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Abstract: Personal lifestyle, genetics, and other 

environmental factors lead to Alzheimer’s disease (AD), 

which is an irretrievable disease that demolishes the 

brain’s memory cells gradually. Early detection of AD, 

which is a significant challenge, is essential for solidifying 

the patient's quality of life and establishing efficient care 

along with the targeted medicine. Recently, in predicting 

AD, Artificial Intelligence (AI)-centric approaches, 

namely Machine Learning (ML) and Deep Learning 

(DL) have exhibited great promise. In recent days, for 

medical staff, there is an inevitable trend for detecting 

AD in disparate phases by the combination of functional 

Magnetic Resonance Imaging (fMRI) and AI approaches 

like DL. The DL algorithm’s human-level performance 

has been efficiently displayed in disparate disciplines. 

Hence, this work explains AD, the detection of AD 

utilizing Image Processing (IP) at an early stage, types of 

IP modalities utilized for the earlier detection of AD, AI 

approaches utilized in AD detection at an early stage, and 

performance comparison of AI approaches utilized in 

AD detection at an earlier stage. 
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1. INTRODUCTION 

 

Ageing of the global population leads to an increasing 

number of people with mental illness. As per recent 

studies, 50 million people are living with mental 

illness among which 60 to 70 % have AD [1]. The 

most general stage of dementia that needs wide 

medical care is AD. AD prediction’s early and 

accurate study is essential for clinical progress 

initiation along with effective patient treatment. A 

progressive, chronic, and irretrievable 

neurodegenerative disease that is clinically apparent 

by cognitive dysfunction, amnesia, and gradual loss of 

numerous other brain functions and everyday living 

independence is termed as AD [2]. A few symptoms, 

namely loss of mental functions and memory, mood 

and personality changes, along with difficulty in 

performing everyday activities, writing, routine tasks, 

understanding what people are talking about, 

speaking, and reading [3]. The 3 phases of the disease 

are very mild, mild, and moderate. In the early phase, 

the treatments have the most impact. It is estimated 

that by 2030, the worldwide disease burden of AD will 

attain $2 trillion, which requires early detection [4]. 

Hence, early diagnosis has an essential part in patient 

care along with future treatment for delaying its 

progression [5]. To slow down the abnormal 

degeneration of the brain’s neurons, researchers are 

continuing early detection of AD. In addition, it 

produced emotional and financial benefits for the 

patient’s family [6]. AD can be detected early and for 

predicting the possibility of disease, it can be 

diagnosed by IP of Magnetic Resonance Imaging 

(MRI) scans [7]. The conventional procedure for AD 

detection is described in Figure 1. 
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Figure 1: Conventional procedure for AD detection 

For detecting Alzheimer's risk with over 90% 

accuracy, researchers utilized another approach called 

AI, which could transform how medicine is practiced. 

Huge breakthroughs in Alzheimer's research could be 

led by advances in AI and ML [8]. In analyzing brain 

images for diagnosing brain diseases, a few DL 

approaches, such as Multilayer Perceptrons (MLPs), 

Convolutional Neural Networks (CNNs), Generative 

Adversarial Networks (GANs), and so on are involved 

[9].  

• CNNs: For detecting Alzheimer-affected persons’ 

active MRI scanned sheets, CNNs are utilized. It 

is performed in data collection, preprocessing and 

fine-tuning, and classification and evaluation 

phases. 

• MLPs: High-resolution visualizations of AD risk 

that can be used for precise predictions of AD 

status are generated by MLPs [10]. 

• GANs: By providing IP support, encompassing 

quality improvement for low-dose Positron 

Emission Tomography (PET) images, GANs have 

displayed application value in diagnosing AD. 

The brain shape is not deformed constantly owing to 

disease. The brain transforms its shape via a natural 

process present [11]. Differentiating the deformation 

of the shape of the brain owing to pathological reasons 

was difficult in IP even though it has benefits in 

diagnosing AD early [12]. 

The survey work is described as: the survey on AD 

detection utilizing IP at an early phase is described in 

section 2, the analysis is depicted in section 3, along 

with that section 4 deduces the work. 

 

2. LITERATURE REVIEW 

 

The IP’s use for early diagnosis of AD proved to be 

successful. Utilizing picture segmentation, vascular 

enlargement together with the brain atrophy 

identification of enlarged Vascular is attained. 

Whether the patient is healthy in the initial stage, in 

the second stage, in the third stage of AD, or else in 

the mild phase of cognitive impairment is determined 

by the enlargement’s size. In this work, AD is defined 

in section 2.1, the detection of AD utilizing IP at an 

early phase is illustrated in section 2.2, and the AI 

approaches utilized in AD detection at an early phase 

are described in section 2.3. 

2.1. ALZHEIMERS DISEASE  

 

A brain disorder that gets worse eventually is called 

AD. Variations in the brain that cause deposits of 

specific proteins characterize AD. It engenders the 

brain to shrink as well as brain cells to die eventually 

[13, 14]. Forgetting recent events or else conversations 

is included in the disease’s earlier signs. Eventually, 

serious memory issues and loss of the ability for 

performing daily tasks are progressed [15]. 
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Jessica, et al. [16] built the retinal biomarkers for the 

earliest phases of AD. The accumulation of cerebral 

amyloid absence characterized the earliest phase of 

AD pathogens. As per the analysis, elevated macular 

Retinal Nerve Fiber Layer (mRNFL) thickness was 

linked with superior diffusion tensor MRI values 

particular to AD, and the mRNFL thinning’s utility 

was potentially exhibited as a biomarker for functional 

cerebral alterations. But, whole-mount specimens 

studied lacked. 

 

Qiuting, et al. [17] described the matter alterations in 

early-phase AD as tract-specific work. From 100 

participants, Multishell Diffusion MRI data were 

acquired. As per the analysis, in the thalamic radiation, 

cingulum, along with the major of participants with 

MCI, lower Diffusion Tensor Imaging (DTI) 

fractional anisotropy and the topmost radial diffusivity 

were perceived. However, a preclinical 

cerebrovascular disease, which affects white matter 

along with the modest group sample sizes, was 

included.   

 

Mate Gyurkovics, et al. [18] explicated the mind-

wandering in healthy aging along with early-stage AD. 

This applied 3 huge cohorts completing the Sustained 

Attention to Response Task (SART) approach. As per 

the analysis, mind-wandering self-reports during the 

SART diminished as a function of age, and the AD 

group was diminished more. Previous to No-Go errors, 

the entire 3 groups produced faster responses on trials. 

Behavioral indices' importance was overrated.  

 

Oliver, et al. [19] expounded the periodontal 

pathogens along with the related intrathecal antibodies 

in the AD’s early phases. It recorded the clinical 

periodontal indices. It examined Cerebrospinal Fluid 

(CSF) for total tau protein (T-tau) along with the 

amyloid-β (A β 1-42). As per the analysis, patients’ 

periodontal destruction together with the inflammation 

was ubiquitous with no dissimilarity betwixt groups. 

Treponema, T. forsythia, and P.gingivalis species 

were detected in more than 50% of subgingival 

biofilm instances, however, neither in serum nor in the 

CSF. 

 

Ai Kimura, et al. [20] explained malnutrition with 

Behavioral and Psychiatric Symptoms of Dementia 

(BPSD) in grown-up women with mild cognitive 

impairment along with early-phase AD. Utilizing the 

Dementia Behavior Disturbance (DBD) scale along 

with the Mini Nutritional Assessment Short-Form 

(MNA-SF), nutritional status and BPSD were 

evaluated. The result showed that as per the covariance 

adjusting analysis, nutritional status was considerably 

linked with particular BPSD, encompassing “verbal 

aggressiveness/emotional disinhibition” (F = 5.87, p = 

0.016) along with the “apathy/memory impairment” (F 

= 15.38, p <0.001). 

 

2.2. DETECTION OF ALZHEIMER'S DISEASE 

USING IMAGE PROCESSING AT THE EARLY 

STAGE 

The clinical diagnosis of mental illness and AD can be 

supported by structural imaging, whose value is 

investigated as a marker for disease evolution together 

with the outcome measures for disease-modifying 

treatments by several trials [21]. For the extraction of 

features centered on the parameters, namely corpus 

callosum, hippocampus shape, and cortex thickness, 

IP is applied and contrasted [22]. 

 

Alina, et al. [23] described AD at an early phase 

utilizing IP. For diagnosis, evaluation analyses were 

performed with the chosen image, as well as the 

essential digital processing approaches were made on 

them. As per the analysis, whether the image was AD 

positive and AD negative was predicted early relying 

upon the value acquired. However, the approaches for 

the phase of the respective patient should be exhibited, 

but it wasn’t stated.  

 

Fernando, et al. [24] examined Alzheimer's early 

detection utilizing digital IP via Iridology. It applied 

the Iridology approach and an automated diagnosis 

was generated via disparate diagnoses. The evaluation 

outcomes exhibited that the applied approach acquired 

superior results with a 47.62% chance that a healthy 

person is identified as not having the estimated 

medical condition, a 74.00% that a sick patient 

acquires a diagnosis with a positive outcome, along 

with a 61.96% of correct diagnoses. 

 

Shrikant, et al. [25] explained the AD’s early detection 

utilizing IP. For processing the brain’s MRI from the 

sagittal plane, axial plane, along with coronal plane, an 

IP approach was applied. As per the analysis, the AD’s 
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early detection utilizing IP exhibited an accuracy, 

misclassification Error rate, and true positive rate 

value of 0.91666, 0.0833, and 0.91666, respectively. 

The procedure exhibited that the applied approach had 

the capacity of detecting 1 image at a time. 

 

Yash, et al. [26] explored the detection of AD utilizing 

IP. The outcome of digital images’ medical study, 

such as magnetization resonance of brain’s image scan 

was provided. The findings displayed that there was 

elevated vascular and cerebral atrophy, along with that 

proved that the brain cavity’s atrophy was analyzed 

successfully by the image gradient. However, 

distinguishing the distortion from the brain’s structure 

as natural or not was challenging. 

 

Chetan, et al. [27] explicated the AD’s early detection 

utilizing IP on MRI scans. Evaluating the IP’s utility 

on MRI scans together with estimating the likelihood 

of AD’s early detection was the goal. As per the study, 

it could help the analysis for detecting AD together 

with correlation with the psychiatric outcomes, and 

hence, could assist the doctors in detecting AD at an 

earlier phase. However, owing to age, differentiating 

betwixt atrophy would be challenging. 

 

Dr. D.J. Samatha, et al. [28] examined the AD’s earlier 

detection utilizing IP. For assisting in AD detection 

along with monitoring the disease’s progression, an 

automated approach was required. The findings 

exhibited that by estimating the measures in accuracy, 

the applied graph theory approach was efficient along 

with that differentiated the brain network’s aspects. 

But, only a limited amount of information could be 

depicted by the applied approach. 

 

2.2.1. Types of image processing modalities utilized 

for the early detection of Alzheimer's disease 

For AD’s early detection, several IP modalities types 

have been utilized. Computed Tomography (CT), 

functional MRI, structural MRI, along with PET are 

encompassed in these modalities [29]. The selection of 

modality relies on the particular research question 

together with the available sources. The early 

detection’s accuracy can be enhanced by merging 

several modalities, namely fMRI along with structural 

MRI [30, 31]. The IP modalities types utilized for 

AD’s early detection along with their findings and 

limitations are described in Table 1. 

 

Table 1: Types of image processing modalities used for the early detection of AD with its findings and limitations 

AUTHOR 

NAME 

IMAGE PROCESSING 

MODALITIES 
FINDINGS LIMITATIONS 

Safura, et al. 

[32]  
 CT 

Findings show that for Aβ plaques’ early detection 

in the AD patients’ brains, radiopeptide was proved 
as the best potential CT imaging agent  

Imaging  
agents’ broad applications have 

been limited by the manufacturing 

process 

Jiaming, et al. 

[33]  
 PET 

Preliminary results from PET Net displayed that  

graph-centric representation offered a more flexible 

and computationally inexpensive technique for AD 
analysis 

In natural images, the functional 

properties were less evidential  

Gemma, et al. 

[34] 
MRI 

As per the analysis, 1341 (34%) out of 3935 
participants progressed to AD dementia and 2594 

(66%) did not. 

The needful information in the 
index test wasn’t rendered by 24 

studies 

Uttam, et al. 

[35] 
 fMRI 

As per the acquired outcomes, other techniques’ 

accuracy in diagnosing AD was elevated by the 

combination of the hippocampal subfield together 

with the brain networks with rs-fMRI’s numerous 

measures. 

It limited the model size, which 

may damage the robustness of the 

group’s statistical investigation 

Xiaoke, et al. 

[36] 
MRI and PET 

As per the experimental results, the applied method 
of MRI and PRT had superior performance in 

diagnosing AD and found characteristics 

The performance on  
the multi-class issue wasn’t tested 

by the two-category issue 

Subin, et al. 
[37] 

MRI 

Results displayed that when contrasted with 

hippocampal volume in both, composite texture 
depicted a superior AUC for conversion to AD 

earlier (0.817 v. 0.726, p = 0.027) 

The absence of histological data 
limited the work, along with that 

the pathology reflected by the 

texture measures stays to be 
authenticated 

 

Lorenzo, et al. [38] identified the AD brain via X-ray 

Phase Contrast Tomography (XPCT). A highly 

developed non-destructive 3D multi-scale direct 

imaging from the cell via the entire brain is termed 
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XPCT. Aβ plaques’ disparate typologies and internal 

structures along with their communication with 

patho/physiological cellular and neuro-vascular 

microenvironments were exhibited by the findings. 

For the first time, XPCT facilitates amyloid-

angiopathy’s complete visualization at the capillary 

level, which was not possible to attain with 

supplementary techniques. 

Szu, et al. [39] described the plasma amyloid test as a 

pre-screening tool for amyloid PET imaging in early-

phase AD. As per the study, amongst clinically assume 

MCI along with mild dementia patients, the success 

rate for detecting amyloid PET+ patients efficiently 

elevated from 42.3 to 70.4%. Nevertheless, amyloid 

PET scans were costly, along with that the amyloid 

PET availability was limited.  

2.3. ARTIFICIAL INTELLIGENCE TECHNIQUES 

USED IN ALZHEIMER'S DISEASE DETECTION 

AT EARLY STAGE 

For AD’s early detection, AI approaches have 

emerged as promising tools. For examining medical 

data together with identifying patterns that are 

disease’s indicative, these approaches utilize advanced 

algorithms [40, 41]. DL and ML are a few generally 

utilized AI approaches in AD detection. For detecting 

AD at an early phase, these approaches can render 

precise and effective approaches, which is vital for 

efficient treatment along with care [42]. The AI 

approaches used in AD detection at an early phase 

with their findings together with the limitations are 

described in Table 2. 

Table 2: Artificial intelligence techniques utilized in AD detection at an early stage with its findings and limitations 

AUTHOR 

NAME 
TECHNIQUES FINDINGS LIMITATIONS 

Anza, et al. [43]  
Long Short-Term 

Memory (LSTM) 

Analysis displayed that the applied approach 
acquired 88.24% accuracy in predicting early AD 

and proved superior to the other mentioned 

techniques 

Some extensive follow-up was 
not utilized; thus, more 

improvement in the approaches 

was restricted 

Ruoxuan, et al. 

[44]  

Recurrent Neural 

Network (RNN) 

For AD vs. NC, the RNN method acquired 91.33% 
classification accuracy and demonstrated promising 

performance for longitudinal MRI analysis. 

It didn’t consider major imaging 
features, namely structural along 

with the functional connectivity 
networks 

ABOL, et al. [45]  
CNN and Deep Neural 

Network (DNN) 

Findings indicated that for the left and right 

hippocampi, the applied methods attained AUC 

values of 92:54% and 90:62%, respectively, and 
outperformed well in predicting AD 

The applied approach was 
verified on a comparatively little 

private dataset. 

Ahmad, et al. 

[46]  
CNN 

Results exhibited that the CNN system performed 

well with 99% classification accuracy in predicting 
early AD 

Training data provided for CNN 

seemed to be less effective 

Dilek, et al. [47] DNN 
As per the DNN, the accuracy acquired was about 

67% for predicting early AD 
Computationally expensive 

Sylvester, et al. 

[48] 

Deep NeuralNetworks 

Language Models 
(DNNLM) 

As per the results on the Dementia Bank language 
transcript clinical dataset, for the AD prediction, 

D2NNLM adequately proved and exhibited a better 

outcome 

The dataset was with limited size 

Ekin, et al. [49] 2D CNN 

Findings indicated that regarding diagnosis accuracy, 
2D CNN architectures like VGG16 along with the 

ResNet50 surpassed. VGG16 system attained 64.3% 

while ResNet50 acquired 67.1%. 

It didn’t examine significant 

volumetric latent representation 
in the system 

Halebeedu, et al. 

[50] 
DNN 

Experimental results revealed that in AD 

recognition, the Histogram of Oriented Gradients 

DNN (HOG-DNN) with the corrected Adam 

optimizer attained superior performance along with 

that exhibited a 16% improvement in classification 

accuracy 

Training data was less efficient 

Wanyun, et al. 

[51] 

3D Reversible GAN 

(RevGAN)  

Analysis specified that by utilizing the RevGAN 

approach, AD diagnosis conversion prediction’s 
performance could be considerably enhanced  

Due to the two networks in a 

GAN, namely the generator 

along with the discriminator, 
training will be unstable and slow 

sometimes 

 

Qi Wang, et al. [52] described the DL-centric brain 

transcriptomic signatures linked to the 

neuropathological together with the AD’s clinical 

severity. A DL technique was used for examining the 

RNA-seq data as of 1114 brain donors. Results 

collectively propounded that the intrinsic molecular 

variations are constituted at the cellular stage linked 
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with AD’s progression by the transcriptomic 

signatures recognized by the DL approach.  

 

Parisa, et al. [53] analyzed the DBN for early diagnosis 

of AD with many features. The findings displayed that 

with an unprecedented accuracy of about 84.0%, the 

approach can classify the cognitively normal control 

group from the early AD detection. However, a 

limitation was present in the duration of development. 

 

Changhee, et al. [54] expounded the GAN-centric 

numerous adjacent brain MRI slice reconstruction for 

unsupervised AD diagnosis. For detecting AD at 

several phases, a two-step approach utilizing GAN-

centric numerous adjacent brain MRI slice 

reconstruction was applied. As per the study, this 

system consistently detected AD at a very early phase 

with an Area Under the Curve (AUC) of 0:780, whilst 

detecting AD at the delayed phase was much more 

precise with 0:917 AUC. But, if one network learns 

too rapidly, then the other network may fail to learn. 

 

2.3.1. Performance comparison of artificial 

intelligence techniques used in Alzheimer's disease 

detection at the early stage 

For analogizing the AI approaches used in AD 

diagnosis, the performance comparison is significant 

[55]. There is a purpose for enhancing the ML or DL 

approaches’ performance as it could identify which 

approaches performed better when contrasted with all 

AI approaches [56, 57]. The performance comparison 

of AI approaches used in AD diagnosis with its 

findings and limitations is explicated in Table 3. 

 

Table 3: Performance comparison of artificial intelligence techniques utilized in the AD diagnosis with its findings 

and limitations 

AUTHOR NAME TECHNIQUES PERFORMANCE COMPARISON LIMITATIONS 

Donghyeon, et al. [58]  DNN 

Performance analysis displayed that in predicting 
early AD detection, the applied DNN approach 

surpassed with better accuracy and proved to be 

high 

The dataset applied by the 

approach in the study was 
small 

Fan Li, et al. [59]  RNN 

As per the study, for AD versus the normal control, 

the AUC area under the ROC curve achieved by the 

RNN approach was  91.0%, 75.8%, and 74.6%  

For understanding brain 

abnormalities, learned 

features have 

no adequate clinical 

information  

Petrosian, et al. [60]  RNN 

Analysis depicted that the applied RNN executed 

well and out of 7 AD patients, 5 patients identified 
the better chance performance with 80% sensitivity 

An efficient and universal 

training approach lacks 
here. 

CHIYU, et al. [61]  3D CNN and FSBI-LSTM 
For discriminating AD from Normal Control (NC), 

FSBi-LSTM achieved average accuracies of 

94.82%, 86.36%, along with the 65.35% 

Due to the cascade, the 

brain lesion 
structure can’t be identified 

directly by up-sampling or 

else deconvolution  

Aparna, et al. [62] 

Bidirectional 

Encoder Representations 
from Transformer 

(BERT)- 

As per the performance analysis, the linguistics’ 
comparative significance in cognitive impairment 

detection was rendered by fine-tuned BERT 

systems, which surpassed other DL techniques on 
the AD detection task. 

A mismatch betwixt pre-

training and fine-tuning was 

created 

KR Kruthikaa, et al. 

[63] 
CNN with 3Dautoencoder 

As per the outcomes, in AD classification, the 

applied CNN with 3D autoencoder approach was 
98.42% accurate 

The analysis needed a large 

dataset 

Shaker, et al. [64] 
Stacked CNN and 

Bidirectional LSTM 

The outcomes indicated that regression tasks’ 

performance was reliable. The data’s positive role 
on the performance together with the applied 

system’s superiority was confirmed by the DL 

system’s both classification and regression 
outcomes. 

It examined the relationship 
betwixt  AD progression 

and the patient’s 

comorbidities partially only 

 

Hoo-Chang, et al. [65] examined the performance 

analysis of GAN together with Discriminator-

Adaptive Loss Fine-tuning (GANDALF) for AD 

diagnosis as of MRI. For attaining the greatest AD 

classification performance, GAN was applied. As per 

the analysis, the applied GANDALF approach 

achieved the greatest performance in predicting early 

AD diagnosis with 37.0% accuracy, along with a 0.39 

precision rate and 0.40 recall rate. However, the 
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applied approach suffered from generating samples 

with a little illustration of the population. 

 

Wei Li, et al. [66] established AD centered on 4D 

fMRI under the DL approach’s performance. To 

extract special features, the C3d-LSTM approach was 

merged with a sequence of 3D CNNs. As per the 

analysis, the Gated Recurrent Unit (GRU)’s structure 

was simpler along with that the tensor operation was 

less contrasted to LSTM, hence it takes less time for 

training. But, the applied LSTM approach was too 

slow. 

 

3. RESULTS AND DISCUSSION 

 

The accuracies acquired by diverse CNNs for earlier 

prediction of AD along with the comparative study of 

AI approaches utilized for early AD detection are 

examined in this part. DL is regarded as a capable tool 

for performing automatic early detection of AD as of 

MRI data. Centered on extra traditional features, 

namely thicknesses along with the ROI volumes, DL 

helped for outperforming the system clearly [67]. The 

graphical illustration of disparate CNNs accuracies for 

AD at an early phase is described in Figure 2. 

 
Figure 2: Graphical representation of different CNNs accuracies for AD at the early stage 

 

Figure 2 indicates that for the study, CNN together 

with its types, such as 18 layered CNN [68] and 3 D 

CNN [69, 70] was taken. 18-layered CNN and 3D 

CNN are the 2 most significant DL algorithms, which 

are utilized for detecting AD’s preliminary periods as 

well as employed on MRI and CT scans along with the 

brain monitoring modalities. Figure 2 exhibits that 18-

layered CNN takes over the other 2 values with high 

accuracy (98%) in AD at an early phase. 

In addition, analysis had been done on performance 

comparison of AI approaches utilized for early AD 

detection. In various real-life head care models, the AI 

approach has achieved better success [71]. The 

graphical representation of a comparison of AI 

approaches via metrics utilized for early AD detection 

is expounded in Figure 3. 
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Figure 3: Comparison of artificial intelligence techniques through metrics used for the early AD detection 

Figure 3 indicates that the analysis was performed 

centered on performance metrics, such as sensitivity, 

specificity, along with the AUC utilizing AI 

approaches for early AD detection. For the AD 

diagnosis analysis, 3D CNN [72], SVM [73], 

HIERARCHIAL APPROACH [74], and ALEXNET 

[75] approaches were used. Among these, ALEXNET 

[75] approaches displayed superior results in 

identifying AD with 100% sensitivity, 98% 

specificity, and 99.13% AUC. 

 

Summary: In recent years, many systematic works 

associated with the ophthalmological field, 

particularly the eye have been done by alternative 

medicine. The opportunity for analyzing neuronal 

diseases associated with specific alterations that take 

place in the iris like Alzheimer’s was propounded by 

various studies; similarly, centered on the images’ 

digital processing, an alternative approach was formed 

for Alzheimer’s early detection. For detecting changes 

in brain structure along with the function linked to AD, 

IP approaches, specifically PET, functional and 

structural MRI, and CT have been utilized. It would be 

a simpler and more useful efficient end product that 

could help doctors in their diagnosis by using an IP 

idea. Recently, in predicting AD, AI-centric 

approaches, namely ML along with the DL have 

displayed great promise. The review had been 

discussed deeply for identifying the pros and cons of 

the approaches applied from IP for AD diagnosis. The 

researchers can further move widely to the IP concepts 

by regarding the limitation identified in this study. 

Thus, the solutions for the limitations of approaches in 

the survey like limited sample size, absence of 

histological data, the small dataset used for the study, 

et cetera can be identified. 

 

4. CONCLUSION 

 

In conclusion, for establishing efficient care along 

with targeted medicine, AD’s early detection is vital; 

however, it remains to be a difficult task. In AD’s early 

detection from medical imaging data, namely CT and 

MRI scans, digital IP approaches along with AI 

algorithms have displayed to have great potential. 

Particularly, in detecting AD at an early phase, DL 

algorithms like 18-layered CNN along with the 3D 

CNN have demonstrated promising outcomes. Also, 

for examining the accuracy of diverse AI approaches, 

including 3D CNN, SVM, Hierarchical approach, and 

AlexNet in identifying AD, performance metrics, 

namely AUC, specificity, along with sensitivity have 

been used. In detecting AD with high AUC, 

specificity, along with sensitivity values, AlexNet was 

found to have superior performance. Future work in 

this region could focus on merging functional MRI 

and AI approaches for enhancing the accuracy of early 
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AD detection, leading to earlier intervention and 

enhanced patient outcomes. 
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