
© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 536

Designing a metadata framework for bigdata models in

Cloudera Data Lakes across AWS, Azure, and GCP

Ramamurthy Valavandan1*, Balakrishnan Gothandapani2, Savitha Ramamurthy3, Jagathambal

Subramanian4, Kanagalakshmi Subramaian5, Valavandan Valavandan6, Bharani7, Dharani9
1Technical Architect, Nature Labs

2Engineer, Nature Labs
3Application Developer, Nature Labs

4Product Director, Nature Labs
5Program Manager, Nature Labs
6Program Director, Nature Labs

7,8 Nature Labs

Abstract— This research presents an innovative

metadata framework design for big data models in

Cloudera Data Lakes across AWS, Azure, and GCP

cloud platforms. The study focuses on migrating

metadata using Data Vault data models, utilizing

PySpark and SparkSQL for analysis.

As big data environments grow in complexity, accurate

metadata migration becomes crucial. This study explores

best practices and automation tools for efficient

metadata migration in large-scale environments.

The research evaluates unique features of AWS, Azure,

and GCP, including data storage, processing, security,

and cost-effectiveness. It also assesses scalability and

usability for managing big data in Cloudera Data Lakes

with Data Vault data models.

Findings show that AWS offers extensive services and

tools, while Azure and GCP provide cost-effective

options. AWS benefits from a large partner and

developer network, aiding in managing big data in

Cloudera Data Lakes with Data Vault models.

This study provides innovative insights into metadata

framework design and the capabilities of AWS, Azure,

and GCP for big data management in Cloudera Data

Lakes, aiding organizations in selecting the appropriate

cloud platform.

Index Terms—Cloud Platforms AWS Azure GCP , Big

Data Environments, Cloudera, Metadata Migration,

PySpark, SparkSQL

I. INTRODUCTION

In recent years, the exponential growth of data

generated by organizations has posed significant

challenges in managing and storing such vast volumes

of information. To tackle these challenges, [1] cloud-

based solutions have gained increasing popularity.

Amazon Web Services (AWS), Microsoft Azure, and

Google Cloud Platform (GCP) are prominent cloud

service providers offering solutions for managing and

processing big data.[2]

Cloudera Data Lakes have emerged as one of the most

popular big data management solutions, adopted by

numerous organizations for their data storage and

analysis needs. However, migrating metadata from

Cloudera Data Lakes can be a complex process.

Utilizing Data Vault data models can simplify this

migration process, providing a more efficient

solution.[3]

This paper aims to provide a comparative analysis of

AWS, Azure, and GCP, the three leading cloud service

providers, for migrating metadata of big data in

Cloudera Data Lakes using Data Vault data models.

The analysis will consider crucial factors such as cost,

ease of use, scalability, security, and performance. The

goal is to provide a comprehensive comparison that

assists organizations in making informed decisions

when choosing a cloud platform for their big data

needs.[4]

Metadata migration plays a critical role in ensuring the

accuracy and completeness of transferred data within

any big data environment. [5] Automation tools

greatly streamline this process, but it is essential to

follow best practices to ensure the quality, governance,

and security of the migrated data. This review

examines the best practices for metadata migration in

big data environments using automation tools, with a

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 537

particular focus on data quality, data governance, and

data security considerations.[6]

The key contributions of this research paper include:

In-depth analysis of AWS, Azure, and GCP

capabilities for managing big data workloads,

particularly within Cloudera Data Lakes and Data

Vault data models.

Comparison of automation tools and frameworks

available for each cloud platform, evaluating features,

ease of use, and suitability for specific use cases.

Review of best practices for migrating metadata in big

data environments using automation tools, including

considerations for data quality, data governance, and

data security.

Study of the PySpark framework and its capabilities

for processing large datasets, including optimization

techniques for performance and scalability.

Evaluation of trade-offs between different storage and

compute options available on each cloud platform,

including object storage, block storage, and compute

instances.

Comparison of pricing models and cost structures

among AWS, Azure, and GCP, highlighting strategies

for optimizing costs in big data workloads.

Discussion of challenges and opportunities associated

with integrating multiple cloud platforms into a

unified big data ecosystem, addressing data

integration, movement, and synchronization across

diverse cloud environments.

PySpark, a powerful open-source data processing

framework, provides a Python interface to Apache

Spark, a distributed computing system designed for

processing large-scale datasets. PySpark is widely

used for big data processing due to its ability to handle

large datasets efficiently by distributing the workload

across multiple nodes in a cluster. This parallel

processing capability significantly reduces the time

required for data processing tasks.[7]

In the context of this research, PySpark can be

leveraged to reduce the number of job columns from

4200 to equal amounts of 330 job master and

aggregated metadata.csv files. This achievement is

made possible by harnessing PySpark's data

processing capabilities, including filtering,

aggregating, and transforming data.[8]

To implement this solution, AWS Glue, Azure Data

Factory, or GCP Dataproc can be utilized for

workflow orchestration. These cloud services provide

a platform for running PySpark jobs at scale and

managing the execution of PySpark workflows.[9]

Potential use cases for customers benefiting from this

solution include:

Financial institutions processing large volumes of

transactional data for fraud detection and risk

management.

Retail companies analyzing customer purchase

patterns to optimize pricing and marketing strategies.

Healthcare organizations processing patient data for

clinical research and drug discovery.

Manufacturing companies

II. PYSPARK FOR METADATA AGGREGATION

Best Practices for Metadata Migration in Big Data

Environments:

The given code is using PySpark to merge three data

frames (DF1, DF2, and DF3) and select specific

columns based on the job_name column present in

DF1 and join it with the job_name column present in

the job master data frame. The merged data is then

used to create aggregated metadata. Here is a brief

explanation of the code:[10]

The code imports required PySpark libraries such as

SparkSession, SparkConf, functions, col, and lit. It

also imports the pandas and re libraries. Then, it sets

the Spark log level to "ERROR" to minimize log

messages.

The code reads three CSV files (job_master_data.csv,

jobs_column_list.csv, and linked_job_name_data.csv)

using the spark.read.format() method and loads them

into three PySpark data frames (df1, df2, and df3)

using option("header", "true") to indicate that the first

row of the CSV file contains the column names.

The data frames are then registered as temporary

tables using the createOrReplaceTempView() method.

The code defines a list c containing all the column

names that need to be selected from the merged data

frame. The data frames are then aliased as a, b, and c.

The join() method is used to join the three data frames

on the job_name column. df1 is joined with df2 on

job_name column using a left join, and df2 is joined

with df3 on job_name column using a left join. The

resulting data frame contains all columns from df1, b,

and c. The select() method is used to select the

required columns specified in the c list from the

merged data frame. The resulting data frame is then

sorted in ascending order based on the job_name

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 538

column. Finally, the resulting data frame is collected

and stored in separate variables based on their

respective column names using collect() method and

multiple v variables (e.g., v0, v1, etc.).

Overall, the given code uses PySpark to merge three

data frames and select specific columns based on

job_name column present in DF1 and join it with the

job_name column present in the job master data frame.

The merged data is then used to create aggregated

metadata.

Understand the source and destination environments:

Before beginning a metadata migration, it is essential

to thoroughly understand both the source and

destination environments. This includes identifying

the type and format of the metadata being migrated,

the systems and applications involved, and any

dependencies or constraints that may impact the

migration process.

This Python code reads three CSV files as PySpark

DataFrames, joins them, and selects certain columns.

Here is a brief description of the steps:

The CSV files are read as PySpark DataFrames: df1

from file df1_job_master_lst, df2 from file

df2_job_column_lst, and df3 from file

df3_job_linked_lst. The delimiter used is, and the

header row is considered in all three cases.

The three DataFrames are registered as temporary

views with the names d1, d2, and d3.

The columns to select are defined in a list named c.

Aliases are created for the three DataFrames: a for df1,

b for df2, and c for df3.

The DataFrames are joined in the following order: df1

and df2 on the condition that a.job_name =

b.job_name, and df2 and df3 on the condition that

b.job_name = c.job_name. The join type is left, so all

rows from df1 are included in the result.

The resulting DataFrame is selected by column names

from both the df2 and df3 DataFrames.

The resulting DataFrame is sorted by the job_name

column in ascending order.

The resulting DataFrame is not returned or saved, but

its content can be collected to a local variable, which

seems to be the purpose of the following lines of code

that initialize a large number of empty lists (v0 to v45).

These lists are likely used to store the selected columns

from the DataFrame.

These are import statements used in Python code for

working with Apache Spark's Structured APIs,

specifically the PySpark library for Python. Here's a

brief explanation of each line:

from pyspark.sql import SparkSession: This line

imports the SparkSession class from the pyspark.sql

module. A SparkSession is the entry point to Spark

functionality and allows you to create DataFrames,

register DataFrames as tables, execute SQL queries,

and more.

from pyspark.conf import SparkConf: This line

imports the SparkConf class from the pyspark.conf

module. SparkConf is a configuration object that sets

various Spark parameters.

from pyspark.sql import functions as F: This line

imports the functions module from the pyspark.sql

package and renames it as F. The functions module

contains a wide range of built-in functions that can be

applied to columns in a Spark DataFrame.

from pyspark.sql.functions import col: This line

imports the col function from the

pyspark.sql.functions module. col is a function that

returns a column from a DataFrame based on the

column name.

from pyspark.sql.functions import lit: This line

imports the lit function from the pyspark.sql.functions

module. lit is a function that creates a literal value that

can be used as a column in a DataFrame.[11]

III. BIG DATA ANALYSIS IN CLOUD

PLATFORMS

Comparing AWS, Azure, and GCP cloud platforms for

the migration of metadata of big data in Cloudera Data

Lake in Data Vault Data Models can be done by

evaluating their features, capabilities, and pricing.

AWS, Azure, and GCP all offer services for big data

storage and processing, but each platform has its

strengths and weaknesses. For example, AWS has a

strong presence in the big data market with services

such as Amazon S3, Redshift, and EMR. Azure has

also made significant investments in big data services

with offerings such as Azure Data Lake Storage and

Azure HDInsight. GCP, on the other hand, has a strong

focus on machine learning and analytics with services

like BigQuery and Dataflow.[12]

When it comes to migrating metadata in Cloudera

Data Lake, each platform has its own approach. AWS

[13] has a service called AWS Glue that allows you to

automate the discovery, cataloging, and migration of

data. Azure offers Azure Data Factory and Azure

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 539

Databricks for data integration and transformation.

GCP offers Cloud Data Fusion for data integration and

Cloud Dataproc for data processing.

In terms of pricing, all three platforms offer a pay-as-

you-go model, but the specific costs vary based on

usage and the services used. It's important to consider

the total cost of ownership when evaluating cloud

platforms for big data migration.

Overall, it's important to consider the specific

requirements and goals of your big data migration

project when evaluating cloud platforms. Each

platform has its strengths and weaknesses, and the best

choice will depend on your unique needs. [15]

IV. BIG DATA CAPABILITIES IN CLOUD

PLATFORM

Develop a migration plan: A well-defined migration

plan is critical for ensuring the successful transfer of

metadata. This plan should include a detailed timeline,

clear objectives, and a comprehensive list of tasks to

be completed. It should also identify any potential

risks or challenges that may arise during the migration

process and include contingency plans to address

them.

4.1 AWS offerings for Cloudera big data

Amazon Web Services (AWS) offers a broad range of

services for managing big data workloads, including

those in the context of Cloudera Data Lakes and Data

Vault data models.

AWS offers Amazon EMR (Elastic MapReduce), a

fully-managed service that makes it easy to process

vast amounts of data using Apache Hadoop and Spark.

Amazon EMR supports many Hadoop ecosystem tools

and frameworks, including Pig, Hive, HBase, Flink,

and Presto. It also integrates with Amazon S3 (Simple

Storage Service) and other AWS services for data

storage, processing, and analysis.

For managing data in Cloudera Data Lakes, AWS

offers Amazon S3, which provides highly scalable,

durable, and secure object storage for data lakes. AWS

also offers Amazon Redshift, a fully-managed data

warehouse service that makes it easy to analyze data

using standard SQL and business intelligence (BI)

tools.

For data modeling, AWS offers Amazon Athena, a

serverless interactive query service that makes it easy

to analyze data in Amazon S3 using standard SQL.

AWS also offers AWS Glue, a fully-managed ETL

(Extract, Transform, and Load) service that makes it

easy to prepare and load data for analytics.

For security, AWS offers a broad range of services,

including AWS Identity and Access Management

(IAM), AWS Key Management Service (KMS), AWS

CloudTrail, and AWS Config. These services help

customers to control access to their data, encrypt data

at rest and in transit, monitor and audit activity, and

comply with regulations and standards.

Overall, AWS provides a comprehensive set of

services and tools for managing big data workloads,

including those in the context of Cloudera Data Lakes

and Data Vault data models. AWS's services are

highly scalable, flexible, and secure, and integrate well

with other AWS services and

tools.[16,17,18,19,20,21]

4.2. Azure offerings for Cloudera big data

Azure provides several services for managing big data

workloads in the context of Cloudera Data Lakes and

Data Vault data models. Some of the key capabilities

are:

Azure HDInsight: This is a fully-managed cloud

service that makes it easy to process big data using

popular open-source frameworks such as Hadoop,

Spark, and Hive. It integrates with Cloudera Data

Lakes and provides built-in connectors to Azure Data

Lake Storage and other Azure services.

Azure Data Lake Storage: This is a scalable and secure

data lake solution that can store and analyze large

volumes of data from different sources. It integrates

with HDInsight and provides high-performance access

to data using Hadoop Distributed File System (HDFS)

and Blob Storage APIs.

Azure Synapse Analytics: This is a cloud-based

analytics service that combines big data and data

warehousing to provide a unified experience for data

integration, exploration, and analytics. It integrates

with HDInsight and provides built-in connectors to

Azure Data Lake Storage and other Azure services.

Azure Databricks: This is a collaborative, cloud-based

platform for data engineering, data science, and

machine learning. It provides a unified experience for

working with big data using Spark and other popular

open-source frameworks. It integrates with Azure

services such as HDInsight, Data Lake Storage, and

Synapse Analytics.

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 540

Azure Stream Analytics: This is a real-time data

streaming service that can process millions of events

per second from different sources. It integrates with

HDInsight and provides built-in connectors to Azure

Event Hubs, IoT Hub, and other Azure services.

Overall, Azure provides a comprehensive set of

services for managing big data workloads in the

context of Cloudera Data Lakes and Data Vault data

models. These services are designed to be scalable,

secure, and cost-effective, and can help organizations

derive valuable insights from their big data.[22]

4.3 GCP offerings for Cloudera big data

Google Cloud Platform (GCP) offers various services

and tools for managing big data workloads in the

context of Cloudera Data Lakes and Data Vault data

models. Some of these capabilities include:

Storage and Data Management: GCP provides

multiple storage options for big data, such as Cloud

Storage, Cloud Bigtable, and Cloud Spanner. Cloud

Storage is an object storage service that offers

unlimited storage capacity and allows for efficient data

management. Cloud Bigtable is a NoSQL database

service that can handle large amounts of data with low

latency, while Cloud Spanner is a globally distributed

relational database that provides strong consistency

and horizontal scaling.

Data Processing: GCP provides various tools for

processing big data, such as Dataflow, Dataproc, and

BigQuery. Dataflow is a managed service for building

data pipelines that can handle both batch and stream

processing. Dataproc is a managed service for running

Apache Hadoop and Spark jobs on a cluster, while

BigQuery is a fully managed, serverless data

warehouse that allows for high-performance querying

and analysis of large datasets.

Security: GCP offers various security features to

protect big data workloads, such as Identity and

Access Management (IAM), Cloud Key Management

Service (KMS), and Cloud Data Loss Prevention

(DLP). IAM allows for fine-grained access control of

GCP resources, while KMS provides centralized key

management and cryptographic operations. Cloud

DLP helps to detect and protect sensitive data in big

data workloads.

Cost-Effectiveness: GCP offers various cost-effective

options for managing big data workloads, such as pre-

emptible VMs, committed use discounts, and

sustained use discounts. Pre-emptible VMs are short-

lived instances that can be used for batch processing at

a lower cost, while committed use discounts offer

savings for sustained usage of VMs. Sustained use

discounts provide automatic discounts based on the

amount of usage of certain GCP services over time.

Overall, GCP provides a comprehensive set of

services and tools for managing big data workloads in

the context of Cloudera Data Lakes and Data Vault

data models.[23]

V. BIG DATA TOOLS AND FRAMEWORKS

Ensure data quality: Ensuring the quality of the

migrated metadata is essential to maintaining data

accuracy and completeness. This includes verifying

the consistency and validity of the data, as well as

identifying and addressing any errors or discrepancies.

Automated data profiling and validation tools can help

ensure data quality and accuracy.

Establish data governance: Effective data governance

is critical to ensuring the security, privacy, and

compliance of the migrated data. This includes

implementing policies and procedures to manage data

access, usage, and retention, as well as establishing

clear roles and responsibilities for data management

and oversight.

Implement data security measures: Protecting the

security of the migrated data is essential to preventing

unauthorized access, data breaches, and other security

threats. This includes implementing data encryption,

access controls, and other security measures to ensure

the confidentiality and integrity of the data.

5.1 AWS big data tool and framework

The advent of big data has led to a proliferation of

tools and frameworks for processing and analyzing

large datasets. AWS offers a variety of tools and

services for managing big data workloads, and there

are also numerous open-source and third-party tools

available that can be used in conjunction with AWS.

In this paper, we will provide a comparison of various

automation tools and frameworks available for AWS,

focusing on their features, ease of use, and suitability

for specific use cases.

5.1.1 AWS Native Tools and Services

AWS Glue:

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 541

Overview: AWS Glue is a fully managed extract,

transform, and load (ETL) service that makes it easy

to prepare and load data for analytics. It provides

automated discovery, cataloging, and transformation

of data, allowing users to create and run ETL jobs at

scale.

Features: Key features of AWS Glue include data

cataloging, job authoring, job execution, data

transformation, and integration with various data

sources and destinations.

Use Cases: AWS Glue is commonly used for data

preparation and ETL processes in data lakes, data

warehousing, log analysis, data migration, and data

integration scenarios.

Amazon EMR:

Overview: Amazon Elastic MapReduce (EMR) is a

cloud-based big data platform that simplifies the

processing and analysis of large datasets. It provides a

managed Hadoop framework along with other popular

distributed computing frameworks like Spark, HBase,

and Presto.

Features: Amazon EMR offers features such as

automatic scaling, flexible data storage options, data

encryption, monitoring and management tools, and

integration with various data sources and analytics

tools.

Use Cases: Amazon EMR is used for a wide range of

big data use cases, including log analysis, data

warehousing, machine learning, real-time analytics,

and processing large-scale data pipelines.

Amazon Redshift:

Overview: Amazon Redshift is a fully managed data

warehousing service designed for analyzing large

datasets. It provides high-performance, columnar

storage, and parallel query execution to deliver fast

query performance on large-scale data.

Features: Key features of Amazon Redshift include

columnar storage, automatic compression, parallel

query execution, data ingestion options, security and

encryption, and integration with popular business

intelligence tools.

Use Cases: Amazon Redshift is commonly used for

business intelligence and data analytics applications,

including reporting and dashboards, ad-hoc queries,

data exploration, and complex analytics tasks on large

datasets.

5.1.2 Third-Party Tools and Frameworks

Apache Hadoop:

Overview: Apache Hadoop is an open-source

framework for distributed processing and storage of

large datasets across clusters of computers. It provides

a scalable and fault-tolerant solution for processing

and analyzing big data.

Features: Hadoop consists of two core components -

the Hadoop Distributed File System (HDFS) for

storing data across multiple machines, and the

MapReduce programming model for distributed

processing. It also includes various ecosystem projects

like YARN, Hive, Pig, and HBase for additional

functionalities.

Use Cases: Apache Hadoop is used for a wide range

of use cases, including data warehousing, log

processing, recommendation systems, fraud detection,

sentiment analysis, and large-scale data processing in

various industries.

Apache Spark:

Overview: Apache Spark is an open-source,

distributed computing system designed for processing

and analyzing large-scale datasets. It provides an in-

memory computing engine that enables faster data

processing and supports a wide range of data

processing tasks.

Features: Spark offers a unified framework for batch

processing, interactive queries, streaming data, and

machine learning. It provides APIs in multiple

programming languages, including Scala, Java,

Python, and R, and supports various data sources and

machine learning libraries.

Use Cases: Apache Spark is used in diverse use cases,

such as real-time analytics, machine learning, graph

processing, ETL (Extract, Transform, Load) pipelines,

fraud detection, log analysis, and recommendation

systems.

Apache Kafka:

Overview: Apache Kafka is a distributed streaming

platform designed for handling real-time data feeds

and building scalable data pipelines. It provides high-

throughput, fault-tolerant, and scalable messaging

capabilities.

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 542

Features: Kafka enables the publishing and

subscribing of streams of records in real-time. It

provides features like fault tolerance, scalability,

durability, low latency, and the ability to process

streaming data with exactly-once semantics.

Use Cases: Apache Kafka is widely used in use cases

such as real-time stream processing, event sourcing,

log aggregation, messaging systems, activity tracking,

and change data capture.

Apache Flink:

Overview: Apache Flink is an open-source, stream

processing framework for distributed, high-

throughput, and fault-tolerant data processing. It

supports both batch and stream processing paradigms

and provides low-latency processing capabilities.

Features: Flink offers event-time processing, stateful

computations, fault tolerance, and support for

iterative and interactive analysis. It also integrates

with various data sources and sinks, and provides

APIs in multiple programming languages.

Use Cases: Apache Flink is used in use cases such as

real-time analytics, fraud detection, anomaly

detection, continuous ETL, real-time monitoring, and

dynamic data pipelines.

Ease of use: User interface, deployment, and

management

Features: Data processing, analytics, and storage

Suitability for specific use cases: Real-time

processing, batch processing, and data warehousing

AWS provides a vast array of tools and services for

managing big data workloads, and there are also

numerous third-party tools and frameworks available.

The choice of tool or framework depends on the

specific use case and requirements. In this paper, we

have provided an overview and comparison of various

automation tools and frameworks available for AWS,

focusing on their features, ease of use, and suitability

for specific use cases.[24]

5.2 Azure big data tool and framework

Azure offers several big data automation tools and

frameworks for managing data processing and

analysis at scale. Here are some of the key tools and

their features:

Azure Data Factory: Azure Data Factory is a cloud-

based data integration service that allows you to

create, schedule, and manage data pipelines. It

supports various sources and destinations, including

on-premises data sources, cloud data sources, and

SaaS applications. Data Factory allows you to

transform and manipulate data using various activities

such as transformations, data flows, and machine

learning models. It also offers built-in connectors for

popular data services such as Azure Blob Storage,

Azure Data Lake Storage, and Azure SQL Database.

Azure Databricks: Azure Databricks is a fast, easy,

and collaborative Apache Spark-based analytics

platform. It allows you to process and analyze large

datasets using a scalable, distributed computing

environment. Databricks integrates with Azure

services such as Azure Blob Storage, Azure Data Lake

Storage, and Azure SQL Database, and offers built-in

connectors for various data sources, including Hadoop

Distributed File System (HDFS), Apache Cassandra,

and Amazon S3. Databricks provides an interactive

workspace for data scientists and data engineers to

collaborate, build, and deploy data-driven

applications.

HDInsight: Azure HDInsight is a cloud-based service

for big data processing and analytics. It supports

several open-source big data technologies such as

Hadoop, Spark, Hive, HBase, and Storm. HDInsight

offers various deployment options, including

interactive and batch query processing, machine

learning, and real-time stream processing. It integrates

with Azure services such as Azure Blob Storage,

Azure Data Lake Storage, and Azure SQL Database,

and provides built-in connectors for various data

sources such as Oracle, MySQL, and Teradata.

Azure Stream Analytics: Azure Stream Analytics is a

cloud-based service for processing and analyzing real-

time streaming data. It allows you to analyze and gain

insights from real-time data streams from various

sources such as IoT devices, social media, and other

applications. Stream Analytics integrates with Azure

services such as Azure Blob Storage, Azure Data Lake

Storage, and Azure SQL Database, and provides built-

in connectors for various data sources such as Azure

Event Hubs, Azure IoT Hub, and Azure Stream

Analytics Input.

Azure Synapse Analytics: Azure Synapse Analytics is

an analytics service that brings together big data and

data warehousing into a single service. It offers a

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 543

unified experience for data preparation, data

management, and data warehousing, and supports

various big data and data warehousing technologies

such as Apache Spark, SQL Server, and Azure SQL

Database. Synapse Analytics integrates with Azure

services such as Azure Blob Storage, Azure Data Lake

Storage, and Azure Data Factory, and provides built-

in connectors for various data sources such as Oracle,

SQL Server, and Teradata.

In terms of ease of use, Azure offers a user-friendly

interface and easy integration with other Azure

services. The Azure portal provides a single interface

for managing all Azure services, including big data

services. Azure also offers various templates and pre-

built solutions for common big data scenarios.

Overall, Azure's big data automation tools and

frameworks offer a range of capabilities for managing

data processing and analysis at scale, making it

suitable for various use cases.[25]

5.3. GCP big data tool and framework

Google Cloud Platform (GCP) offers a variety of

automation tools and frameworks for managing big

data workloads. Here are some of the key ones:

Google Cloud Dataflow: A fully-managed service

for developing and executing data processing

pipelines. It supports both batch and stream processing

and can handle data in a variety of formats.

Google Cloud Dataproc: A fully-managed service

for running Apache Hadoop and Spark clusters. It can

be used for processing large amounts of data and can

scale dynamically based on workload.

Google BigQuery: A serverless, fully-managed data

warehouse for analytics. It is designed to handle large

datasets and provides fast query performance.

Google Cloud Composer: A managed workflow

orchestration service that allows you to author,

schedule, and monitor workflows. It supports popular

open source workflow engines like Apache Airflow.

TensorFlow: An open source machine learning

library developed by Google. It can be used for

building and training machine learning models for

various use cases.

When comparing these tools and frameworks, it’s

important to consider factors such as ease of use,

scalability, cost, and suitability for specific use cases.

For example, Cloud Dataflow is a good choice for

stream processing and real-time analytics, while

Dataproc is a better fit for batch processing of large

datasets. BigQuery is ideal for ad-hoc analytics and

business intelligence, while TensorFlow is well-suited

for machine learning and AI applications. Ultimately,

the choice of tool or framework will depend on the

specific needs and goals of the organization.[26]

VI. REVIEW OF BIG DATA MIGRATION

An evaluation of the trade-offs between different

storage and compute options available on each cloud

platform, including object storage, block storage, and

compute instances.

Cloud platforms offer a range of storage and

compute options to meet the needs of big data

workloads. Object storage, block storage, and compute

instances are three of the most common options

available. This study evaluates the trade-offs between

these different options on each of the major cloud

platforms: AWS, Azure, and GCP.

The study examines the performance, scalability,

cost-effectiveness, and ease of use of each option on

each platform. It also considers the specific use cases

for which each option is best suited.

The results of the study indicate that object storage

is the most cost-effective and scalable option for

storing large volumes of unstructured data. Block

storage is better suited for workloads that require high-

performance storage for structured data. Compute

instances are ideal for workloads that require large

amounts of processing power and memory.

The study also highlights the importance of

selecting the right storage and compute options for

specific use cases. For example, a workload that

involves frequent access to small files may be better

suited to object storage, while a workload that requires

high-performance processing of structured data may

require block storage.

Overall, this study provides insights into the trade-

offs between different storage and compute options on

each cloud platform, helping organizations make

informed decisions when selecting the right options

for their big data workloads.[27]

VII. PYSPARK FRAMEWORK

PySpark is a popular distributed computing

framework for processing large datasets using Apache

Spark. In this study, we will explore the capabilities of

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 544

PySpark and how to optimize PySpark code for

performance and scalability.

We will first provide an overview of PySpark and

its architecture, including its use of RDDs (Resilient

Distributed Datasets) and the DataFrame API. We will

also discuss the advantages of PySpark for big data

processing, such as its ability to handle complex data

processing tasks and its support for various data

formats and data sources.

Next, we will explore techniques for optimizing

PySpark code for performance and scalability. This

will include a discussion of partitioning and caching,

which are key techniques for improving PySpark

performance. We will also explore the use of broadcast

variables and accumulator variables, which can

improve PySpark performance in certain scenarios.

In addition to discussing PySpark optimization

techniques, we will also explore common PySpark use

cases and best practices for PySpark development.

This will include an overview of PySpark libraries and

tools, such as PySpark MLlib and PySpark Streaming,

as well as techniques for debugging and testing

PySpark code.

Finally, we will discuss the challenges and

limitations of PySpark, including its high memory

usage and limitations in handling streaming data. We

will also explore alternative distributed computing

frameworks and how they compare to PySpark.

Overall, this study will provide a comprehensive

overview of the capabilities of PySpark for processing

large datasets, as well as techniques for optimizing

PySpark code for performance and scalability.[28]

VIII. BIG DATA STORAGE IN CLOUD

An evaluation of the trade-offs between different

storage and compute options available on each cloud

platform is essential for organizations looking to

optimize their big data workloads. Each cloud

platform provides various storage and compute

options, such as object storage, block storage, and

compute instances, with different trade-offs in terms

of cost, performance, and scalability.

Object storage is an efficient and cost-effective

storage solution for large unstructured data sets, such

as multimedia files or log files. AWS provides

Amazon S3 (Simple Storage Service), Azure provides

Azure Blob Storage, and GCP provides Google Cloud

Storage for object storage.

Block storage is a more traditional storage solution,

suitable for applications that require low latency and

high performance, such as databases or virtual

machines. AWS provides Amazon EBS (Elastic Block

Store), Azure provides Azure Disk Storage, and GCP

provides Google Cloud Persistent Disk for block

storage.

Compute instances are virtual machines used to run

applications and perform computational tasks. AWS

provides Amazon EC2 (Elastic Compute Cloud),

Azure provides Azure Virtual Machines, and GCP

provides Google Compute Engine for compute

instances.

When evaluating the trade-offs between these

options, it is important to consider factors such as cost,

performance, scalability, and durability. Object

storage is generally the most cost-effective option for

large unstructured data sets, but it may have higher

latency and lower performance than block storage.

Block storage, on the other hand, is more expensive

but provides lower latency and higher performance,

making it suitable for applications that require high

performance.

Compute instances also have different performance

and cost characteristics, depending on the type and

size of the instance. It is essential to consider the

workload requirements, such as CPU and memory

requirements, when selecting a compute instance type.

In conclusion, selecting the right storage and

compute options is critical to optimizing big data

workloads in the cloud. Each cloud platform provides

various storage and compute options, and evaluating

the trade-offs between them based on cost,

performance, scalability, and durability is essential for

making informed decisions.[29].

IX. BIG DATA WORKLOAD OPTIMIZATION

Cloud computing providers often offer complex

pricing models with multiple components, such as

storage, compute, data transfer, and other services. To

effectively optimize costs for big data workloads, it is

important to understand the different pricing models

and cost structures of the three major cloud platforms:

AWS, Azure, and GCP.

AWS offers a pay-as-you-go pricing model, which

means that customers only pay for the services they

use, without any upfront or long-term commitments.

AWS also provides several cost optimization tools,

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 545

such as AWS Cost Explorer, AWS Trusted Advisor,

and AWS Budgets, which help customers identify and

reduce their costs.

Azure also offers a pay-as-you-go pricing model,

with options for long-term commitments and

reservations to provide cost savings. Azure provides

several cost optimization tools, such as Azure Cost

Management and Azure Advisor, to help customers

track and reduce their costs.

GCP offers a pricing model that is similar to AWS

and Azure, with pay-as-you-go pricing for most

services. GCP also provides several cost optimization

tools, such as GCP Cost Management and GCP

Pricing Calculator, which help customers estimate and

manage their costs.

When it comes to optimizing costs for big data

workloads, there are several strategies that can be

employed, including:

Right-sizing compute resources: Choosing the

appropriate compute resources for the workload can

help reduce costs without compromising performance.

Using spot instances or preemptible VMs: AWS,

Azure, and GCP offer spot instances and preemptible

VMs, which provide significant cost savings but may

be interrupted or terminated at any time.

Using cold storage: Storing infrequently accessed

data in cold storage can significantly reduce costs

compared to using traditional object or block storage.

Leveraging auto-scaling: Auto-scaling can help

optimize costs by automatically scaling compute

resources up or down based on demand.

Overall, understanding the pricing models and cost

structures of AWS, Azure, and GCP, as well as

implementing cost optimization strategies, can help

organizations optimize costs for their big data

workloads.[30]

X. CHALLENGES AND OPPORTUNITY

Integrating multiple cloud platforms into a single

big data ecosystem can provide organizations with

significant benefits, including increased scalability,

flexibility, and cost-effectiveness. However, this

approach also presents several challenges, particularly

when it comes to managing data integration, data

movement, and data synchronization across different

cloud environments.

One of the main challenges associated with

integrating multiple cloud platforms is ensuring that

data is accurately and securely transferred between

different systems. This requires a thorough

understanding of the data formats and protocols used

by each cloud platform, as well as the security and

compliance requirements associated with each system.

Another challenge is managing the complexity of the

overall big data ecosystem, including the various tools,

applications, and services used across different cloud

platforms. This requires a clear understanding of the

interdependencies between different components of

the ecosystem, as well as the ability to monitor and

troubleshoot issues that may arise.

To address these challenges, organizations can

implement a range of best practices, such as:

Developing a clear strategy for integrating multiple

cloud platforms, including defining data integration

and movement processes, as well as establishing clear

roles and responsibilities for managing the overall

ecosystem.

Leveraging data integration and movement tools

and technologies that are designed specifically for big

data environments, such as Apache NiFi or Apache

Kafka. These tools can help streamline the process of

moving and synchronizing data across different cloud

platforms.

Adopting a data governance framework that

includes clear policies and procedures for managing

data quality, security, and compliance across different

cloud platforms.

Establishing clear metrics and KPIs for measuring

the performance and cost-effectiveness of the overall

big data ecosystem, and regularly reviewing and

optimizing these metrics.

Integrating multiple cloud platforms into a single

big data ecosystem requires careful planning,

execution, and ongoing management. By following

best practices and leveraging the right tools and

technologies, organizations can effectively address the

challenges associated with managing complex,

distributed big data environments across multiple

cloud platforms.

The PySpark SQL code jc_list =

df.withColumn('uniqlinked_job_name',

F.explode(F.array('linked_job_name'))) \

.groupby('job_name').agg(F.collect_set('linked_job

_name').alias('linked_job_name')) \ .collect()

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 546

This aggregation performs the aggregation of the job

column records from 4200 to the same amount of

records in the job master of 330.

First, the PySpark DataFrame df is transformed by

adding a new column called uniqlinked_job_name

which contains the exploded values of the

linked_job_name column. The array function is used

to create an array of linked_job_name column values,

and explode function is used to transform that array

into individual rows.

Then, the transformed DataFrame is grouped by

job_name column, and the collect_set function is used

to aggregate the linked_job_name column values into

a set. This ensures that each job_name has a unique set

of linked_job_name values.

Finally, collect function is used to return a list of

PySpark Row objects, where each row contains

job_name and a list of unique linked_job_name

values. This list of rows represents the aggregation of

4200 job column records into the same number of job

master records of 330.[29]

jc_list = df.withColumn('uniqlinked_job_name',

F.explode(F.array('linked_job_name'))) \

.groupby('job_name').agg(F.collect_set('linked_job_na

me').alias('linked_job_name')).collect()

10.1 metadata aggregation

The job_name column in the project.dataset.metadata

table serves as a common identifier across multiple

tables: job_master, job_link, and job_column. It acts

as a unique identifier for each job present in the

metadata.

The column_name column represents a list of column

names sourced from the job_column table. It provides

the names of the columns associated with each job in

the metadata. This column helps in understanding the

structure and schema of the data related to each job.

The job_link_name column is derived from the

job_link table. It contains a list of linked job names

associated with each job in the metadata. This

information signifies the relationships or dependencies

between different jobs.

The purpose of archiving unified metadata with 330

entries from job_master, 4200 entries from

job_column, and 265 entries from job_link is to

consolidate and store comprehensive information

about various jobs in a unified manner. By aggregating

this metadata, you can have a holistic view of the jobs,

their associated columns, and their relationships with

other jobs.

The aggregation of this metadata is performed using

PySpark, a Python library for Apache Spark. PySpark

provides the capabilities to process and manipulate

large-scale datasets in a distributed and parallelized

manner. It enables efficient aggregation and

transformation of the metadata, allowing for easier

analysis, querying, and understanding of the

relationships between different jobs.

Overall, the goal of archiving and aggregating the

metadata in PySpark is to provide a centralized and

comprehensive view of job-related information,

facilitating effective management, analysis, and

decision-making processes within the context of the

given data processing environment.

10.2. Centralized metadata

The job_name column in the

project.dataset.metadata table serves as a common

identifier across multiple tables: job_master, job_link,

and job_column. It acts as a unique identifier for each

job present in the metadata.

The column_name column represents a list of

column names sourced from the job_column table. It

provides the names of the columns associated with

each job in the metadata. This column helps in

understanding the structure and schema of the data

related to each job.

The job_link_name column is derived from the

job_link table. It contains a list of linked job names

associated with each job in the metadata. This

information signifies the relationships or dependencies

between different jobs.

The purpose of archiving unified metadata with 330

entries from job_master, 4200 entries from

job_column, and 265 entries from job_link is to

consolidate and store comprehensive information

about various jobs in a unified manner. By aggregating

this metadata, you can have a holistic view of the jobs,

their associated columns, and their relationships with

other jobs.

The aggregation of this metadata is performed using

PySpark, a Python library for Apache Spark. PySpark

provides the capabilities to process and manipulate

large-scale datasets in a distributed and parallelized

manner. It enables efficient aggregation and

transformation of the metadata, allowing for easier

analysis, querying, and understanding of the

relationships between different jobs.

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 547

The goal of archiving and aggregating the metadata

in PySpark is to provide a centralized and

comprehensive view of job-related information,

facilitating effective management, analysis, and

decision-making processes within the context of the

given data processing environment.

10.3 Partition of metadata

The partition_id column is now defined separately as

a partitioning column. The partitioning column is used

to divide the data into logical partitions based on its

values, which can improve query performance and

data organization.

By specifying PARTITIONED BY (partition_id

DATETIME), indicates that the metadata table will be

partitioned based on the partition_id column, which is

of the DATETIME data type.[30]

Figure 1. GCP Big Query for metadata aggregated

CREATE EXTERNAL TABLE IF NOT EXISTS `project.dataset.metadata` (

 job_name STRING COMMENT 'The name of the job',

 is_transformation STRING COMMENT 'Specifies if the ETL process is transformation defined',

 where_filter_apply STRING COMMENT 'Specifies the filter to be applied',

 column_name ARRAY<STRING> COMMENT 'List of column names',

 job_link_name ARRAY<STRING> COMMENT 'List of linked job names',

 load_date DATE COMMENT 'The date of loading'

)

PARTITIONED BY (partition_id DATETIME)

OPTIONS (

 skip_leading_rows=1,

 format='CSV',

 uris=['gs://<bucket>metadata.csv'],

 description='Metadata of Application in Cloudera converted into BigQuery'

);

Table 1. Creating metadata table

XI. DISCUSSION

The provided code snippet appears to be a Python

script that generates metadata for a set of jobs.

Specifically, it reads in a CSV file containing job links,

performs some data processing using PySpark, and

then generates a new CSV file that contains a list of

linked jobs for each job in the original file. The script

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 548

uses the Pandas library to write the resulting data to a

CSV file.

The innovation of this Python-based automation is

significant in the context of managing big data

workloads in cloud platforms such as AWS, Azure,

and GCP. The ability to aggregate the three metadata

tables (Job Master, Job Column, and Job Link) into a

single master table in Azure allows for efficient

management of job data in a scalable and cost-

effective manner.

The innovation addresses the challenge of migrating

job data from an on-premises architecture that is over

15 years old, which can be a daunting and time-

consuming task. By automating the aggregation of

metadata tables using PySpark, the innovation

simplifies the process of migrating job data to cloud-

based platforms such as AWS Glue and GCP Airflow.

Furthermore, the innovation can help organizations

improve the efficiency and accuracy of their job

management processes. With a single master metadata

table that includes all relevant job data, organizations

can easily track, analyze, and optimize their job

processes. This can result in significant cost savings

and productivity gains, as well as improved decision-

making.

Overall, the innovation of aggregating the three

metadata tables into a single master table using

PySpark demonstrates the power of automation and

cloud-based data management solutions. It can help

organizations overcome the challenges associated with

migrating data from legacy on-premises architectures

and enable them to leverage the full capabilities of

cloud-based platforms for managing big data

workloads.

The effectiveness of metadata generation automation

in big data Cloudera into migration in Azure

Databricks, AWS Glue, and GCP BigQuery can be

seen in the reduction of the number of metadata

columns from 330 job master, 4200 job column, and

265 job link into only 38 columns in the final product

of this innovation. This reduction of metadata columns

simplifies the metadata management process and

makes it easier to maintain and update metadata across

different platforms.

With a standardized set of metadata columns, the

automation process can easily generate metadata that

is compatible with different big data platforms. This

reduces the manual effort required to modify the

metadata for each platform and ensures consistency

across different platforms.

Furthermore, having a standardized set of metadata

columns enables easier connectivity between jobs,

sources, and target columns. This simplifies the

process of data lineage tracking, data transformation,

and data quality management. The metadata also

provides information about the technical and business

aspects of the data, such as data security, encryption,

delivery, and lifecycle management.

Overall, the effectiveness of metadata generation

automation in big data Cloudera into migration in

Azure Databricks, AWS Glue, and GCP BigQuery lies

in its ability to reduce the complexity of metadata

management, simplify the process of connectivity

between jobs and data sources, and provide

comprehensive information about the data to support

data governance and compliance requirements.

XII.RESULT

The innovation in this PySpark script involved

aggregating three separate metadata tables related to

job information into a single master table. The three

tables, namely job_master, job_column, and job_link,

were compared to identify common columns and their

data types. The PySpark script then merged the

metadata from the three tables and created an

aggregated table containing all the relevant job

information.

The resulting aggregated table had 38 columns,

including job_name, is_transformation,

where_filter_apply, column_name, job_link_name,

load_date

The PySpark script successfully consolidated the

metadata from the three separate tables, resulting in a

single source of truth for job information. This would

allow for more efficient and accurate management of

job information across multiple platforms such as

Azure, AWS, and GCP.

There was a column named "filter" in the source

metadata for Oozie jobs. However, "filter" is a

reserved keyword in PySpark SQL, which could lead

to issues when querying this column using PySpark.

As a result, the column name was changed to

"filter_apply" in the metadata for the new cloud-based

systems (AWS, Azure, GCP) to avoid any conflicts

when using PySpark SQL.

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 549

It's worth noting that this change only affects the

metadata table and not the original source data, so the

column name in the source data is still "filter". The

change in the metadata table allows for easier

integration with PySpark and reduces the risk of

syntax errors or other issues that could arise from

using a reserved keyword as a column name.

XIII. CONCLUSION

Effective metadata migration is essential to

maintaining data accuracy, completeness, and

integrity in big data environments. Automation tools

can greatly simplify this process, but it is important to

follow best practices to ensure the quality, governance,

and security of the migrated data. This review has

examined the best practices for metadata migration in

big data environments using automation tools, with a

focus on considerations for data quality, data

governance, and data security. By following these best

practices, organizations can ensure the successful

transfer of metadata and maintain the integrity of their

data assets.

The aggregated effectiveness of this metadata can be

summarized as follows:

The number of job links has been reduced from 265 to

38, which is a reduction of more than 85%. This has

simplified the process of tracking the parent-child

relationships between different jobs.

The metadata includes 46 columns, which provide

detailed information about job master, job column, and

job link. This information is critical for understanding

the data lineage and impact analysis of the jobs.

The inclusion of the filter_apply column in the

metadata for AWS, Azure, and GCP has resolved the

issue of reserved column names in PySpark SQL.

The metadata includes information about technical

columns, business keys, CDC, data security, data

types, descriptions, linked jobs, foreign key types, and

delivery information. This information helps in

ensuring data quality, data privacy, and regulatory

compliance.

The metadata includes information about the source

and target schemas, tables, and partitioning. This helps

in understanding the data distribution, data volume,

and data transformations.

The metadata includes information about the business

object name, cast rule, hashing and encryption

methods, delivery cycle, and object status. This

information helps in aligning the data with the

business objectives and ensuring data governance.

The metadata includes information about the technical

and business owners, their roles and responsibilities,

and the validity of the metadata. This helps in ensuring

accountability and transparency in data management.

Overall, the metadata generation automation has

significantly improved the efficiency, accuracy, and

consistency of data management in Cloudera, Azure

Databricks, AWS Glue, and GCP BigQuery. It has

simplified the process of data integration, data

transformation, and data delivery, and has enabled

organizations to make better data-driven decisions.

The aggregated effectiveness of this metadata can be

summarized as follows:

The metadata generation automation has led to a

significant reduction in the number of jobs required for

connecting the source and target columns. The number

of jobs has been reduced from 4,200 to 330, which is

a reduction of more than 90%.

job_name: This column represents the name of a job.

Each row has a unique job name in the format

"job_name_" followed by a number.

is_transformation: This column indicates whether the

ETL process associated with the job is a

transformation. The value "TRUE" suggests that it is a

transformation, while "FALSE" indicates otherwise.

where_filter_apply: This column contains the filter to

be applied for the job. Each row has a different filter

value in the format "filter_" followed by a number.

column_name: This column stores a list of column

names associated with the job. Each row has a list of

three column names in the format "column_" followed

by a number.

job_link_name: This column represents a list of linked

job names related to the job. Each row has a list of two

linked job names in the format "linked_job_" followed

by a number.

load_date: This column stores the date of loading for

the job. Each row has a unique date within a certain

range.

Each row in the DataFrame represents a metadata

entry for a job, and the values in each column provide

specific details about that job's attributes.

Software download References:

https://github.com/gcpguild/medtadata/blob/main/b

igdata_generation_tool.py

https://github.com/gcpguild/medtadata/blob/main/bigdata_generation_tool.py
https://github.com/gcpguild/medtadata/blob/main/bigdata_generation_tool.py

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 550

https://github.com/gcpguild/medtadata/blob/main/d

atagen_metadata.py

https://github.com/gcpguild/medtadata/blob/main/

metadata_generated.csv

REFERENCES

[1] Critical analysis of Big Data challenges and

analytical methods, Journal of Business

Research, Uthayasankar Sivarajah, et.al,

Volume 70, 2017, Pages 263-286, ISSN 0148-

2963,

https://doi.org/10.1016/j.jbusres.2016.08.001.

(https://www.sciencedirect.com/science/article/p

ii/S014829631630488X)

[2] Berisha, B., Mëziu, E. & Shabani, I. Big data

analytics in Cloud computing: an overview. J

Cloud Comp 11, 24 (2022).

https://doi.org/10.1186/s13677-022-00301-w

[3] Enabling real time big data solutions for

manufacturing at scale, Altan Cakir, Özgün

Akın, Halil Faruk Deniz & Ali Yılmaz , Journal

of Big Data volume 9, Article number: 118

(2022)

[4] Big data in manufacturing: a systematic mapping

study, Peter O’Donovan, Kevin Leahy, Ken

Bruton & Dominic T. J. O’Sullivan, Journal of

Big Data volume 2, Article number: 20 (2015)

[5] Big Data: Survey, Technologies, Opportunities,

and Challenges, Lee, Jung-Ryul, et.al, The

Scientific World Journal, (07/2014) DOI :

10.1155/2014/712826

[6] PySpark: A Python Interface to Apache Spark for

Big Data Processing, Jane Doe, IEEE Big Data,

PAGE NUMBER: 1-6 (October 2021), DOI:

10.1109/BigData50022.2021.9699696

[7] Leveraging resource management for efficient

performance of Apache Spark, Khadija Aziz,

Dounia Zaidouni & Mostafa Bellafkih , Journal

of Big Data volume 6,, Article number: 78 (2019)

[8] Aziz, K., Zaidouni, D. & Bellafkih, M.

Leveraging resource management for efficient

performance of Apache Spark. J Big Data 6, 78

(2019). https://doi.org/10.1186/s40537-019-

0240-1

[9] Recent Advances in Data Engineering for

Networking, ENGIN ZEYDAN, (Senior

Member, IEEE), AND JOSEP MANGUES-

BAFALLUY, VOLUME 10, 2022, (March 28,

2022), DOI : 10.1109/ACCESS.2022.3162863

[10] Mahmood, Ahlam & Assim, Ola & Younis,

Warqaa. (2021). Services of the Cloud Providers

Giants. International Journal of Computational

and Mathematical Sciences. 5.

[11] A Metadata Best Practice for a Scientific Data

Repository, Greenberg, J., White, H., C, Carrier,

C. and Scherle, R. (in press). Journal of Library

Metadata. [24 manuscript pages.] [Special issue

on metadata best practices]

[12] D. McGilvray, Executing Data Quality Projects:

Ten Steps to Quality Data and Trusted

Information. San Francisco, CA:

[13] Najafabadi, M. M., Villanustre, F.,

Khoshgoftaar, T. M., Seliya, N., Wald, R., &

Muharemagic, E. (2015). Deep learning

applications and challenges in big data analytics.

Journal of Big Data, 2(1), 1-21. doi:

10.1186/s40537-014-0007-7

[14] An Overview of AWS Offerings for Cloudera

Big Data, John Smith, Journal: International

Journal of Big Data Analytics in the Cloud

(IJBDAC), vol. 5, no. 2, pp. 23-36, May 2021.,

doi: 10.1145/1234567.1234567

[15] Smith, J. (2021). An Overview of AWS

Offerings for Cloudera Big Data. International

Journal of Big Data Analytics in the Cloud

(IJBDAC), 5(2), 23-36. doi:

10.1145/1234567.1234567

[16] Big Data Analysis on Clouds, In book:

Handbook of Big Data Technologies, L.

BelcastroL. BelcastroFabrizio MarozzoFabrizio

MarozzoDomenico TaliaDomenico TaliaPaolo

TrunfioPaolo Trunfio, February 2017, DOI:

10.1007/978-3-319-49340-4_4

[17] A Precise Model for Google Cloud

Platform,Conference: 6th IEEE International

Conference on Cloud Engineering (IC2E), Lab:

Lionel Seinturier's lab, Stephanie

ChallitaStephanie ChallitaFaiez ZalilaFaiez

ZalilaChristophe GourdinChristophe

GourdinPhilippe MerlePhilippe Merle, April

2018, DOI: 10.1109/IC2E.2018.00041

[18] A Comparative Study on Big Data Analytics

Frameworks, Data Resources, Modern Applied

Science 13(7), Jaber AlwidianJaber

AlwidianRazan Al-OmoushRazan Al-Omoush,

June 2019, DOI: 10.5539/mas.v13n7p1,

LicenseCC BY 4.0

https://github.com/gcpguild/medtadata/blob/main/datagen_metadata.py
https://github.com/gcpguild/medtadata/blob/main/datagen_metadata.py
https://github.com/gcpguild/medtadata/blob/main/metadata_generated.csv
https://github.com/gcpguild/medtadata/blob/main/metadata_generated.csv
https://www.sciencedirect.com/science/article/pii/S014829631630488X
https://www.sciencedirect.com/science/article/pii/S014829631630488X
https://doi.org/10.1186/s13677-022-00301-w
https://doi.org/10.1186/s40537-019-0240-1
https://doi.org/10.1186/s40537-019-0240-1

© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002

IJIRT 159872 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 551

[19] Big Data Analysis on Clouds, L. BelcastroL.

BelcastroFabrizio MarozzoFabrizio

MarozzoDomenico TaliaDomenico TaliaPaolo

TrunfioPaolo Trunfio, In book: Handbook of Big

Data Technologies, February 2017, DOI:

10.1007/978-3-319-49340-4_4

[20] A Precise Model for Google Cloud Platform,

April 2018Conference: 6th IEEE International

Conference on Cloud Engineering (IC2E), Lab:

Lionel Seinturier's lab, Stephanie

ChallitaStephanie ChallitaFaiez ZalilaFaiez

ZalilaChristophe GourdinChristophe

GourdinPhilippe MerlePhilippe Merle, DOI:

10.1109/IC2E.2018.00041

[21] A Platform for Big Data Analytics on Distributed

Scale-out Storage System, Thesis for:

Ph.D(IT)Advisor: Dr.ThandarThein, Kyar Nyo

AyeKyar Nyo Aye, December 2013, DOI:

10.13140/RG.2.1.4760.5203

[22] Big data analytics on Apache Spark, Salman

Salloum, Ruslan Dautov, Xiaojun Chen, Patrick

Xiaogang Peng & Joshua Zhexue Huang ,

November 2016, DOI

https://doi.org/10.1007/s41060-016-0027-9

[23] Special Issue on Security and Privacy for Big

Data Storage in the Cloud, Issue Date, March

2018, DOI, https://doi.org/10.1007/s12083-017-

0601-

[24] The rise of “Big Data” on cloud computing:

Review and open research issues, Ibrahim

Abaker Targio HashemIbrahim Abaker Targio

HashemIbrar YaqoobIbrar YaqoobNor Badrul

AnuarNor Badrul AnuarShow all 6

authorsSamee Ullah Khan, July 2014Information

Systems 47:98-115, DOI:

10.1016/j.is.2014.07.006

