
© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 104

The Outbreak of Log4shell

Varad Magare1, Satyam Shinde2, and Priyanka More3
1Varad Magare, VIT, Pune

2Satyam Shinde, Suma soft, Pune
3Priyanka More, MMCOE, Pune

Abstract—Can you fathom the existence of a highly

perilous element lurking in billions of devices since 2013,

capable of potentially commandeering over 3.5 billion of

them? It sounds utterly chaotic, doesn't it? During the

holiday season, specifically on Thursday, December 9th,

The Apache Software Foundation disclosed information

about a critical vulnerability found in Log4j, a widely

used logging library in numerous Java applications.

Malicious actors wasted no time in exploiting this flaw,

labeled "Log4Shell," which received a perfect 10 out of

10 rating on the CVSS vulnerability scale. An application

susceptible to this vulnerability could be compromised,

enabling remote code execution (RCE) on the underlying

servers.

Index Terms—Apache, Vulnerability, Log4j, Java, CVSS,

RCE.

I. INTRODUCTION

Apache Log4j is a Java-based open-source logging

library employed by applications to record data in

logs. Over the years, this Java logging utility has

gained immense popularity worldwide and become an

integral part of modern software development

practices. Utilizing open-source software like Log4j

has proven beneficial, as it saves both time and

financial resources. However, one drawback of open-

source solutions is that widespread vulnerabilities can

affect numerous companies and cloud providers.

Identifying all the applications and services utilizing

such open-source libraries can be challenging and

time-consuming.

The Java library, Apache Log4j, serves as a valuable

tool by providing essential information to ensure

smooth application performance, facilitate real-time

monitoring, and aid in troubleshooting when errors

occur.

Libraries that record messages typically save them

either in a log file or a database. In many cases, the

string undergoes processing before getting stored in

the log file. For instance, variables defined as

$(variable) can expand to show the current date, time,

or username. An example of this is using an expression

like Log.info("$[user.username] not found"), where

the $(user.username) expression can be dynamically

replaced with the actual username of the user currently

logged in. This dynamic substitution is akin to using

$() in PowerShell for string expansion and parsing.

Regarding Log4j, it utilizes JNDI (Java Naming and

Directory Interface) to fetch this information remotely

from another machine. By employing JNDI,

programmers gain the ability to look up items using

various services and protocols, such as LDAP, DNS,

Java Remote Method Invocation (RMI), and others.

II. SYNTAX OF JNDI AND USE

The syntax of JNDI: ${ jndi:protocol://server}.${}

These blocks have the potential to be nested and

combined, providing an array of intricate obfuscation

techniques that can be harnessed. malicious actors

could employ ${${lower:jn}${lower:di}}instead of

${jndi:}, enabling them to exploit the vulnerability

and retrieve information from a remote server. For

instance, they could access an environment variable

and utilize its value in an LDAP query.

Moreover, an attacker possesses the ability to specify

a personalized user-agent string for their connections.

The data collected is then stored in a log file and

subsequently processed using Log4j. Below, we

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 105

present a specially crafted user-agent string designed

to capitalize on this vulnerability:

curl http://victim.com/ -A

"${jndi:ldap://attacker.com/reference}"

III. WHAT IS THE LOG4J VULNERABILITY?

On December 9, 2021, a critical vulnerability in Log4j

came to light. The National Institute of Standards and

Technology (NIST) classified this flaw as a 10/10

severity in the National Vulnerability Database

(NVD). At that time, this whitepaper was produced,

and four common vulnerabilities and exposures (CVE)

identifiers were assigned to the issue: CVE-2021-

44228, CVE-2021-45046, CVE-2021-45105, CVE-

2021-4104.

The gravity of this vulnerability is not only due to its

susceptibility to exploitation by attackers but also

because of the widespread use of Log4j across various

industries, verticals, and companies. As of Thursday,

December 9, 2021, Logging constitutes a fundamental

principle of good programming practice and serves as

a cornerstone of proper security measures.

Log4j boasts several features that facilitate appropriate

logging of debugging and audit information. Among

these features is the utilization of a Java library known

as Java Naming and Directory Interface (JNDI).

Developers can leverage this API to interact with

directory services, like Active Directory, to access

user or directory-related data. Through JNDI, Log4j

can retrieve directory information to be included in

logs, such as the username of an individual performing

specific actions.

IV. LOCATION OF THE VULNERABILITY

The root cause of the issue can be traced back to Java

itself. Log4j is an integral part of the logging engine

integrated into various Java frameworks like Struts.

Additionally, this widely-used logger is commonly

present in enterprise applications. The severity of this

vulnerability stems from the fact that any element

within the application responsible for logging user

input could potentially be exploited. This means that

the affected component might not only be at the

surface level, in your edge web services, but could also

be deeply embedded within your application

infrastructure. Notably, even non-web interfaces

might be susceptible to exploitation, as all it takes to

trigger the vulnerability is the logging of the user's

input. The vulnerability is inherent in the logging

mechanism itself:

logger.info("Expoit Variable {} Input", input)

Consider the multitude of code lines in your

application that record values originating from user

input!

V. STEPS TO DETECT LOG4SHELL

To identify the Log4j vulnerability in the system, the

most straightforward approach involves utilizing

Canarytokens. Follow the steps provided below to

detect the Log4j vulnerability:

1. Go to canarytokens.org/generate

2. Choose "Log4Shell" from the dropdown menu.

3. Enter the desired email address to receive the

results.

4. Make a note to remember the token and the

intended testing purpose.

5. Click On Create My Canarytoken.

6. open the target application you want to test.

7. Copy and paste the whole token into various fields

and forms that the application is likely to log.

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 106

Remember to click “submit,” “confirm,” or

another associated button.

Some fields you can try:

• Search fields

• Username fields

• Password fields

• New user creation fields

• Forms with a “submit” button

Examine Outcome

Kindly verify the notification associated with your

email address upon generating the Canarytoken.

In case none of the fields you tested are found

vulnerable, you will not receive any notification.

However, if any of the fields exhibit vulnerability, you

will receive an email.

Carefully inspect the alert particulars. Make sure to

record the IP address of the application and the

hostname of the Log4Shell instance. Confirm that they

correspond to the application you are currently testing.

VI. MITIGATIONS

Eliminating the JndiLookup class

The vulnerability arises due to the utilization of JNDI

(Java Naming and Directory Interface) by Log4j,

which facilitates the loading of additional Java objects

during runtime execution. Through this mechanism,

remote naming services can be leveraged to load these

objects using various protocols, including LDAP

(Lightweight Directory Access Protocol), DNS

(Domain Name System), RMI (Remote Method

Invocation), NDS (Novell Directory Services), NIS

(Network Information Service), and CORBA

(Common Object Request Broker Architecture). By

removing the JndiLookup class, this issue can be

addressed effectively.

Applying hot patching techniques

Hot patching is the practice of applying a patch to a

running process without the need to restart it. In Java,

an instrumentation API and Java agents enable the

dynamic modification of byte code within a Java

Virtual Machine (JVM) while it is in operation. To

achieve this, a Java agent can be dynamically attached

to a JVM during runtime as a Java Archive (JAR) file.

As a response to the Log4j vulnerability, the Corretto

team at Amazon Web Services developed a Java agent.

When applied, this agent alters the behavior of the

"JndiLookup::lookup()" method, returning "Patched

JndiLookup::lookup()" instead of establishing a

connection to a remote server, thereby mitigating the

vulnerabilities in Log4j.

VII. MITIGATION

Log4j emerged as one of the most significant

vulnerabilities in recent history, presenting substantial

challenges to IT organizations at the time of its

discovery. The direct consequences of Log4j were

highly severe. Therefore, to shield organizations from

such vulnerabilities, it is imperative to regularly

update their products to the latest versions.

Additionally, organizations should continuously

monitor for new loopholes in the system and

implement a comprehensive approach to fortify their

defenses against potential vulnerabilities of this

nature.

VIII. REFERENCES

[1] Forrest Allison, Chris Thompson. “Log4Shell:

RCE 0-day exploit found in log4j, a popular Java

logging package” 2021.

[2] Alon Schindel. “Log4Shell: Wrap all your Log4j

fixes before the holidays” 2021.

[3] Sasindu Shehan, “Log4j vulnerability/Log4Shell

vulnerability (CVE-2021- 44228)” May 2022.

[4] Shantanu Patil, Swati Shriyal “Research on Log4j

vulnerability and its severity”

[5] Logging Apache Org, “Apache Log4j Security

Vulnerabilities” May 2023

