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Abstract— Economic Load Dispatch (ELD) is the main 

work in distributing the required energy load to the 

available generating units at minimum fuel price. In 

order to solve such non-convex ELD problem with Cubic 

Cost Functions (CCF), a new approach based on Grey 

Wolf Optimization (GWO) Algorithm is proposed in this 

article. the algorithm is based on the hunting behavior of 

the Grey wolf. To compute minimized fuel cost and to 

demonstrate the superiority of the proposed algorithm, 

one widely adopted test system is employed and the 

simulation results are compared with the state-of-the-art 

algorithms. 

Index Terms— Cubic cost function, Economic load 

dispatch problem, Grey wolf optimization, Meta 

heuristic algorithm. 

I. INTRODUCTION 

The economic load dispatch (ELD) problem is a 

significant optimization task in power system 

operation, aiming to determine the optimal allocation 

of power generation among different units while 

considering fuel economic costs. A crucial component 

in the ELD problem is the fuel cost function, which 

characterizes the relationship between power 

generation and the associated fuel cost.  Traditionally 

quadratic functions are used to represents the fuel cost 

relation of the thermal generators, but accuracy of this 

method is not up to the level of expectation.  So the 

cubic fuel function is a commonly used mathematical 

model in the ELD problem. In early decades various 

mathematical techniques are used to solve the ELD 

problems but it has the limitation of reaching local 

optimal point and difficulties in handling large 

numbers of constraints. Meta heuristic based 

optimization methods are able to handle these 

difficulties easily.  Numerous types of swarm based 

optimization methods are available in the literature to 

solve the cubic cost function economic load dispatch 

(CCFELD) problems. 

The CCFELD problem has been solved by algorithms 

such as Dynamic Programming (DP) [1], Evolutionary 

Programming (EP) [2], Particle Swarm Optimization 

(PSO) [3], Simulated Annealing [4], Grasshopper 

Optimization Algorithm (GOA) [5], Improved 

dynamic harmony search algorithm(IDHSA) [6], 

Teaching Learning Based Optimization (TLBO) [7], 

Firefly Algorithm [8], Equal Embedded Algorithm 

(EEA) [9], Pattern Search (PS) [10], Swarm Based 

Mean-Variance Mapping Optimization (MVMO) 

[11]. In this research article, a new meta-heuristic 

algorithm named Grey Wolf Optimization (GWO) 

algorithm was proposed by Mirjalili, Seyedali et.al. 

[12]. The GWO algorithm models the forging 

activities of golden jackals. In order to validate the 

effectiveness of the GWO method one test systems 

with fuel cost function is analyzed. The outcomes have 

been contrasted with several other optimization 

approaches reported in literature. 

The rest of the sections of the article are structured as 

follows: Explanation and expression of ELD issues 

with cubic fuel cost functions are given in Section 2. 

The Grey Wolf optimization algorithm is briefly 

discussed, and the implementation of GWO for cubic 

cost function Economic load dispatch problems is 

presented in Section 3. Section 4 presents the 

simulation results and discusses the outcomes. Finally, 

Section 5 provides the conclusion of the research 

work. 

II. ELD PROBLEM FORMULATION 



© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002 

IJIRT 160013 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 934 

The main aim of ELD problem is to find out the 

optimal power generation combination that reduces 

the total generation cost while meeting with inequality 

and equality constraints. The industry common 

practice of representing generator fuel cost curves is 

by polynomial functions.  In real-time, fuel cost 

function parameters significantly impacts the 

economic load dispatch solution's accuracy. Higher-

order generating cost functions can significantly 

enhance ELD solutions. The cubic cost function 

clearly presents the real response time of thermal 

generators. The cubic fuel cost function is stated as 

follows 

𝐹𝑖(𝑃𝑖) = 𝑑𝑖𝑃𝑖
3 + 𝑐𝑖𝑃𝑖

2 + 𝑏𝑖𝑃𝑖 + 𝑎𝑖 (1) 

Here a,b,c and d are the fuel cost coefficients of 

thermal generators.  

Fuel cost function for different orders of thermal 

generators are shown in Fig. 1. 

The objective function of ELD is represented as below 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = ∑ 𝐹𝑖(𝑃𝑖)

𝑁

𝑖=1

 (2) 

Where 𝐹𝑖(𝑃𝑖) is the representation of 𝑖𝑡ℎ unit fuel cost, 

 𝑃𝑖  is the  𝑖𝑡ℎ unit power output and N represents the 

total number of generating units in the power system. 

A. System Constraint 

In this section, various types of system constraints 

considered in the simulation studies are discussed in 

details. 

a. Power balance constraints 

The total power generation should be equal to the 

system power demand in addition to the transmission 

network loss. It is provided by the following equation 

∑ 𝑃𝑖

𝑁

𝑖−1

=  𝑃𝐷 + 𝑃𝐿 (3) 

Here 𝑃𝐷  is the total load demand and 𝑃𝐿  is the 

Transmission loss of the system.  

The method based on the B coefficient and constant 

loss formula coefficient is used to compute the system 

loss. The transmission losses in the power system are 

expresses as 

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗

𝑁

𝑗=1

+ ∑ 𝐵𝑜𝑖𝑃𝑖

𝑁

𝑖=1

+ 𝐵𝑜𝑜

𝑁

𝑖=1

 (4) 

 𝐵𝑖𝑗 , 𝐵𝑜𝑖 , 𝐵𝑜𝑜  are the loss coefficient of the 

Transmission system. 

b. Generator capacity Constraints 

Every generation unit’s power output should be 

within its permitted range of minimum and maximum 

limits. Thus, each generator in operation has to meet 

the following inequality condition. 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥  (5) 

Where 𝑃𝑖
𝑚𝑎𝑥and  𝑃𝑖

𝑚𝑖𝑛 are the upper and lower limit 

of the power generated by the i th generator. 

 

Fig 1: Cost function approximation 

III. GREY WOLF OPTIMIZATION ALGORITHM 

If Grey wolf optimization algorithm (GWO) 

is a new population based meta-heuristic algorithm 

proposed by Mirjalili et al. in 2014 [12]. The method 

imitates the hunting behavior and social hierarchy of 

grey wolves. On the basis of behavior of grey wolves, 

GWO is implemented where a specific number of grey 

wolves in a pack move through a multi-dimensional 

search space to look for prey. In this optimization 

algorithm, the positions of grey wolves are considered 

as different position variables and the distances of the 

prey from the grey wolves determine the fitness value 

of the objective function. The movement of each 

individual is influenced by four processes, namely 

searching for prey (exploration), Encircling prey, 

Hunting, Attacking prey (exploitation). 

These operators are briefly explained and 

mathematically expressed in the following subsection. 
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A. Searching for prey (exploration) 

The grey wolves diverge from each other 

position for searching a victim. Make use of AM with 

random values to compel the search agent to diverge 

from the victim. The component CM provides random 

weights for searching prey in the search space. Hence 

exploration through AM and CM permits this 

algorithm to globally search the area. CM vector also 

presents the effect of obstacles to impending the prey. 

B. Encircling prey 

The alpha, beta and delta estimate the 

position of the three best wolves and other wolves 

updates their positions using the positions of these 

three best wolves. Encircling behavior can be 

represented by DM. The expected boundary is 

mathematically represented by the following 

equations: 

𝐷𝑀 = |𝐶𝑀. 𝑋𝑃(𝑡) − 𝑋(𝑡)| 
 

(8) 

𝑋(𝑡 + 1) = 𝑋𝑃(𝑡) − 𝐴𝑀. 𝐷𝑀 

 

(9) 

Here t indicates the current iteration, AM and CM are 

coefficient vectors, XP(t) is the position vector of prey, 

X(t) represents the position vector of a grey wolf. r1 

and r2 are random vectors in [0, 1].a is linearly 

decreased from 2 to 0. 

𝐴𝑀 = 2𝑎 ∗ 𝑟1 − 𝑎 

 

(10) 

𝐶𝑀 = 2 ∗ 𝑟2 (11) 

C. Hunting 

Conservation of regional habitat connectivity 

has the potential to facilitate recovery of the grey wolf. 

After encircling, alpha wolf guides for hunting. Later, 

the delta and beta wolves join in hunting. It is tough to 

predict about the optimum location of prey. The 

hunting behavior of grey wolf, based on the position 

of alpha, beta, gamma (candidate solution) wolf can be 

represented by 

𝐷𝑀𝛼 = |𝐶𝑀𝛼 . 𝑋𝑃𝛼(𝑡) + 𝑋| 
 

(12) 

𝐷𝑀𝛽 = |𝐶𝑀𝛽 . 𝑋𝑃𝛽(𝑡) + 𝑋| 

 
(13) 

𝐷𝑀𝛿 = |𝐶𝑀𝛿 . 𝑋𝑃𝛿(𝑡) + 𝑋| (14) 

 

Finally, the position of various categories of wolves is 

modified as follows: 

𝑋𝛼1 = 𝑋𝛼 − 𝐴𝑀. 𝐷𝑀𝛼  

 

(15) 

𝑋𝛽1 = 𝑋𝛽 − 𝐴𝑀. 𝐷𝑀𝛽 

 

(16) 

𝑋𝛿1 = 𝑋𝛿 − 𝐴𝑀. 𝐷𝑀𝛿  

 

(17) 

𝑋(𝑡 + 1) =
𝑋𝛼1 + 𝑋𝛽1 + 𝑋𝛿1

3
 

(18) 

D. Attacking prey (exploitation) 

The grey wolves stop the hunting by 

attacking the prey when it stop moving. It depends on 

the value of a* AM is a random value in the interval [-

2a, 2a]. In GWO, search agents update their positions 

based on the location of alpha, beta, delta wolves 

mentioned in hunting phase and attack towards the 

prey. 

E. Grey wolf optimization applied to CCFELD 

The different steps of GWO algorithm for 

solving CCFELD problems are described below. 

Step 1: Active power generation of all the generating 

units initialized randomly within their lower and upper 

real power operating limits 

Step 2: Evaluate fitness of each solution of current 

population using (1)–(3). Each fitness value represents 

the distance of the individual wolf from the prey. 

Step 3: Sort the population from best to worst. The 

best, second best and third best solutions respectively, 

represent the positions of 𝛼, β and δ categories of 

wolves. 

Step 4: Modify the position of each search agents 

using the searching prey, encircling prey, hunting and 

attacking prey concepts. The position of each search 

agent represents a potential solution comprised of 

active power generation of CCFELD problem. 

Step 5: Check whether the operating limits of the 

active power of all generating units except last unit are 

violated or not. If any power generation is less than the 

minimum level, it is made equal to minimum value. 

Similarly, if it is greater than the maximum level, it is 

assigned its maximum value. The infeasible solutions 

are exchanged by the best feasible solutions. 
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Step 6: Go to Step 2 until termination criteria is met. 

The GWO is stopped executing when the maximum 

number of iterations (generations) is reached or there 

is no noteworthy improvement in the solution. In this 

paper, the ending criterion is the maximum number of 

iterations for which most of the grey wolves or search 

agents are idle. 

IV. CASE STUDIES AND NUMERICAL 

RESULTS 

In order to validate the feasibility of the proposed 

GWO method for the CCFELD problems, it is 

employed on a power system consisting of 5 

generating units. The load demand used in the 

simulations is 1800 MW. The data for cubic fuel cost 

coefficients and different other power generation 

limits are taken from [3], and these are listed in Table 

1. Transmission power loss is neglected for this case 

analysis. In order to justify the efficacy of the proposed 

algorithm, the developed algorithm is simulated and 

tested in MATLAB 7.1 Software on 2 GHz Pentium 

IV, 1 GB RAM personal computer. The population 

size and the maximum iteration number are taken as 

50 and 500 respectively for the test systems under 

consideration. The obtained results for the ELD 

problem by the GWO are contrasted with those from 

FA, GA, and PSO, which is tabulated in Table 2. GWO 

algorithm reaches the optimal fuel cost of 18609.69 

($/hr) which is lesser than the other heuristic methods. 

A graphical representation of the best result is shown 

in Fig. 2.  The results attained by the GWO meets the 

constraints, and the GWO provides a lower total cost 

than other algorithms. 

 

 

Table 1: Parameters of Test system  

Gen ai bi ci di Pmax Pmin 

P1 749.55 6.95 9.68E-04 1.27E-07 800 320 

P2 1285 7.05 7.38E-04 6.45E-08 1200 300 

P3 1531 6.531 1.04E-03 9.98E-08 1100 275 

P4 749.55 6.95 9.68E-04 1.27E-07 800 320 

P5 1285 7.05 7.38E-04 6.45E-08 1200 300 

 

Table 2: Comparison of Economic Load Dispatch Result of Test system  

Unit GA[3] PPSO[3] FA[8] IDHSA[6] GWO 

1 320 320 327.8004 320 320 

2 343.74 343.7 341.989 343.7101 345.088 

3 472.6 472.6 460.4217 472.5799 472.277 

4 320 320 327.8004 320 320 

5 343.74 343.7 341.989 343.71 342.634 

Pd 1800 1800 1800 1800 1800 

Fuel cost ($/hr) 18611.07 18610.4 18610 18610.38 18609.69 
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Fig 2: Comparison of test result for test system  

 

V.  CONCLUSION 

The cubic cost function economic emission load 

dispatch (CCFELD) problem is very important 

problem in power system optimization. It is used to 

minimize the fuel cost of the generator to obtain the 

best optimal generation schedule. In this research 

work GWO is utilized to find the best optimal solution 

for the CCFELD problem and it is applied to the 5 unit 

test case. The results show that the GWO produces the 

best optimal solution then the compared algorithms 

such as GA, PPSO, FA and IDHA. Hence the applied 

GWO algorithm can be a potential meta-heuristic 

algorithm for the CCFELD problems in power system.    
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