
© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1451

PID Flight Controller for Quadcopter and it’s Simulation

Yash Pawar, Sourabh Prasad, Vedant Wakhare, Kunal Patil, S. D. Bharkad

Department of Electronics and Telecommunication Engineering Government College of Engineering, Aurangabad

Abstract—Quadcopters, also known as drone, are popular with

unmanned aerial vehicles (UAVs). They are widely used in many

applications due to their small size and high security. In this

article, RC quadcopter is designed and built using PID

(Proportional Integral Derivative) controller and simulated using

Godot Engine. The simulation in Godot allows for real- time

visualization of the quadcopter’s behavior, providing an

interactive platform for testing and analyzing different control

strategies. The paper involves creating the quadcopter model,

implementing the PID controller algorithm, and integrating

sensor feedback and actuator dynamics into the simulation. The

simulation environment enables the exploration of various flight

scenarios, including response to external disturbances and

changes in environmental conditions. The pitch, roll, yaw and

position response of the quadcopter is obtained and a PID

controller is used to stabilize the system response. The operation

and performance of the quadcopter and combat algorithms were

tested in the simulator and the desired results were obtained.

I. INTRODUCTION

In recent years, modeling and simulation of quadcopters based

on PID controllers has become very popular due to its many

applications in many fields such as aerial photography, surveil-

lance, search and rescue and package delivery. A quadcopter,

also known as a quadrotor, is an unmanned aerial vehicle

(UAV) characterized by its four propellers that generate lift and

control its movement.

This presentation is designed to demonstrate the basics of

modeling and simulation of a quadcopter using a PID con-

troller. It highlights the importance of understanding

quadcopter dynamics, developing control algorithms, and using

environmental simulation to analyze and optimize its

performance. More research on

Quadcopters can be found in many documents in this field.

Design and develop a quadcopter model using a PID controller.

The IMU is used to determine the system orientation. In this

study, the mathematics of the quadcopter is done by using

the MATLAB Simulink model, which uses a PID controller

to stabilize the operation of the quadcopter. Quadrotor field

slope, roll and yaw slope are taken from MATLAB Simulink.

In our paper, there will be sensors that provide feedback to the

required PID controller in the theoretical drone model. Then

our flight algorithm is used by the PID controller, and the drone

can fly under the control of the user. In general, like drone

racing, users need to be fluent, snappy, fast, etc. needs such

controls. These can be achieved with the PID setting.

II. OBJECTIVE

The objective of this paper is to develop a comprehensive

modeling and simulation framework for a quadcopter using a

PID (Proportional-Integral-Derivative) controller. The aim is to

achieve a deep understanding of quadcopter dynamics, design

an effective control algorithm, and simulate its behavior in a

virtual environment.

1) Mathematical Modeling: The first objective is to de-

velop an accurate mathematical model that describes the

physical dynamics of the quadcopter. This involves

formulating the equations of motion, considering factors

such as thrust, drag, weight, and torques. The model

should capture the quadcopter’s translational and ro-

tational motion, as well as its interactions with the

environment.

2) PID Controller Design: The second objective is to design

a PID controller that can stabilize the quadcopter and

enable precise control of its position, orientation, and

velocity. This involves determining suitable gains for the

proportional, integral, and derivative components of the

controller. The goal is to develop a control algorithm that

can effectively counteract disturbances and track desired

setpoints accurately.

3) Simulation Implementation: The next objective is to

implement the quadcopter model and PID controller

© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1452

in a simulation framework. This involves developing

simulation software tools using GODOT Engine and

GDscript, to create a virtual environment where the

quadcopter’s behavior can be simulated and analyzed.

The simulation should replicate real-world dynamics,

including sensor feedback, actuator responses, and

environmental influences.

4) Performance Evaluation: The fourth objective is to

evaluate the performance of the quadcopter and the

PID controller through simulation experiments. This

includes assessing stability, responsiveness, tracking

accuracy, and robustness to disturbances. By analyzing

the simulation results, we can gain insights into the

strengths and limitations of the PID controller design,

identify areas for improvement, and refine the control

strategy.

5) Optimization and Iteration: The final objective is to

optimize the PID controller parameters and iterate on

the model and simulation framework based on the

evaluation results. By fine-tuning the gains, adjusting

control strategies, and refining the model, we aim to

achieve optimal quadcopter performance and control

accuracy.

Through the successful completion of these objectives, this

paper aims to advance the understanding and capabilities of

quadcopter modeling and control using PID controllers. The

outcomes will contribute to the development of more efficient

and reliable quadcopter systems, enabling their application in

various fields such as aerial surveillance, mapping, inspection,

and autonomous operations.

III. LITERATURE REVIEW

Quadcopter

The flight of a drone is achieved through the rotation of four

vertical-axis propellers (rotors) positioned at the corners of

a square configuration. According to Newton’s second law,

when the drone hovers at a constant altitude, the upward thrust

generated by the rotors balances the downward grav- itational

force acting on the drone’s airframe. By adjusting the total

power of the rotors, the drone can accelerate or decelerate

vertically, causing a change in its upward thrust and

consequently altering its altitude [4]. When the thrust force

exceeds the force of gravity, the drone experiences an initial

acceleration. However, during this acceleration, the potential

energy of the drone increases, requiring the motors to perform

work in supplying the additional energy. Consequently, the rate

of ascent is constrained by the ability of the motors to deliver

this energy effectively, which limits the drone’s rate of climb.

In this quadcopter configuration, the rotors are divided into two

sets: red rotors rotating counterclockwise and green rotors

rotating clockwise. By having these two sets of rotors rotating

in opposite directions, the total angular momentum of the

quadcopter remains zero. Angular momentum, similar to linear

momentum, is calculated by multiplying the angular velocity

by the moment of inertia. The moment of inertia is a property

that relates to rotation and is akin to mass in linear motion.

Although it can be complex, for our purposes, understanding

that angular momentum depends on rotor speed is sufficient [7].

Every movement of the quadcopter is achieved by adjust- ing

the spin rate of one or more rotors. This adjustment is made

possible by a controller that can increase or decrease the

voltage supplied to each motor. Alternatively, with the

assistance of a computer control system, the pilot can simply

manipulate a joystick, allowing the computer to handle the rotor

adjustments. The quadcopter’s onboard accelerometer and

gyroscope contribute to flight ease and stability by making

precise power adjustments to each rotor. These adjustments en-

sure the quadcopter responds to subtle changes and movements

as required [7].

Roll: In terms of lateral movement, the quadcopter can shift left

or right relative to its front. This movement is commonly

referred to as rolling. To roll the quadcopter to the left, the lift

generated by the motors on the right side is increased, while

simultaneously reducing the lift on the motors located on the

left side. Conversely, to roll the quadcopter to the right, the

opposite action is taken. The lift is increased on the motors

on the left side while decreasing the lift on the motors on the

right side. These differential adjustments in lift between the left

and right sides enable the quadcopter to roll and move laterally

as desired.

Pitch: To achieve forward or backward movement, the quad-

copter can pitch either towards or away from the observer.

When the drone pitches forward (moves towards the observer),

© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1453

−

−

p i

the power supplied to the rear motors is increased. This creates

a net forward force that causes the nose of the drone to pitch

downward. To maintain the conservation of angular

momentum, the power applied to the two front motors is

simultaneously decreased. This differential adjustment in

power between the rear and front motors allows the quadcopter

to pitch forward and move in the desired direction. Conversely,

to pitch the drone backward (move away from the observer),

the exact opposite action is taken. The power applied to the rear

motors is reduced, while the power to the front motors is

increased, resulting in a net backward force and a pitch upward

motion of the drone.

Yaw: To pivot or turn the quadcopter from the left or right, it

can perform a yaw motion, which involves rotating around its

center axis. When the drone yaws clockwise, the lift on the

motors that rotate in an anticlockwise direction is increased.

Simultaneously, the lift on the motors rotating clockwise is

decreased. This adjustment is made to ensure that the net force

in both the upward and downward directions remains balanced.

By increasing the lift on the anticlockwise rotating motors

and decreasing the lift on the clockwise rotating motors, an

anticlockwise torque is generated. This torque allows the

quadcopter to rotate in a clockwise direction while conserving

angular momentum.

Mathematical Form

The roll, pitch and yaw movement equations for the quad-

copter. [1]

ϕ̈ =
IyyIzz

θψ −
Jtp

θω + l
U2

across various industries [3]. The PID controllers found in

industrial applications can be categorized into three basic types:

parallel, serial, and mixed configurations. The design velocity

algorithm, also known as the incremental algorithm, is often

employed for implementing the PID controller [3].

PID controllers offer a comprehensive set of dynamics that

enable effective control in real-world applications. The deriva-

tive mode provides a fast response to changes in the controller

input, the integral mode adjusts the control signal to reduce

the error, and the proportional mode ensures suitable action

within the control error range to eliminate oscillations. By in-

corporating the derivative mode, system stability is improved,

allowing for increased gain (K) and decreased integral time

constant (T −i), which enhances the speed of the controller’s

response [8].

PID controllers are extensively utilized in the process industry,

with a significant majority of control systems relying on them.

Reports suggest that approximately 98% of control loops in the

pulp and paper industries employ single-input single-output

PI controllers, while more than 95% of controllers in process

control applications are of the PID type [8]. The PID controller

offers the advantages of proportional, derivative, and integral

control actions combined, making it a popular choice for

control systems.

IV. PROPOSED METHOD

θ̈ =

Ixx

IxxIzz

Iyy

Ixx

θψ
Jtp

Iyy

Ixx

θω + l
U3

Iyy

The algorithm uses a set-point and process variable to calculate

an error, which is then used to determine the control output.

Φ̈ =
IxxIyy

Izz
θψ l

U4

Izz

The control output is calculated by combining proportional,

integral, and derivative terms, which are weighted by respec-

This then influences the control architecture of the quadcopter

using PID blocks.

PID Controller

In various industrial control systems, the proportional-integral-

derivative (PID) controller is widely employed due to its

versatility and ability to be optimized for specific control

systems. The PID controller is the most commonly used

tive gain values (Kp, Ki, and Kd). The algorithm involves

calculating the PID for all the movements i.e thrust, roll, pitch

and yaw, then combining them using motor mixing algorithm

and we get the desired output. This control loop iteratively

updates the control output based on the current error and

previous error. The control output is applied to the quadcopter’s

motors to adjust their speeds and achieve the desired position

or orientation. Proper tuning of the PID gains is crucial for

stable and responsive control.

u(t) = K e(t) + K

∫

e(t)dt + K

de(t)

(1)

dt
algorithm in controller design and is extensively utilized d

© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1454

PID Algorithm

The purpose of a PID controller is to control a system by

adjusting an output variable based on the difference between

a desired setpoint and the actual value of a process variable.

The controller uses three terms to calculate the output: pro-

portional, integral, and derivative.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Listing 1. GDScript class for PID algorithm.

The implementation starts with a PID class that has five

instance variables: GAIN, error, previous_error,

error_derivative, and error_integral. The GAIN

variable is a Vector3 that contains the coefficients for the

proportional, integral, and derivative terms. The error variable

represents the difference the setpoint (desired value) and the

process variable. The previous_error variable is used

to calculate the derivative term. The error_derivative

variable is the derivative term of the error, and the

error_integral variable is the integral term of the

error.

The _init() function is called the when the PID object

is created, and its sets the GAIN, previous_error, and

error_integral variables to their initial values.

The calculate_PID() function is where the actual PID

calculation is performed. It takes two arguments: _error, 1

which is the current error between the setpoint and the 2

3

error_derivative and error_integral variables by

calculating the difference between the current error and the

previous error, and addign the current error multiplied by

delta to the error_integral. The previous_error

variable is then updated to the current error.

Finally, the pid variable is calculated by multiplying the

error by the proportional coefficient (GAIN.x), adding the

error_derivative multiplied by the derivative coefficient

(GAIN.z), and adding the error_integral multiplied by the

integral coefficient (GAIN.y). This value is returned by the

function as the output of the PID controller.

Control Architecture

The software architecture of the control program implemented

on the micro-controller as seen in [10] can be further modified

as per this papers requirements. The pitch, roll, and yaw are

the three axes that control the orientation and movement of

a drone. The pitch axis controls the forward and backward

movement of the drone, the roll axis controls the left and right

movement of the drone, and the yaw axis controls the rotation

of the drone around its vertical axis.

To use the PID controller to control a drone’s pitch, roll, and

yaw movements, we need to measure the error between the

desired orientation of the drone and its actual orientation.

For the pitch axis, the error would be the difference between the

desired pitch angle and the actual pitch angle. Similarly, for

the roll axis, the error would be the difference between the

desired roll angle and the actual roll angle. For the yaw axis,

the error would be the difference between the desired yaw rate

and the actual yaw rate.

We can then use the calculate_PID() function to calcu- late

the output for each axis. The output values can be sent to the

drone’s flight controller to adjust the motor speed and control

the pitch, roll, and yaw movements of the drone. The PID

controller continuously monitors the error and adjusts the

output values to minimize the error and maintain the desired

orientation of the drone.

Desired Drone State

process variable, and delta, which is the time elapsed

since the last calculation. The function first updates the 5

extends Spatial

var ds = Vector3.zero

var dyaw = 0.0

const XSPEED = 4

class PID:

var GAIN

var error

var previous_error

var error_derivative

var error_integral

var pid

func _init(_GAIN):

GAIN = _GAIN

previous_error = 0.0

error_integral = 0.0

func calculate_PID(_error, delta):

error = _error

error_derivative = (error - previous_error) /

delta

error_integral += error * delta

previous_error = error

pid = error * GAIN.x + error_derivative * GAIN.z

+ error_integral * GAIN.y

return pid

4

© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1455

Fig. 1. Project file in godot editor.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Listing 2. Script for taking in user input.

The script extends the Spatial class, which is base class for

spatial nodes in Godot Engine. Variables are declared and

initialized:

• ds is a Vector3 variable initialized to (0, 0, 0),

representing the change in position along the x, y, and z

axes.

• dyaw is a floating-point variable initialized to 0.0,

representing the change in rotation around the y-axis

(yaw).

the speed factors for movement and rotation.

The _ready function is called when the script and its

associated node are rady for use. In this case, the function

is empty and does nothing. The _process function is called

every frame to update the script’s logic.

The input values from the controller are retrieved and used to

update the ds vector:

• Input.get_axis retrieves the input axis value for

the given axis names. In this case, ”right”, ”left”, ”up”,

”down”, ”forward”, and ”backward” are used to get input

values along the respective axes.

• The input values are multiplied by the predefined speed

constants (XSPEED, YSPEED, ZSPEED) and assigned to

the corresponding components of the ds vector.

The input value for yaw rotation is retrieved and multiplied

by the YAWSPEED constant, updating the dyaw variable.

If there is any non-zero movement (ds is not zero) or rotation

(dyaw is not zero):

• The node’s position is translated (self.translate)

by the product of the movement vector ds and the time

elapsed since the last frame (delta).

• The node is rotated (self.rotate) around the y-axis

(get_transform().basis.y.normalized())

by the product of the rotation speed dyaw and the time

elapsed since the last frame (delta).

Drone PID Flight Algorithm

• XSEEPD, YSPEED, ZSPEED are constants representing 2

extends RigidBody

cosnt YSPEED = 3

const ZSPEED = 4

const YAWSPEED = 1

func _ready():

pass

func _process():

Controller input

ds.x = Input.get_axis("right", "left") *

XSPEED

ds.y = -Input.get_axis("up", "down") *

YSPEED

ds.z = -Input.get_axis("forward", "backward

") * ZSPEED

dyaw = Input.get_axis("yaw_right", "yaw_left

") * YAWSPEED

if ds != Vector3.ZERO or dyaw != 0.0:

self.translate(ds * delta)

self.rotate(get_transform().basis.y.

normalized(), dyaw * delta)

if self.global_transform.origin.y < 0.2:

self.global_transform.origin.y = 0.2

1

© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1456

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Listing 3. Drone PID flight algorithm script.

This script extends the RigidBody class in the Godot

Engine. The functionality of the RigidBody class, which

is typically used to represent objects with physics therefore,

we here use this class to model our virtual drone as we will

be using Godot physical engine to simulate real gravity and

collisions and apply forces on the drone to pilot it. We declared

a variable named desired_drone_state and assigned

it the reference to a node in the scene graph hierarchy. We have

a node with the path ”root/World/Desired Drone State” in the

scene, and the get_node function is used to retrieve a

reference to that node. Then we declared variables of type PID

for controlling the altitude, X and Y axis position, and yaw angle

of the drone. PID is the custom class we wrote for computing the

PID of variables in our flight algorithm. We declared variables

to store the thrust, X-axis and Y-axis input, and roll and pitch

angle output for the drone, and finally yaw angle. They are

initialized with initial values of 0.0.

The _ready() function is a function that is automatically called

when the script instance is ready to be used. In this func- tion,

the PID controllers are initialized with specific parameters by

calling the PID.new() function. The exact parameters passed

to the PID.new() function are the variables thrust, X and

Y axis movement and the angles yaw, roll, and pitch.

The _process() function is automatically called on ev-

ery frame update. Within this function, the PID con- trollers

are used to calculate control signals for the drone’s thrust

and roll. Here we calculate the thrust control signal using

the altitude PID controller. It sub- tracts the current altitude

(Y-coordinate) of the drone (self.translation.y) from

the desired altitude speci- fied by desired_drone_state.

translation.y and passes the result to the

calculate_PID() function of the altitude PID

controller. The delta parameter represents the time elapsed

since the last frame update.

The X-axis roll control signal is calculated in roll_x

using the X-axis PID controller. We then subtract the current

X-coordinate of the drone (self.translation) from the

desired X-coordinate specified by

desired_drone_state.translation.x and passes

the result to the calculate_PID() function of the x_axis

PID controller.

In the next few lines of the script, we calculate the roll angle of

the drone based on the roll control signal (roll_x). It uses an

iterative calculation process where the roll angle (theta) is

updated based on the change in time (delta) and the previous

angular velocity (prevous_omega). The delta_theta

onready var desired_drone_state = get_node("root

/World/Desired_Drone_State")

var altitude : PID

var x_axis : PID

var roll_angle : PID

var thrust = 0.0

var roll_x = 0.0

var roll = 0.0

func _ready():

altitude = PID.new(Vector3(30, 3, 2))

x_axis = PID.new(Vector3(3, 3, 0))

roll_angle = PID.new(Vector3(0.5, 0.01,

0.07))

pass

func _process():

thrust = altitude.calculate_PID(

desired_drone_state.translation.y - self.

translation.y, delta)

roll_x = x_axis.calculate_PID(

desired_drone_state.translation.x - self.

translation.x, delta)

var alpha = roll_x

var omega = previous_omega + alpha * delta

var delta_theta = omega * delta + alpha *

delta * delta / 2

previous_omega = omega

theta += delta_theta

roll = roll_angle.calculate_PID((theta *

SCALE) - self.rotation_degrees.z, delta)

var motorFR = thrust + roll

var motorFL = thrust - roll

var motorBR = thrust + roll

var motorBL = thrust - roll

var posFR = Vector3(-1, 0, 1)

var posFL = Vector3(1, 0, 1)

var posBR = Vector3(-1, 0, -1)

var posBL = Vector3(1, 0, -1)

add_force(self.get_transform().basis.y *

motorFR, self.global_transform.origin + posFR)

add_force(self.get_transform().basis.y *

motorFL, self.global_transform.origin + posFL)

add_force(self.get_transform().basis.y *

motorBR, self.global_transform.origin + posBR)

add_force(self.get_transform().basis.y *

motorBL, self.global_transform.origin + posBL)

pass

© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1457

represents the change in angle during the current frame update.

Finally, we calculate the roll control signal using the roll angle

PID controller. It subtracts the current roll angle of the drone

(self.rotation_degrees.z) from the desired roll angle,

scaled by a factor of SCALE, and passes the result to the

calculate_PID() function.

Simulator

The designed flight algorithm using PID will be implemented

and simulated using a physics engine called Godot Engine.

Using which we developed a software that simulates realtime

realistic drone flight. The user pilots the drone using a remote

controller. On this virtual drone we test our quadcopter flight

algorithm. Building upon the methods of [5] and [6].

V. RESULTS

During the modeling of the quadcopter, several parameters

were considered, including mass, arm length, radius, motor

torque, and motor speed. To simplify the modeling process,

certain assumptions were made. Firstly, it was assumed that the

quadcopter’s structure is rigid and symmetric. Secondly, the

quadcopter’s load-heavy point was assumed to be located at its

center of mass. Lastly, the vibration effects in each propeller

were neglected.

However, during the design phase, the quadcopter exhibited

instability when different values of the proportional, integral,

and derivative gains for roll and pitch control were used.

Through a process of trial and error, the optimal PID gains for

stability were determined. For the roll control, a proportional

gain of 1.3, an integral gain of 0.04, and a derivative gain of

18 were found to yield stability. Similarly, for pitch control,

a proportional gain of 1.5, an integral gain of 0.05, and a

derivative gain of 15 were determined to be stable.

Various behaviors and performance characteristics were eval-

uated by considering different PID parameter values. These

evaluations helped in identifying the specific PID gains that

provided stability and desired control performance for the

quadcopter.

Behaviour considering only Proportional Gain (P)

When the proportional gain is set to a low value, such as less

than 1.3, the quadcopter’s response is unstable. This instability

Fig. 2. Altitude graph with low P gain.

could manifest as oscillations or erratic behavior. Increasing the

proportional gain to 1.3 stabilizes the quadcopter and improves

its performance. Moreover, if the proportional gain is set too

high, the quadcopter might exhibit high-frequency oscillations,

which could lead to instability.

Fig. 3. Altitude graph with high P gain.

Behaviour with Proportional and Integral Gain (I):

Considering only the proportional and integral gains (P and

I), the quadcopter remains unstable unless the integral gain

is set to a certain value. With an integral gain of 0.04 for

roll and 0.05 for pitch, the quadcopter achieves stability. The

integral term helps eliminate steady-state errors and ensures the

quadcopter can maintain its desired position.

Derivative Gain (D)

Including the derivative gain (D) further enhances the stability

and performance of the quadcopter. With a derivative gain of

18 for roll and 15 for pitch, the quadcopter remains stable in the

simulation. The derivative term provides damping to the system

and helps reduce overshoot and oscillations.

© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160429 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1458

Fig. 4. Altitude graph with low I gain.

Fig. 5. Altitude graph with high I gain.

VI. CONCLUSION AND FUTURE

Conlcusion

In conclusion, simulation is a critical tool in the development

and testing of a PID flight controller for a quadcopter. It allows

developers to test and refine the controller’s performance in a

controlled environment before deploying it on a physical

quadcopter. Simulation also enables developers to test the con-

troller’s performance under a wide range of flight conditions

and to quickly iterate on the design to optimize its perfor-

mance. It is also an efficient way to identify and troubleshoot

any issues in the controller’s design and to evaluate the impact

of changes to the controller’s parameters. Overall, simulation is

an essential component in the development and testing of a PID

flight controller for a quadcopter, providing a safe and efficient

means to optimize the controller’s design, test its performance

under various flight conditions, and ensure that it meets the

required performance specifications.

Future Scope

In conclusion, the future scope of a PID flight controller for a

quadcopter is vast, with ongoing research and development

efforts focused on improving the performance and capabilities

of these controllers. Continued advancements in control al-

gorithms, sensor fusion, autonomous flight, energy efficiency,

and miniaturization could lead to more capable and versatile

quadcopters in the future. [9]

REFERENCES

[1] Vishwanadhapalli Praveen and Anju S. Pillai. Modeling

and Simulation of Quadcopter usign PID Controller.

IJCTA, 9(15), 2016, pp. 7151-7158.

[2] Jared Maltos. Simple physics behind the flight of a drone.

Physics 211-F04

[3] K Smriti Rao, Ravi Msihra. Comparative study of P, PI, and

PID controller for speed control of VSI-fed induction motor.

2014 IJEDR, ISSN: 2321-9939.

[4] S. Jeremia, E. Kuantama and J. Pangaribuan,Design and

construction of remote-controlled quad-copter based on

STC12C5624AD, 2012 In- ternational Conference on

System Engineering and Technology (ICSET), Bandung,

Indonesia, 2012, pp. 1-6, doi:

10.1109/ICSEngT.2012.6339317.

[5] K. Patel and J. Barve, Modeling, simulation and control

study for the quad-copter UAV, 2014 9th International

Conference on Industrial and Information Systems (ICIIS),

Gwalior, India, 2014, pp. 1-6, doi:

10.1109/ICIINFS.2014.7036590.

[6] S. Sohail, S. Nasim and N. H. Khan, Modeling, controlling

and stability of UAV Quad Copter, 2017 International

Conference on Innovations in Electrical Engineering and

Computational Technologies (ICIEECT), Karachi,

Pakistan, 2017, pp. 1-8, doi:

10.1109/ICIEECT.2017.7916559.

[7] O. Arrieta, D. Campos, J. D. Rojas, M. Barbu and R.

Vilanova, Multi- optimization approach for PID control on

Drone roll-pitch orientation, 2022 23rd International

Carpathian Control Conference (ICCC), Sinaia, Romania,

2022, pp. 227-232, doi:

10.1109/ICCC54292.2022.9805919.

[8] A. Iyer and H. O. Bansal, Modelling, Simulation, and

Implementation of PID Controller on Quadrotors, 2021

International Conference on Computer Communication and

Informatics (ICCCI), Coimbatore, India, 2021, pp. 1-7, doi:

10.1109/ICCCI50826.2021.9402301.

[9] K.J. Å ström, T. Hägglund, The future of PID control, Control

Engineering

Practice, Volume 9, Issue 11, 2001, Pages 1163-1175, ISSN

0967-0661.

[10] D. D. Timis and E. H. Dulf, Software implementation

and test of an advanced robust control applied to a

quad-copter, 2020 IEEE International Conference on

Automation, Quality and Test- ing, Robotics (AQTR),

Cluj-Napoca, Romania, 2020, pp. 1-4, doi:

10.1109/AQTR49680.2020.9130018.

