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Abstract—Quadcopters, also known as drone, are popular with 

unmanned aerial vehicles (UAVs). They are widely used in many 

applications due to their small size and high security. In this 

article, RC quadcopter is designed and built using PID 

(Proportional Integral Derivative) controller and simulated using 

Godot Engine. The simulation in Godot allows for real- time 

visualization of the quadcopter’s behavior, providing an 

interactive platform for testing and analyzing different control 

strategies. The paper involves creating the quadcopter model, 

implementing the PID controller algorithm, and integrating 

sensor feedback and actuator dynamics into the simulation. The 

simulation environment enables the exploration of various flight 

scenarios, including response to external disturbances and 

changes in environmental conditions. The pitch, roll, yaw and 

position response of the quadcopter is obtained and a PID 

controller is used to stabilize the system response. The operation 

and performance of the quadcopter and combat algorithms were 

tested in the simulator and the desired results were obtained. 

 

I. INTRODUCTION 

In recent years, modeling and simulation of quadcopters based 

on PID controllers has become very popular due to its many 

applications in many fields such as aerial photography, surveil- 

lance, search and rescue and package delivery. A quadcopter, 

also known as a quadrotor, is an unmanned aerial vehicle 

(UAV) characterized by its four propellers that generate lift and 

control its movement. 

This presentation is designed to demonstrate the basics of 

modeling and simulation of a quadcopter using a PID con- 

troller. It highlights the importance of understanding 

quadcopter dynamics, developing control algorithms, and using 

environmental simulation to analyze and optimize its 

performance. More research on 

Quadcopters can be found in many documents in this field. 

Design and develop a quadcopter model using a PID controller. 

The IMU is used to determine the system orientation. In this 

study, the mathematics of the quadcopter is done by using 

the MATLAB Simulink model, which uses a PID controller 

to stabilize the operation of the quadcopter. Quadrotor field 

slope, roll and yaw slope are taken from MATLAB Simulink. 

In our paper, there will be sensors that provide feedback to the 

required PID controller in the theoretical drone model. Then 

our flight algorithm is used by the PID controller, and the drone 

can fly under the control of the user. In general, like drone 

racing, users need to be fluent, snappy, fast, etc. needs such 

controls. These can be achieved with the PID setting. 

 
II. OBJECTIVE 

The objective of this paper is to develop a comprehensive 

modeling and simulation framework for a quadcopter using a 

PID (Proportional-Integral-Derivative) controller. The aim is to 

achieve a deep understanding of quadcopter dynamics, design 

an effective control algorithm, and simulate its behavior in a 

virtual environment. 

1) Mathematical Modeling: The first objective is to de- 

velop an accurate mathematical model that describes the 

physical dynamics of the quadcopter. This involves 

formulating the equations of motion, considering factors 

such as thrust, drag, weight, and torques. The model 

should capture the quadcopter’s translational and ro- 

tational motion, as well as its interactions with the 

environment. 

2) PID Controller Design: The second objective is to design 

a PID controller that can stabilize the quadcopter and 

enable precise control of its position, orientation, and 

velocity. This involves determining suitable gains for the 

proportional, integral, and derivative components of the 

controller. The goal is to develop a control algorithm that 

can effectively counteract disturbances and track desired 

setpoints accurately. 

3) Simulation Implementation: The next objective is to 

implement the quadcopter model and PID controller 
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in a simulation framework. This involves developing 

simulation software tools using GODOT Engine and 

GDscript, to create a virtual environment where the 

quadcopter’s behavior can be simulated and analyzed. 

The simulation should replicate real-world dynamics, 

including sensor feedback, actuator responses, and 

environmental influences. 

4) Performance Evaluation: The fourth objective is to 

evaluate the performance of the quadcopter and the 

PID controller through simulation experiments. This 

includes assessing stability, responsiveness, tracking 

accuracy, and robustness to disturbances. By analyzing 

the simulation results, we can gain insights into the 

strengths and limitations of the PID controller design, 

identify areas for improvement, and refine the control 

strategy. 

5) Optimization and Iteration: The final objective is to 

optimize the PID controller parameters and iterate on 

the model and simulation framework based on the 

evaluation results. By fine-tuning the gains, adjusting 

control strategies, and refining the model, we aim to 

achieve optimal quadcopter performance and control 

accuracy. 

Through the successful completion of these objectives, this 

paper aims to advance the understanding and capabilities of 

quadcopter modeling and control using PID controllers. The 

outcomes will contribute to the development of more efficient 

and reliable quadcopter systems, enabling their application in 

various fields such as aerial surveillance, mapping, inspection, 

and autonomous operations. 

 
III. LITERATURE REVIEW 

Quadcopter 

The flight of a drone is achieved through the rotation of four 

vertical-axis propellers (rotors) positioned at the corners of 

a square configuration. According to Newton’s second law, 

when the drone hovers at a constant altitude, the upward thrust 

generated by the rotors balances the downward grav- itational 

force acting on the drone’s airframe. By adjusting the total 

power of the rotors, the drone can accelerate or decelerate 

vertically, causing a change in its upward thrust and 

consequently altering its altitude [4]. When the thrust force 

exceeds the force of gravity, the drone experiences an initial 

acceleration. However, during this acceleration, the potential 

energy of the drone increases, requiring the motors to perform 

work in supplying the additional energy. Consequently, the rate 

of ascent is constrained by the ability of the motors to deliver 

this energy effectively, which limits the drone’s rate of climb. 

 

 

 

In this quadcopter configuration, the rotors are divided into two 

sets: red rotors rotating counterclockwise and green rotors 

rotating clockwise. By having these two sets of rotors rotating 

in opposite directions, the total angular momentum of the 

quadcopter remains zero. Angular momentum, similar to linear 

momentum, is calculated by multiplying the angular velocity 

by the moment of inertia. The moment of inertia is a property 

that relates to rotation and is akin to mass in linear motion. 

Although it can be complex, for our purposes, understanding 

that angular momentum depends on rotor speed is sufficient [7]. 

Every movement of the quadcopter is achieved by adjust- ing 

the spin rate of one or more rotors. This adjustment is made 

possible by a controller that can increase or decrease the 

voltage supplied to each motor. Alternatively, with the 

assistance of a computer control system, the pilot can simply 

manipulate a joystick, allowing the computer to handle the rotor 

adjustments. The quadcopter’s onboard accelerometer and 

gyroscope contribute to flight ease and stability by making 

precise power adjustments to each rotor. These adjustments en- 

sure the quadcopter responds to subtle changes and movements 

as required [7]. 

Roll: In terms of lateral movement, the quadcopter can shift left 

or right relative to its front. This movement is commonly 

referred to as rolling. To roll the quadcopter to the left, the lift 

generated by the motors on the right side is increased, while 

simultaneously reducing the lift on the motors located on the 

left side. Conversely, to roll the quadcopter to the right, the 

opposite action is taken. The lift is increased on the motors 

on the left side while decreasing the lift on the motors on the 

right side. These differential adjustments in lift between the left 

and right sides enable the quadcopter to roll and move laterally 

as desired. 

Pitch: To achieve forward or backward movement, the quad- 

copter can pitch either towards or away from the observer. 

When the drone pitches forward (moves towards the observer), 
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the power supplied to the rear motors is increased. This creates 

a net forward force that causes the nose of the drone to pitch 

downward. To maintain the conservation of angular 

momentum, the power applied to the two front motors is 

simultaneously decreased. This differential adjustment in 

power between the rear and front motors allows the quadcopter 

to pitch forward and move in the desired direction. Conversely, 

to pitch the drone backward (move away from the observer), 

the exact opposite action is taken. The power applied to the rear 

motors is reduced, while the power to the front motors is 

increased, resulting in a net backward force and a pitch upward 

motion of the drone. 

Yaw: To pivot or turn the quadcopter from the left or right, it 

can perform a yaw motion, which involves rotating around its 

center axis. When the drone yaws clockwise, the lift on the 

motors that rotate in an anticlockwise direction is increased. 

Simultaneously, the lift on the motors rotating clockwise is 

decreased. This adjustment is made to ensure that the net force 

in both the upward and downward directions remains balanced. 

By increasing the lift on the anticlockwise rotating motors 

and decreasing the lift on the clockwise rotating motors, an 

anticlockwise torque is generated. This torque allows the 

quadcopter to rotate in a clockwise direction while conserving 

angular momentum. 

Mathematical Form 

The roll, pitch and yaw movement equations for the quad- 

copter. [1] 

ϕ̈ = 
IyyIzz 

θψ − 
Jtp 

θω + l 
U2 

 

across various industries [3]. The PID controllers found in 

industrial applications can be categorized into three basic types: 

parallel, serial, and mixed configurations. The design velocity 

algorithm, also known as the incremental algorithm, is often 

employed for implementing the PID controller [3]. 

PID controllers offer a comprehensive set of dynamics that 

enable effective control in real-world applications. The deriva- 

tive mode provides a fast response to changes in the controller 

input, the integral mode adjusts the control signal to reduce 

the error, and the proportional mode ensures suitable action 

within the control error range to eliminate oscillations. By in- 

corporating the derivative mode, system stability is improved, 

allowing for increased gain (K) and decreased integral time 

constant (T −i), which enhances the speed of the controller’s 

response [8]. 

PID controllers are extensively utilized in the process industry, 

with a significant majority of control systems relying on them. 

Reports suggest that approximately 98% of control loops in the 

pulp and paper industries employ single-input single-output 

PI controllers, while more than 95% of controllers in process 

control applications are of the PID type [8]. The PID controller 

offers the advantages of proportional, derivative, and integral 

control actions combined, making it a popular choice for 

control systems. 

 

 

 
 

IV. PROPOSED METHOD 

 
θ̈  = 

Ixx 

IxxIzz 

Iyy 

Ixx 

θψ  
Jtp 

Iyy 

Ixx 

θω + l 
U3

 

Iyy 

 

The algorithm uses a set-point and process variable to calculate 

an error, which is then used to determine the control output. 

Φ̈ = 
IxxIyy 

Izz 
θψ l 

U4 

Izz 

The control output is calculated by combining proportional, 

integral, and derivative terms, which are weighted by respec- 

This then influences the control architecture of the quadcopter 

using PID blocks. 

 
 

PID Controller 

In various industrial control systems, the proportional-integral- 

derivative (PID) controller is widely employed due to its 

versatility and ability to be optimized for specific control 

systems. The PID controller is the most commonly used 

tive gain values (Kp, Ki, and Kd). The algorithm involves 

calculating the PID for all the movements i.e thrust, roll, pitch 

and yaw, then combining them using motor mixing algorithm 

and we get the desired output. This control loop iteratively 

updates the control output based on the current error and 

previous error. The control output is applied to the quadcopter’s 

motors to adjust their speeds and achieve the desired position 

or orientation. Proper tuning of the PID gains is crucial for 

stable and responsive control. 

u(t) = K e(t) + K 

∫ 

e(t)dt + K 

de(t) 
 

 
(1) 

dt 
algorithm in controller design and is extensively utilized d 
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PID Algorithm 

The purpose of a PID controller is to control a system by 

adjusting an output variable based on the difference between 

a desired setpoint and the actual value of a process variable. 

The controller uses three terms to calculate the output: pro- 

portional, integral, and derivative. 
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Listing 1. GDScript class for PID algorithm. 

 

The implementation starts with   a   PID   class   that   has five 

instance variables: GAIN, error, previous_error, 

error_derivative, and error_integral. The GAIN 

variable is a Vector3 that contains the coefficients for the 

proportional, integral, and derivative terms. The error variable 

represents the difference the setpoint (desired value) and the 

process variable. The previous_error variable is used 

to calculate the derivative term. The error_derivative 

variable is the derivative term of the error, and the 

error_integral variable is the integral term of the 

error. 

The _init() function is called the when the PID object 

is created, and its sets the GAIN, previous_error, and 

error_integral variables to their initial values. 

The calculate_PID() function is where the actual PID 

calculation is performed. It takes two arguments: _error, 1 

which is the current error between the setpoint and the 2
 

3 

error_derivative and error_integral variables by 

calculating the difference between the current error and the 

previous error, and addign the current error multiplied by 

delta to the error_integral. The previous_error 

variable is then updated to the current error. 

Finally, the pid variable is calculated by multiplying the 

error by the proportional coefficient (GAIN.x), adding the 

error_derivative multiplied by the derivative coefficient 

(GAIN.z), and adding the error_integral multiplied by the 

integral coefficient (GAIN.y). This value is returned by the 

function as the output of the PID controller. 

 

Control Architecture 

The software architecture of the control program implemented 

on the micro-controller as seen in [10] can be further modified 

as per this papers requirements. The pitch, roll, and yaw are 

the three axes that control the orientation and movement of 

a drone. The pitch axis controls the forward and backward 

movement of the drone, the roll axis controls the left and right 

movement of the drone, and the yaw axis controls the rotation 

of the drone around its vertical axis. 

To use the PID controller to control a drone’s pitch, roll, and 

yaw movements, we need to measure the error between the 

desired orientation of the drone and its actual orientation. 

For the pitch axis, the error would be the difference between the 

desired pitch angle and the actual pitch angle. Similarly, for 

the roll axis, the error would be the difference between the 

desired roll angle and the actual roll angle. For the yaw axis, 

the error would be the difference between the desired yaw rate 

and the actual yaw rate. 

We can then use the calculate_PID() function to calcu- late 

the output for each axis. The output values can be sent to the 

drone’s flight controller to adjust the motor speed and control 

the pitch, roll, and yaw movements of the drone. The PID 

controller continuously monitors the error and adjusts the 

output values to minimize the error and maintain the desired 

orientation of the drone. 

 

Desired Drone State 

process variable, and delta, which is the time elapsed 

since the last calculation. The function first updates the 5 

extends Spatial 

var ds = Vector3.zero 

var dyaw = 0.0 

 

const XSPEED = 4 

class PID: 

var GAIN 

var error 

var previous_error 

var error_derivative 

var error_integral 

var pid 

 

func _init(_GAIN): 

GAIN = _GAIN 

previous_error = 0.0 

error_integral = 0.0 

 
func calculate_PID(_error, delta): 

error = _error 

error_derivative = (error - previous_error) / 

delta 

error_integral += error * delta 

previous_error = error 

 
pid = error * GAIN.x + error_derivative * GAIN.z 

+ error_integral * GAIN.y 

return pid 

4 
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Fig. 1. Project file in godot editor. 

 
 
 

 
6 

 

7 
 

8 
 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 

 

 
16 

 

 
17 

 

 
18 

 

 
19 

 

20 
 

21 
 

22 

 

 
23 

 

24 
 

25 

 

Listing 2. Script for taking in user input. 

 

The script extends the Spatial class, which is base class for 

spatial nodes in Godot Engine. Variables are declared and 

initialized: 

• ds is a Vector3 variable initialized to (0, 0, 0), 

representing the change in position along the x, y, and z 

axes. 

• dyaw is a floating-point variable initialized to 0.0, 

representing the change in rotation around the y-axis 

(yaw). 

 

the speed factors for movement and rotation. 

The _ready function is called when the script and its 

associated node are rady for use. In this case, the function 

is empty and does nothing. The _process function is called 

every frame to update the script’s logic. 

The input values from the controller are retrieved and used to 

update the ds vector: 

• Input.get_axis retrieves the input axis  value for 

the given axis names. In this case, ”right”, ”left”, ”up”, 

”down”, ”forward”, and ”backward” are used to get input 

values along the respective axes. 

• The input values are multiplied by the predefined speed 

constants (XSPEED, YSPEED, ZSPEED) and assigned to 

the corresponding components of the ds vector. 

The input value for yaw rotation is retrieved and multiplied 

by the YAWSPEED constant, updating the dyaw variable. 

If there is any non-zero movement (ds is not zero) or rotation 

(dyaw is not zero): 

• The node’s position is translated (self.translate) 

by the product of the movement vector ds and the time 

elapsed since the last frame (delta). 

• The node is rotated (self.rotate) around the y-axis 

(get_transform().basis.y.normalized()) 

by the product of the rotation speed dyaw and the time 

elapsed since the last frame (delta). 

 

Drone PID Flight Algorithm 

• XSEEPD, YSPEED, ZSPEED are constants representing 2 

extends RigidBody 

cosnt YSPEED = 3 

const ZSPEED = 4 

const YAWSPEED = 1 

 

func _ready(): 

pass 

 
func _process(): 

# Controller input 

ds.x = Input.get_axis("right", "left") * 

XSPEED 

ds.y = -Input.get_axis("up", "down") * 

YSPEED 

ds.z = -Input.get_axis("forward", "backward 

") * ZSPEED 

dyaw = Input.get_axis("yaw_right", "yaw_left 

") * YAWSPEED 

 
if ds != Vector3.ZERO or dyaw != 0.0: 

self.translate(ds * delta) 

self.rotate(get_transform().basis.y. 

normalized(), dyaw * delta) 

 
if self.global_transform.origin.y < 0.2: 

self.global_transform.origin.y = 0.2 

1 
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Listing 3. Drone PID flight algorithm script. 

 

 

This script extends the RigidBody class in the Godot 

Engine. The functionality of the RigidBody class, which 

is typically used to represent objects with physics therefore, 

we here use this class to model our virtual drone as we will 

be using Godot physical engine to simulate real gravity and 

collisions and apply forces on the drone to pilot it. We declared 

a variable named desired_drone_state and assigned 

it the reference to a node in the scene graph hierarchy. We have 

a node with the path ”root/World/Desired Drone State” in the 

scene, and the get_node function is used to retrieve a 

reference to that node. Then we declared variables of type PID 

for controlling the altitude, X and Y axis position, and yaw angle 

of the drone. PID is the custom class we wrote for computing the 

PID of variables in our flight algorithm. We declared variables 

to store the thrust, X-axis and Y-axis input, and roll and pitch 

angle output for the drone, and finally yaw angle. They are 

initialized with initial values of 0.0. 

The _ready() function is a function that is automatically called 

when the script instance is ready to be used. In this func- tion, 

the PID controllers are initialized with specific parameters by 

calling the PID.new() function. The exact parameters passed 

to the PID.new() function are the variables thrust, X and 

Y axis movement and the angles yaw, roll, and pitch. 

The _process() function is automatically called on ev- 

ery frame update. Within this function, the PID con- trollers 

are used to calculate control signals for the drone’s thrust 

and roll. Here we calculate the thrust control signal using 

the altitude PID controller. It sub- tracts the current altitude 

(Y-coordinate) of the drone (self.translation.y) from 

the desired altitude speci- fied by desired_drone_state. 

translation.y and passes the result to the 

calculate_PID() function of the altitude PID 

controller. The delta parameter represents the time elapsed 

since the last frame update. 

The   X-axis   roll   control   signal   is   calculated   in roll_x 

using the X-axis PID controller. We then subtract the current 

X-coordinate of the drone (self.translation) from the 

desired X-coordinate specified by 

desired_drone_state.translation.x and passes 

the result to the calculate_PID() function of the x_axis 

PID controller. 

In the next few lines of the script, we calculate the roll angle of 

the drone based on the roll control signal (roll_x). It uses an 

iterative calculation process where the roll angle (theta) is 

updated based on the change in time (delta) and the previous 

angular velocity (prevous_omega). The delta_theta 

onready var desired_drone_state = get_node("root 

/World/Desired_Drone_State") 

 
var altitude : PID 

var x_axis : PID 

var roll_angle : PID 

 
var thrust = 0.0 

var roll_x = 0.0 

var roll = 0.0 

 

func _ready(): 

altitude = PID.new(Vector3(30, 3, 2)) 

x_axis = PID.new(Vector3(3, 3, 0)) 

roll_angle = PID.new(Vector3(0.5, 0.01, 

0.07)) 

 
pass 

 
func _process(): 

thrust = altitude.calculate_PID( 

desired_drone_state.translation.y - self. 

translation.y, delta) 

roll_x = x_axis.calculate_PID( 

desired_drone_state.translation.x - self. 

translation.x, delta) 

 

var alpha = roll_x 

var omega = previous_omega + alpha * delta 

var delta_theta = omega * delta + alpha * 

delta * delta / 2 

previous_omega = omega 

 
theta += delta_theta 

roll = roll_angle.calculate_PID((theta * 

SCALE) - self.rotation_degrees.z, delta) 

 
var motorFR = thrust + roll 

var motorFL = thrust - roll 

var motorBR = thrust + roll 

var motorBL = thrust - roll 

 

var posFR = Vector3(-1, 0, 1) 

var posFL = Vector3(1, 0, 1) 

var posBR = Vector3(-1, 0, -1) 

var posBL = Vector3(1, 0, -1) 

 
add_force(self.get_transform().basis.y * 

motorFR, self.global_transform.origin + posFR) 

add_force(self.get_transform().basis.y * 

motorFL, self.global_transform.origin + posFL) 

add_force(self.get_transform().basis.y * 

motorBR, self.global_transform.origin + posBR) 

add_force(self.get_transform().basis.y * 

motorBL, self.global_transform.origin + posBL) 

 
pass 
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represents the change in angle during the current frame update. 

Finally, we calculate the roll control signal using the roll angle 

PID controller. It subtracts the current roll angle of the drone 

(self.rotation_degrees.z) from the desired roll angle, 

scaled by a factor of SCALE, and passes the result to the 

calculate_PID() function. 

 

Simulator 

The designed flight algorithm using PID will be implemented 

and simulated using a physics engine called Godot Engine. 

Using which we developed a software that simulates realtime 

realistic drone flight. The user pilots the drone using a remote 

controller. On this virtual drone we test our quadcopter flight 

algorithm. Building upon the methods of [5] and [6]. 

 

V. RESULTS 

During the modeling of the quadcopter, several parameters 

were considered, including mass, arm length, radius, motor 

torque, and motor speed. To simplify the modeling process, 

certain assumptions were made. Firstly, it was assumed that the 

quadcopter’s structure is rigid and symmetric. Secondly, the 

quadcopter’s load-heavy point was assumed to be located at its 

center of mass. Lastly, the vibration effects in each propeller 

were neglected. 

However, during the design phase, the quadcopter exhibited 

instability when different values of the proportional, integral, 

and derivative gains for roll and pitch control were used. 

Through a process of trial and error, the optimal PID gains for 

stability were determined. For the roll control, a proportional 

gain of 1.3, an integral gain of 0.04, and a derivative gain of 

18 were found to yield stability. Similarly, for pitch control, 

a proportional gain of 1.5, an integral gain of 0.05, and a 

derivative gain of 15 were determined to be stable. 

Various behaviors and performance characteristics were eval- 

uated by considering different PID parameter values. These 

evaluations helped in identifying the specific PID gains that 

provided stability and desired control performance for the 

quadcopter. 

 

Behaviour considering only Proportional Gain (P) 

When the proportional gain is set to a low value, such as less 

than 1.3, the quadcopter’s response is unstable. This instability 

 

 
 

Fig. 2. Altitude graph with low P gain. 

 
 

could manifest as oscillations or erratic behavior. Increasing the 

proportional gain to 1.3 stabilizes the quadcopter and improves 

its performance. Moreover, if the proportional gain is set too 

high, the quadcopter might exhibit high-frequency oscillations, 

which could lead to instability. 

 

Fig. 3. Altitude graph with high P gain. 

 

 

 

Behaviour with Proportional and Integral Gain (I): 

 
Considering only the proportional and integral gains (P and 

I), the quadcopter remains unstable unless the integral gain 

is set to a certain value. With an integral gain of 0.04 for 

roll and 0.05 for pitch, the quadcopter achieves stability. The 

integral term helps eliminate steady-state errors and ensures the 

quadcopter can maintain its desired position. 

 

Derivative Gain (D) 

Including the derivative gain (D) further enhances the stability 

and performance of the quadcopter. With a derivative gain of 

18 for roll and 15 for pitch, the quadcopter remains stable in the 

simulation. The derivative term provides damping to the system 

and helps reduce overshoot and oscillations. 



© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002 

 

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1458 

 
Fig. 4. Altitude graph with low I gain. 

 
Fig. 5. Altitude graph with high I gain. 
 

VI. CONCLUSION AND FUTURE 

 

Conlcusion 

In conclusion, simulation is a critical tool in the development 

and testing of a PID flight controller for a quadcopter. It allows 

developers to test and refine the controller’s performance in a 

controlled environment before deploying it on a physical 

quadcopter. Simulation also enables developers to test the con- 

troller’s performance under a wide range of flight conditions 

and to quickly iterate on the design to optimize its perfor- 

mance. It is also an efficient way to identify and troubleshoot 

any issues in the controller’s design and to evaluate the impact 

of changes to the controller’s parameters. Overall, simulation is 

an essential component in the development and testing of a PID 

flight controller for a quadcopter, providing a safe and efficient 

means to optimize the controller’s design, test its performance 

under various flight conditions, and ensure that it meets the 

required performance specifications. 

 

Future Scope 

In conclusion, the future scope of a PID flight controller for a 

quadcopter is vast, with ongoing research and development 

efforts focused on improving the performance and capabilities 

of these controllers. Continued advancements in control al- 

gorithms, sensor fusion, autonomous flight, energy efficiency, 

and miniaturization could lead to more capable and versatile 

quadcopters in the future. [9] 

 

REFERENCES 

[1] Vishwanadhapalli Praveen and Anju S. Pillai. Modeling 

and Simulation of Quadcopter usign PID Controller. 

IJCTA, 9(15), 2016, pp. 7151-7158. 

[2] Jared Maltos. Simple physics behind the flight of a drone. 

Physics 211-F04 

[3] K Smriti Rao, Ravi Msihra. Comparative study of P, PI, and 

PID controller for speed control of VSI-fed induction motor. 

2014 IJEDR, ISSN: 2321-9939. 

[4] S. Jeremia, E. Kuantama and J. Pangaribuan,Design and 

construction of remote-controlled quad-copter based on 

STC12C5624AD, 2012 In- ternational Conference on 

System Engineering and Technology (ICSET), Bandung, 

Indonesia, 2012, pp. 1-6, doi: 

10.1109/ICSEngT.2012.6339317. 

[5] K. Patel and J. Barve, Modeling, simulation and control 

study for the quad-copter UAV, 2014 9th International 

Conference on Industrial and Information Systems (ICIIS), 

Gwalior, India, 2014, pp. 1-6, doi: 

10.1109/ICIINFS.2014.7036590. 

[6] S. Sohail, S. Nasim and N. H. Khan, Modeling, controlling 

and stability of UAV Quad Copter, 2017 International 

Conference on Innovations in Electrical Engineering and 

Computational Technologies (ICIEECT), Karachi, 

Pakistan, 2017, pp. 1-8, doi: 

10.1109/ICIEECT.2017.7916559. 

[7] O. Arrieta, D. Campos, J. D. Rojas, M. Barbu and R. 

Vilanova, Multi- optimization approach for PID control on 

Drone roll-pitch orientation, 2022 23rd International 

Carpathian Control Conference (ICCC), Sinaia, Romania, 

2022, pp. 227-232, doi: 

10.1109/ICCC54292.2022.9805919. 

[8] A. Iyer and H. O. Bansal, Modelling, Simulation, and 

Implementation of PID Controller on Quadrotors, 2021 

International Conference on Computer Communication and 

Informatics (ICCCI), Coimbatore, India, 2021, pp. 1-7, doi: 

10.1109/ICCCI50826.2021.9402301. 
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