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Abstract: Spatiotemporal fusion can combine Landsat 

and MODIS photos, which have complimentary spatial 

and temporal features, to create high-resolution data. A 

deep convolutional neural network (DCNN)-based 

spatial fusing method is presented in this work to manage 

vast remote sensing data in useful applications. Landsat 

image areas are derived from low-resolution MODIS 

photos. A large number of training patches are 

previously collected with respect to different attributes 

such as color, edge and pixel statistics. Further the 

images are patched by 3x3 block size and converted to 

array to perform the DCNN training process. Regression 

based DCNN training algorithm is performed to predict 

the missing information from the local patches. The 

trained DCNN module is further used to generate the 

predicted output using the same procedure used for the 

training process. In the testing, finally the patches are 

converted into matrix to obtain the complete image 

output. Two standard files from Landsat–MODIS are 

extensively evaluated. Images are assessed using RMSE, 

MAE, RMAE, and MACE metrics. The proposed 

strategy yields more precise fusing results than sparse 

representation-based methods. From the execution of 

this work an average of RMSE, MAE, RMAE and 

MACE of 0.004, 0.09, 0.02, and 4.65 respectively 

achieved for multiple images from dataset. 

 

Keywords: Spatiotemporal, remote sensing, MODIS 

images, deep convolutional neural network. 

 

I. INTRODUCTION 

 

Huge quantities of remote sensing pictures can now be 

acquired on a daily basis thanks to the quick 

development of sensor networks for remote sensing. 

This significantly restricts the potential applications of 

remote sensing pictures and is a result of the 

technological constraints of the sensors as well as 

other variables. Fortunately, remote sensing image 

fusing is an efficient method that can be utilized to 

acquire superior high spatio-temporal- and spectral-

resolution pictures by combining the information that 

is complimentary to one another. It is described as the 

synergistic combination of two or more picture data 

sets, the goal of which is to produce a knowledge of 

the phenomena under investigation that is superior to 

the knowledge that can be achieved from the 

knowledge obtained from individual data sets.  

 

The subject of research known as image fusion has 

been around for quite some time and has seen 

significant advancements in recent years. The growing 

demand for satellite pictures with better geographic, 

temporal, and/or spectrum resolution is the driving 

force behind these advancements. In the past, 

techniques of image fusing were primarily focused on 

improving spatial resolution and integrating pictures 

from multiple input modalities. Recent developments 

in this field have shifted the emphasis of these 

techniques toward the fusion of pictures with high 

temporal frequency and fine spatial resolution. The 

previous few decades have seen the development of a 

wide variety of instruments that are carried by 

satellites. For example, the Moderate resolution 

Imaging Spectroradiometer (MODIS) instrument 

onboard the Terra and Aqua spacecraft of NASA 

captures data spanning an area of 2330 kilometers at 

various spatial (250 m, 500 m, and 1 km) and 

chronological resolutions. These satellites have been 

in operation since 1999 and 2002, respectively. 

 

This can be accomplished by combining the two sets 

of data. In general, one can divide spatiotemporal 

fusing into the following four models: 1) models based 

on transformations; 2) models based on image 

reconstructions; 3) models based on Bayesian 

statistics; and 4) models based on learning. In order to 
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conduct fusion and acquire high-resolution data at 

uncertain periods, the original picture pixels are 

transferred to an artificial space using the data 

transformation model..  

Both of these models and algorithms are adapted to 

account for changing reflectance over time. 

(STAARCH). Models that are founded on Bayesian 

theory apply the Bayesian statistical principle to 

quantitative statistics. Bayesian-based models offer a 

number of benefits when it comes to the processing of 

a variety of incoming pictures to generate improved 

projection results. On the other hand, the majority of 

the conventional algorithms described above depend 

on conditions that are predetermined in advance. 

 

When using a learning-based fusion model, there is 

typically no requirement to explicitly create fusion 

principles. It has the capability to automatically learn 

the finest fundamental characteristics from a variety of 

high-quality input datasets and produce combined 

pictures of a high-quality. Sparse representation and 

deep learning technology are the two primary 

approaches that are utilized in the construction of 

models that are based on learning at this time.. 

Through the association between these images, the 

researchers are able to extract some important feature 

information. The high-resolution pictures that are 

needed for projection are reconstructed by the 

algorithm. Although these methods are capable of 

producing superior fusing outcomes than more 

conventional methods, their ubiquitous applicability is 

restricted due to a number of constraints, such as 

patchy coding, high computational cost, and 

computational complexity. 

 

Deep learning is a technique that replicates, to a large 

extent, the functioning characteristics of the neural 

structure found in the human brain. These 

characteristics include the continuous transmission of 

information between the various neurons.  There is no 

one right method to construct an infrastructure for a 

deep learning network. Convolutional neural networks 

(CNNs) are becoming increasingly popular as a 

lightweight and effective method for the extraction of 

picture features and the reconstitution of images that 

also possesses a powerful capacity for learning. 

 

The following is an outline of this paper's primary 

segments in chronological order: In Section II, the 

pertinent resources and the suggested technique are 

both described. The third section details a number of 

experiments, along with the outcomes of those 

experiments and an analysis of the findings. In Section 

IV, we examine the effectiveness of the suggested 

network structure on various datasets, as well as the 

benefits of using such a structure. In Section V, a 

summary of the entire paper's findings is presented, 

and a prognosis for future research is discussed. 

 

II. LITERATURE SURVEY 

 

Huimin and coworkers proposed a multiscale-

attention STF network design. (MANet). The 

expanded convolution-based multiscale mechanism 

module is responsible for the extraction of particular 

characteristics from remote sensing pictures with a 

poor spatial resolution at multiple scales. The channel 

thought process easily grows accustomed the 

substantial opposes of the power source feature map 

channels to retain greater archaeological and 

geographical understanding in the further collection 

manipulative,  the non-local attention process adjusts 

the initially fusion images to obtain more precise 

suggested images by establishing the correlation 

between pixels. In the experiments, we make use of 

two separate and distinct databases. The machine 

learning-based and deep learning-based fusing 

techniques are outperformed by the MANet approach, 

which requires fewer inputs. 

 

Weisheng et al. proposed a convolutional neural 

network-based spatial merging method. This network 

received focus and multiscale processes. (MANet). 

Propose spatial merger with one set of images. These 

three steps cover most of the work. First, get feature 

maps from two different-scaled images. Use the 

focusing device to focus on the most important feature 

map information. Third, the image must be rebuilt. We 

used two standard datasets and three state-of-the-art 

spatial fusion methods to compare our results. Our 

method yields more regional detail and more precise 

time projections than prior methods. 

 

A Convolutional Neural Network was used as the 

foundation for the Multi-scene Spatiotemporal Fusion 

Network (MUSTFN) technique that was developed by 

Peng et al. (CNN). Our method combines pictures 

taken by numerous cameras, each of which have a 
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unique resolution. To do this, we make use of multi-

level characteristics. In addition to this, MUSTFN 

makes use of the multi-scale characteristics in order to 

mitigate the impacts of geometric registration 

mistakes that occur between various pictures. The 

Landsat-7 pictures with a resolution of 30 meters and 

the MODIS images with a resolution of 500 meters can 

be fused using our suggested technique, MUSTFN, 

which performs significantly better than several of the 

methods that are currently in use. This was 

accomplished by combining the data from the two sets 

of images. When combining long-term Landsat-8 

composite pictures with MODIS images over a broad 

territory, we finally demonstrated the applicability of 

MUSTFN by achieving an average rMAE of 9.18 

percent. In general, the findings of this research point 

to the viability of MUSTFN as a solution to the 

difficulties associated with image fusing.  

 

Deep learning was the foundation for an innovative 

approach to spatiotemporal integration that was 

suggested by Huang and colleagues. A focus 

multistate feature fusion network are used to create a 

network that statistically analyzes inner picture 

features for various input image characteristics. 

Combining a focus mechanism and a multistate feature 

fusion network created this network. Spatiotemporal 

fusion includes a multiscale feature fusing tool. We 

add a new edge loss function to the compound loss 

function. This lets us blend images with more edge 

information. In comparison to the current mainstream 

spatiotemporal fusion techniques, our suggested 

model achieves outstanding results on both datasets in 

terms of index performance as well as picture features. 

These results can be found by clicking here. 

 

Classical spatio-temporal fusion algorithms such as 

STARFM and SPSTFM, as suggested by Yang and 

Wang, will have significant fusion mistakes when 

phenological changes or type changes occur, 

according to their research. We suggested a novel 

method for the integration of spatiotemporal 

information based on the spatial feature information of 

the picture. This method integrates SRCNN, which 

stands for "Super-Resolution Convolutional Neural 

Network," with sparse representation. After 

combining SRCNN and sparse representation in order 

to finish the feature reconstruction of the reflectance 

change image, the reconstructed image is then 

superimposed by the time weight in order to acquire 

the anticipated reflectance image. Experiments 

demonstrate that the suggested technique is superior to 

the well-known spatio-temporal fusing algorithms 

known as STARFM and SPSTFM.  

 

The main objectives of this work is 

● To improve   novel spatiotemporal fusion 

approach with DCNN. 

● To improve the performance of the image. 

● To reduce the computational complexity and 

reduce the error of the image. 

 

III. PROPOSED METHOD 

 

Image fusion can improve the quantity of the 

information present in the images. In this work 

Landsat and MODIS images are fused to generate the 

high-resolution image output. Generally, the MODIS 

images has low resolution content when compared to 

the Landsat images. Due to high data rate, there is 

probability to loss the information while acquiring the 

image from sensor. Fig.1 shows the proposed block 

diagram for image fusion using deep convolution 

network with patching techniques. Initially the 

MODIS images are up-sampled to the size of the 

landsat images. Further it will be patched and 

converted to array to perform the training and testing 

process. DCNN based regression algorithm is used to 

predict the new information based on the previous 

samples. The images are formed after prediction by 

combining small patched to images. 
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Fig.1. Block Diagram of proposed method 

A. Image interpolation 

At some point during the process of creating a digital 

photograph, image transformation will take place. 

This may take place during the bayer demosaicing step 

or during the enhancement step. This occurs whenever 

you transform your picture from one pixel grid to 

another, whether you are resizing it or mapping it. The 

linear interpolation method is further developed into 

the bilinear interpolation method. The foundation of 

this method is the execution of interpolation in both 

directions to make an educated guess or approximation 

regarding the missing pixel value at P(x,y), The value 

of the pixel that is located at the coordinates (x, y) in 

the destination picture is represented by the "middle" 

sample, P. 

𝑃(𝑥, 𝑦) = 𝑃(𝑥1, 𝑦1) ∗ 𝑊(𝑥1, 𝑦1) + 𝑃(𝑥1, 𝑦2) ∗ 𝑊(𝑥1, 𝑦2) + 𝑃(𝑥2, 𝑦1) ∗ 𝑊(𝑥2, 𝑦1) + 𝑃(𝑥2, 𝑦2) ∗ 𝑊(𝑥2, 𝑦2)    

      (1) 

Where, W, represents the weight (or area) assigned to the pixel samples belonging to the location(𝑥1, 𝑦1), (𝑥1, 𝑦2), 

(𝑥2, 𝑦1), (𝑥2, 𝑦2).  

B. Deep Convolutional Neural Network (DCNN) 

The input layer, the convolution layer, the pooling 

layer, the full-connection layer, and the output layer 

are the primary components that make up the 

fundamental framework of the deep CNN. 
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Input picture is received and stored in matrix form by 

the input layer, which is the function of the input layer. 

Assuming that the construction of the retrograde deep 

CNN is a L layer, then 𝑥𝑙 represents the feature of No.  

𝑙 layer, 𝑙 = 1,2,3, … 𝐿.,𝑥1 = {𝑥1
1, 𝑥2

1, 𝑥3
1} where, 

𝑥1
1, 𝑥2

1, and 𝑥3
1,  represents the information contained in 

the red, green, and blue channels, in that order. The 

extraction of characteristics via the use of the 

convolution procedure is the responsibility of the 

convolution layer. The capability of the regressive 

deep CNN to articulate features will be improved if the 

design is done correctly, and this improvement will 

occur in tandem with an increase in the number of 

convolution layers. It is possible to compute the 

feature graph of the first convolution layer using the 

following formula: 

𝑥𝑗
𝑙 = 𝑓(∑𝑗−1

𝑖−1 𝐺𝑖,𝑗
𝑙 (𝑘𝑖,𝑗

𝑙 ⊗ 𝑥𝑖
𝑙−1) + 𝑏𝑗

𝑙)  (2) 

 Where 𝑘𝑖,𝑗
𝑙  and 𝑏𝑗

𝑙 are the weights of the convolution 

kernel and biases, 𝐺𝑖,𝑗
𝑙  is the connection matrix 

convolution layer and the feature graph of the 

previous convolution layer; the symbol ⊗ defines the 

convolution operation.  

The pooling layer's job is to cut down on the feature 

dimensions, so that's what it does. In most cases, the 

pooling layer comes after the convolutional layer, and 

the pooling procedure has the ability to preserve some 

degree of spatial invariance. The feature graph 𝑥𝑗
𝑙 of 

the pooling operation in the 𝑙 layer can be calculated 

as 

𝑥𝑗
𝑙 = 𝑝(𝑥𝑗

𝑙−1)      (3) 

Where 𝑝(𝑥) represents the pooling operation. 

The completely connected layer's job is to take the 

deep feature that was extracted from the layers that 

came before it and turn it into a feature vector. As a 

result, this layer is typically placed behind the layer 

that is responsible for feature separation. It is possible 

to derive the formula for computing the feature vector 

XL in the completely connected layer as 

𝑥𝑙 = 𝑓(𝑤𝑙𝑥𝑙−1 + 𝑏𝑙)     (4) 

Where 𝑤𝑙  represents the joining weight amongst two 

adjacent network layers and  𝑏𝑙 is the offset 

and 𝑓(𝑥) is the activation function. Table.1. shows the 

parameter specification of DCNN. The DCNN needs 

to Loss function of Mean squared error, Epochs of 50, 

weight decay of 0.0001, Momentum of 0.9, Initial 

learning rate of 0.01, Interpolation method of Bicubic, 

Size of training batches  of 64. 

Table 1. Parameter specification of DCNN 

Parameter Value 

Loss function Mean squared error 

Epochs 50 

weight decay 0.0001 

Momentum 0.9 

Initial learning rate 0.01 

Interpolation method   Bicubic 

Size of training batches 64 

 

IV. RESULTS AND DISCUSSIONS 

 

A. Dataset 

The Coleambally Irrigation Area (CIA) in southern 

New South Wales, Australia, was the first study site. 

From 2001 to 2002, CIA had 17 cloud-free Landsat–

MODIS image-pairs for austral summer growth 

season. CIA dataset time dynamics are crop phenology 

over a single watering season. Small area sizes make 

CIA spatially diverse. LGC is more temporally active 

due to a mid-December 2004 storm that inundated 

44% of the site. The CIA dataset used Landsat-7 

ETM+ photos atmospherically adjusted by 

MODTRAN4 [30]. Landsat-5 TM photos were 

atmospherically adjusted for the LGC file. Pre-

processing Landsat data used the Australian Geodetic 

Datum (AGD66) for geo correction. CIA and LGC 

datasets have 25 m spatial precision and 2040 × 1720 

and 2720 × 3200 image sizes, respectively. Both study 

sites use Terra MOD09GA Collection 5 MODIS 

photos with 500 m spatial resolution. The closest 

neighbor method up-sampled MODIS photos to 25 m 

to match Landsat data. Maximizing the correlation 

function between Landsat and MODIS images yielded 

an optimum offset for each MODIS image to co-

register them with sub-pixel accuracy. We used 

Landsat and MODIS bands 1, 2, 3, 4, 5, and 7 for 

experiments. We modified MODIS photos to fit 

Landsat images due to their distinct band order 

layouts. 

 

B. Evaluation metrics 

The best metric for comparing spatial fusion models is 

spectrum accuracy. RMSE, MAE, and R2 are common 

spectrum indices. The relative Mean Absolute Errors 

(rMAE) can also assess the ratio of mean absolute 

errors to true values. rMAE is one of the most reliable 

predictors of spectrum variations between expected 
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and real values. Results with rMAE below 15% are 

better. MAEC was used to assess MAE shift in various 

conditions. Spatial accuracy helps evaluate fusing 

results along with spectrum accuracy. The Edge meter 

is a solid spatial accuracy metric, so compare the mean 

difference between the reference image and fused 

image to assess spatial accuracy. Two small-area tests 

used the Edge meter because we focused on spectrum 

fusion results. Calculations: 

𝑅𝑀𝑆𝐸 = √∑𝑛
𝑖=1 (𝐹𝑖 − 𝑅𝑖)

2 1

𝑛
       (5) 

Where n is the total number of pixels in the image, 𝑅𝑖 is the reference image and 𝐹𝑖 is the fused image. 

𝑀𝐴𝐸 =  ∑𝑛
𝑖=1 |𝐹𝑖 − 𝑅𝑖|

1

𝑛
     (6) 

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝐹𝑖−𝑅𝑖)2

∑𝑛
𝑖=1 (𝐹𝑖−𝜇𝑅)2      (7) 

Where 𝜇𝑅 represents the mean value of the reference image 

𝑟𝑀𝐴𝐸 =
1

𝑛
∑𝑛

𝑖=1 |𝐹𝑖 − 𝑅𝑖|
1

𝑅𝑖
     (8) 

𝑀𝐴𝐸𝐶 =
|𝑀𝐴𝐸2−𝑀𝐴𝐸1|

𝑀𝐴𝐸1
      (9) 

𝐸𝑑𝑔𝑒𝐹𝑖,𝑗
= |𝐹𝑖,𝑗 − 𝐹𝑖+1,𝑗+1| + |𝐹𝑖,𝑗+1 + 𝐹𝑖+1,𝑗|    (10) 

 

Where 𝐹𝑖,𝑗 represents the value of pixels at ith row and jth column in fused image. 

 

C. Performance Analysis 

Table.1. shows the performance of proposed method. 

For the image 1, red channel gets RMSE of 0.08, 

 MAE of 0.63, 𝑅2 of 0.86, rMAE of 

17.39,MAEC of 26%, green channel gets RMSE of 

0.9, MAE of 0.68, 𝑅2 of 0.79, rMAE of 16.36,MAEC 

of 33%, blue channel gets RMSE of 0.12,  MAE of 

0.93, 𝑅2 of 0.82, rMAE of 18.64,MAEC of 16%, 

 For the image 2, red channel gets RMSE of 

0.085,  MAE of 0.46, 𝑅2 of 0.86, rMAE of 

16.34,MAEC of 28%, green channel gets RMSE of 

0.089, MAE of 0.48, 𝑅2 of 0.89, rMAE of 

17.82,MAEC of 29%, blue channel gets RMSE of 

0.02,  MAE of 0.23, 𝑅2 of 0.75, rMAE of 

17.64,MAEC of 34%. Table.2. shows the comparative 

Performance of proposed method. This work achieves 

RMSE of 0.004, MAE of 0.09,R^2  of 0.02, rMAE of 

4.65,MAEC of 42%  and Edge is -0.05x10-2.  

 Fig.2 shows the training performance of 

proposed method Fig.3. shows the (a) input image 1 

(b) corresponding MODIS image, (c) Fused Image of 

input image 1 (d) input image 2 (e) corresponding 

MODIS image, (c) Fused Image of input image 2.  

Table.2. Performance of proposed method 

 Channel RMSE MAE 𝑅2 𝑟𝑀𝐴𝐸 𝑀𝐴𝐸𝐶(%) 𝐸𝑑𝑔𝑒 (

× 10−2) 

Image 1 Red 0.08 0.63 0.86 17.39 26 -0.06 

Green 0.9 0.68 0.79 16.36 33 -0.03 

Blue 0.12 0.93 0.82 18.64 16 -0.36 

Image 2 Red 0.085 0.46 0.86 16.34 28 -0.28 

Green 0.089 0.48 0.89 17.82 29 -0.06 

Blue 0.02 0.23 0.75 17.64 34 -0.09 

Image 3 Red 0.36 0.41 0.82 16.52 36 -0.08 

Green 1.36 0.18 0.84 19.46 33 -0.62 

Blue 0.39 0.85 0.78 17.52 27 -0.96 

 

Table.3. Comparative Performance of proposed method 

 RMSE MAE 𝑅2 𝑟𝑀𝐴𝐸 𝑀𝐴𝐸𝐶 𝐸𝑑𝑔𝑒  

[8] 1.45 0.99  5.11  -0.06 
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[10] 0.017 - - - - - 

[11] 1.90 - - - - - 

[12] 0.0059 - - - - - 

This work 0.004 0.09 0.02 4.65 42 -0.05 

 

 

Fig.2 Training performance of proposed method 

   

(a) (b) (c) 
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(d) (e) (f) 

Fig.3. (a) input image 1 (b) corresponding MODIS image, (c) Fused Image of input image 1 

(d) input image 2 (e) corresponding MODIS image, (c) Fused Image of input image 2 

 

V. CONCLUSION 

 

In this study, we blended the geographical information 

from Landsat data with the temporal information from 

MODIS data to suggest a new technique for 

spatiotemporal fusing that is based on deep 

convolutional neural networks (DCNNs). This 

allowed us to deal with the highly non-linear 

correspondence relations that exist between MODIS 

and Landsat data. Because of this, we were able to 

successfully handle the extremely non-linear 

correspondence connections. The prediction stage was 

made up of three levels, each of which contained a 

DCNN-based prediction phase in addition to a fusion 

model. These levels were all connected to one another 

via a fusion model. These learned DCNN models and 

the fusion model served as the basis for this stage's 

predictions. The projected images that were produced 

by the DCNN model were used as intermediate 

images, and then an HPM module along with a 

suggestive weighting strategy were used to 

incorporate the information that was found in prior 

image pairs. This was done so that the prior 

information could be completely explored. The 

suggested method was shown to be superior to other 

learning-based methods through a series of 

experimental assessments that were performed on two 

benchmark datasets. As a result of carrying out this 

task, an average RMSE, MAE, RMAE, and MACE 

score of 0.004, 0.09, 0.02, and 4.65 was attained for a 

number of different pictures taken from the collection. 
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