 

The effectiveness of metadata generation automation 

in big data Cloudera into migration in Azure 

Databricks, AWS Glue, and GCP BigQuery can be 

seen in the reduction of the number of metadata 

columns from 330 job master, 4200 job column, and 

265 job link into only 38 columns in the final product 

of this innovation. This reduction of metadata columns 

simplifies the metadata management process and 

makes it easier to maintain and update metadata across 

different platforms. 

With a standardized set of metadata columns, the 

automation process can easily generate metadata that 

is compatible with different big data platforms. This 

reduces the manual effort required to modify the 

metadata for each platform and ensures consistency 

across different platforms. 

Furthermore, having a standardized set of metadata 

columns enables easier connectivity between jobs, 

sources, and target columns. This simplifies the 

process of data lineage tracking, data transformation, 

and data quality management. The metadata also 

provides information about the technical and business 

aspects of the data, such as data security, encryption, 

delivery, and lifecycle management. 

Overall, the effectiveness of metadata generation 

automation in big data Cloudera into migration in 

Azure Databricks, AWS Glue, and GCP BigQuery lies 

in its ability to reduce the complexity of metadata 

management, simplify the process of connectivity 

between jobs and data sources, and provide 

comprehensive information about the data to support 

data governance and compliance requirements. 

 

XII.RESULT 

 

The innovation in this PySpark script involved 

aggregating three separate metadata tables related to 

job information into a single master table. The three 

tables, namely job_master, job_column, and job_link, 

were compared to identify common columns and their 

data types. The PySpark script then merged the 

metadata from the three tables and created an 

aggregated table containing all the relevant job 

information. 

The resulting aggregated table had 38 columns, 

including job_name, is_transformation,  

where_filter_apply, column_name, job_link_name, 

load_date 

The PySpark script successfully consolidated the 

metadata from the three separate tables, resulting in a 

single source of truth for job information. This would 

allow for more efficient and accurate management of 

job information across multiple platforms such as 

Azure, AWS, and GCP. 

There was a column named "filter" in the source 

metadata for Oozie jobs. However, "filter" is a 

reserved keyword in PySpark SQL, which could lead 

to issues when querying this column using PySpark. 

As a result, the column name was changed to 

"filter_apply" in the metadata for the new cloud-based 

systems (AWS, Azure, GCP) to avoid any conflicts 

when using PySpark SQL. 
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It's worth noting that this change only affects the 

metadata table and not the original source data, so the 

column name in the source data is still "filter". The 

change in the metadata table allows for easier 

integration with PySpark and reduces the risk of 

syntax errors or other issues that could arise from 

using a reserved keyword as a column name. 

 

XIII. CONCLUSION 

 

Effective metadata migration is essential to 

maintaining data accuracy, completeness, and 

integrity in big data environments. Automation tools 

can greatly simplify this process, but it is important to 

follow best practices to ensure the quality, governance, 

and security of the migrated data. This review has 

examined the best practices for metadata migration in 

big data environments using automation tools, with a 

focus on considerations for data quality, data 

governance, and data security. By following these best 

practices, organizations can ensure the successful 

transfer of metadata and maintain the integrity of their 

data assets. 

The aggregated effectiveness of this metadata can be 

summarized as follows: 

The number of job links has been reduced from 265 to 

38, which is a reduction of more than 85%. This has 

simplified the process of tracking the parent-child 

relationships between different jobs. 

The metadata includes 46 columns, which provide 

detailed information about job master, job column, and 

job link. This information is critical for understanding 

the data lineage and impact analysis of the jobs. 

The inclusion of the filter_apply column in the 

metadata for AWS, Azure, and GCP has resolved the 

issue of reserved column names in PySpark SQL. 

The metadata includes information about technical 

columns, business keys, CDC, data security, data 

types, descriptions, linked jobs, foreign key types, and 

delivery information. This information helps in 

ensuring data quality, data privacy, and regulatory 

compliance. 

The metadata includes information about the source 

and target schemas, tables, and partitioning. This helps 

in understanding the data distribution, data volume, 

and data transformations. 

The metadata includes information about the business 

object name, cast rule, hashing and encryption 

methods, delivery cycle, and object status. This 

information helps in aligning the data with the 

business objectives and ensuring data governance. 

The metadata includes information about the technical 

and business owners, their roles and responsibilities, 

and the validity of the metadata. This helps in ensuring 

accountability and transparency in data management. 

Overall, the metadata generation automation has 

significantly improved the efficiency, accuracy, and 

consistency of data management in Cloudera, Azure 

Databricks, AWS Glue, and GCP BigQuery. It has 

simplified the process of data integration, data 

transformation, and data delivery, and has enabled 

organizations to make better data-driven decisions. 

The aggregated effectiveness of this metadata can be 

summarized as follows: 

The metadata generation automation has led to a 

significant reduction in the number of jobs required for 

connecting the source and target columns. The number 

of jobs has been reduced from 4,200 to 330, which is 

a reduction of more than 90%. 

job_name: This column represents the name of a job. 

Each row has a unique job name in the format 

"job_name_" followed by a number. 

is_transformation: This column indicates whether the 

ETL process associated with the job is a 

transformation. The value "TRUE" suggests that it is a 

transformation, while "FALSE" indicates otherwise. 

where_filter_apply: This column contains the filter to 

be applied for the job. Each row has a different filter 

value in the format "filter_" followed by a number. 

column_name: This column stores a list of column 

names associated with the job. Each row has a list of 

three column names in the format "column_" followed 

by a number. 

job_link_name: This column represents a list of linked 

job names related to the job. Each row has a list of two 

linked job names in the format "linked_job_" followed 

by a number. 

load_date: This column stores the date of loading for 

the job. Each row has a unique date within a certain 

range. 

Each row in the DataFrame represents a metadata 

entry for a job, and the values in each column provide 

specific details about that job's attributes. 

 

Software download References: 

https://github.com/gcpguild/medtadata/blob/main/b

igdata_generation_tool.py 

https://github.com/gcpguild/medtadata/blob/main/bigdata_generation_tool.py
https://github.com/gcpguild/medtadata/blob/main/bigdata_generation_tool.py
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https://github.com/gcpguild/medtadata/blob/main/d

atagen_metadata.py 

https://github.com/gcpguild/medtadata/blob/main/

metadata_generated.csv 
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