
© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 631

Building A Web-Based Plagiarism System Using Abstract

Syntax Tree and Greedy String Tiling Algorithm

Hajara John Garba1 Gilbert Aimufua2
1IT Centre Nasarawa state university, Keffi Nigeria

2Department of Computer Science, keffi Nigeria

Abstract: (ABS) Plagiarism detection is the process of

looking for similarities in documents that are electronic-

based. In the academic community, academic integrity is

a delicate subject. Consequently, it is vital to fiercely

fight them. But plagiarism is a problem everywhere.

Because there are so many documents on the internet

and it is possible to copy and paste. The early stages of

plagiarism detection involved either manual detection or

comparison to previously examined sources. The most

crucial aspect of this study is the development of a

reliable system that can test a single source of code

against a sizable external code base and assess how

similar the results are. It should be a system that can

compare offline and online source code, as most system

comparisons are done from offline to offline. However,

this new system will compare both. To protect it against

fragility and to enable quick comparison of huge source

code, an abstract syntax tree will be modified. This would

significantly lessen the problem of students plagiarizing

in their assignments and research projects. The objective

of this paper is to develop a method to identify instances

of plagiarism in sets of source codes or texts that are

submitted as part of student assignments or comparable

scenarios. The proposed approach does not rely on

external repositories, thereby enabling local assessment

of the originality of the submitted work. To achieve this

goal, the study focuses on various programming

languages, including Java, Kotlin, C++, Python, and

CSharp. By analyzing the syntax and content of the codes

or texts, the method can accurately detect possible

instances of plagiarism.

Keywords: Plagiarism, Abstract Syntax Tree, Parse,

Tokens Tracer.

I.INTRODUCTION

With the use of internet search engines, it is simple to

access a wide variety of websites that offer helpful

information for writing academic essays. In many

cases, these websites have been created by other

academic institutions for the benefit of their own

students. (Austin 2019). Following the recent global

Covid-19 outbreak, the educational profession has

further branched out into the internet space. Students

finish a lot of assignments at home and send them to

their teachers to be graded. The independent

preparation of the assignments by the student, the lack

of plagiarism, and the unlawful use of previous work

must be objectively verified. It takes a lot of effort to

individually check each one for originality, and

catching cheating pupils isn't always doable. It takes a

lot of time to independently prepare each assignment

and to manually examine each one for originality.

Additionally, it is not always possible to spot pupils

who are cheating. Plagiarism is an extremely serious

issue in academic contexts. The fact that you can copy

and paste text from a variety of online resources so

quickly makes it worse. Because the perpetrator stole

and misrepresented someone else's work as their own,

resulting into academic fraud. It speaks about a

person's integrity and honesty.

This is a common occurrence, especially in

programming courses where it is simple to clone a

successful solution. Some students simply duplicate

someone else's work without crediting the original

author because they believe that working on the

assignment may not benefit them. Students also

frequently work in groups, so they do not perceive a

breach of this kind provided that everyone has the

same solution (Ullah et al, 2019). However, different

people frequently have varied interpretations of what

plagiarism is. For instance, it is normal practice to use

the source code of a program created especially for a

firm without authorization. (Zhang et al, 2019). In a

written document, the standard text, tables, flowcharts,

picture captions, and code can all contain plagiarism.

Plagiarism can be committed by simply copying,

paraphrasing, or obscuring the language without

giving the author proper credit. By using clever editing

techniques like synonyms, rendering, restructuring,

summaries, translations, etc., the material can be

changed. The degree of plagiarism in a work can range

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 632

from simple copying and pasting to heavily translate

and disguised language. In (Caroro et al. 2020) The

SCAA (Source Code Authorship Attribution)

initiative directly threatens developers' confidentiality

and identity. Recognizing the attack's origin and its

nefarious authors, though, is crucial. Advanced

plagiarism detection technologies are being used by

Detection Model to ensure that none of the documents

have been copied, protecting the publishers'

copyrights in the process. (Wang et al, 2018). There

are various types of plagiarism, and in order to detect

them, distinct policies must be established by specific

professors, schools, faculties, and journal publishing

companies. Plagiarism for the benefit of others is a

serious infraction that may result in you losing points

for the work you plagiarized, being placed on

academic probation, or even being suspended or

kicked out of your program or institution.

Understanding what plagiarism is and how to properly

attribute each author whose work you utilize in your

own writing are the best ways to avoid being accused

of (or accidentally committing) it (Kramer, 2022).

1.1 Plagiarism Type

There are two types of plagiarism which are source

code and textual plagiarism.

1.2 Source Code Plagiarism

University students often commit this form of

plagiarism, which is difficult to identify. Students

attempt to copy in full or in part the source code

written by someone else as their own. The reuse of

someone source code without providing adequate

acknowledgment is known as source code plagiarism.

1.3 Textual plagiarism

This type of plagiarism often involves the creation of

materials that are identical to or comparable to the

original documents, reports, essays, scientific papers,

and artwork by students or researchers at academic

institutions

II.LITERATURE REVIEW

To cope with varying levels of plagiarism, from copy-

paste to high-level plagiarism, Shrestha and Solorio

(2013) presented a solution using n-grams with

different properties.

The longest common sequence technique was

designed to find semantic similarity in code. This

fuzzy matching technique is integrated with this

method to extract the longest common sequence

structure in a chunk of codes (Ullah etal, 2018).

According to (Fu et al. 2017), the Abstract Synthetic

Tree (AST) is used to capture abstract perspectives of

various source codes. Using a High-level Fuzzy Petri

net (HLFPN) based on AST, these traits are used to

predict source code plagiarism and propose a novel

technique to detect reused codes in students'

programming projects.

 In the work of Jhi et. al. (2015), the authors

described three steps recognition algorithm built on

abstract parse tree method to verify clones between C

programs. The proposed source code clone extraction

algorithm has three phases’ elementary, classification

and generalization. Their search is applied on a

datasets reserved from scholars' programming

assignments. The distinguishing of code clones in a

programming language is an important portion of

software maintenance.

Over time, there has been an increased requirement for

any news piece to be used in a functional program by

the researcher and the institution that will publish it.

Gupta et al. (2011) concentrated on paraphrase utilized

in PD from both cross-lingual and monolingual points

of view. Through a deeper examination of the

performance of the (Vector Space Model), the

difficulties of the detection process were explored.

In (Ahuja, et al, 2020) Created a system that employed

an extrinsic PD technique that was inspired by

cognition, using semantic information to identify

copied content without the requirement for human

interaction.

Application of stylometry to computer code to assign

authorship to anonymous binary or source code is

known as programming authorship. It frequently

entails dissecting and analyzing the particular patterns

and traits of the programming code, then contrasting

them with known-author computer code (Claburn,

Thomas 2018)

Expert judgment on the levels of similarity and

difference between code fragments may be provided

based on the general appearance of the code or the use

of programming idioms (MacDonell et al. 2019).

III METHODLOGY

The research methodology adopted in this paper

focuses on a web-based source code and text

plagiarism detection system in computer

programming. Methodology incorporates the use of an

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 633

Abstract Syntax Tree (AST) and the Greedy String

Tiling Algorithm for plagiarism detection. The process

involved in the architecture of the system is outlined

as follows:

1. Source Codes: The system takes source code

inputs, which are the pieces of code that need to

be analyzed for potential plagiarism.

2. Parse and AST Generator using (ANTLR4): The

source code is parsed and converted into an

abstract syntax tree using the ANTLR4 tool.

ANTLR4 is a powerful parser generator that can

handle various programming languages and

create ASTs based on the code's grammar.

3. AST Modification: After generating the AST, the

system may perform modifications or pre-

processing steps on the tree to standardize the

code representation or apply certain

optimizations.

4. Tokens Comparisons: The ASTs are then

converted into sequences of tokens, representing

various code elements like identifiers, literals, and

operators. The system compares these token

sequences to identify similarities and potential

instances of plagiarism.

3.1.Modification of Abstract Syntax Tree (AST)

From Figure1 the system architecture shows some of

the components that lead to the processes, starting

from the first phase where sources were parsed and

AST is been generated from the source’s codes using

ANTLR4 (In computer-based language recognition,

ANTLR4 (pronounced antler). Another Tool for

Language Recognition, is a parser generator that uses

LL (*) for parsing. ANTLR4 is the successor to the

Purdue Compiler Construction Tool Set (PCCTS),

first developed in 1989, and is under active

development) and the AST is further passed to the next

phased for modification. In the modification phase,

some irrelevant nodes such as nodes that are common

to all the sources (starting nodes) from the AST are

removed or replaced. Some parts of the nodes such as

TOKEN values that are literals are removed and

replaced with empty string.

The next phase is the similarity check which uses the

Greedy String Tiling Algorithm introduced by Wise.

And finally, the last step is report computation. In this

phase the system group all the works that seem similar

base on the grouping threshold the report will be

provided.

Figure 1 System Architecture Diagram

3.2 Algorithm for Comparison

1. Load source codes from source

2. If sources are not files

Process the sources without temporary storage

3. Otherwise

Store the source in a temporary location

Load the sources by combination with the size of 2

Process the sources

4. Return report

3.3 Detailed Flow of the Comparison

When comparing two strings A and B, the aim is to

find a set of sub-strings that are the same and satisfy

the following rules: Only one token from B must

match every token from A. This criterion means that

portions of the source material that have been copied

in a plagiarized program cannot be perfectly matched.

Substrings can be detected wherever they exist in the

string. According to this criterion, an assault that

involves rearranging portions of the source code is

ineffective.

Short substring matches are less dependable than long

ones, hence long substring matches are desired. Short

matches have a higher chance of being fictitious.

When the third rule is successively applied for each

matching step, a greedy algorithm with two phases

results:

Phase 1: The two strings are compared in this phase to

find the most extensive contiguous matches. Three

nested loops are used for this: In the first, all of the

tokens in string A are iterated through; in the second,

this token T is compared to each token in string B. The

innermost loop tries to make the match as long as it

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 634

can be if they are identical. The list of the longest

common substrings is gathered by these nested loops.

Phase 2: Phase 2 assigns a mark to each maximal

length match discovered in Phase 1. This indicates that

all of their tokens have been tagged and cannot be

utilized for more Phase 1 matches in a later iteration.

This satisfies the first criteria from above by

designating all the tokens a match becomes a tile and

ensures that each token will only be utilized in one

match.

Some of the matches might also overlap. In this

instance, the first match discovered is picked, with the

others being disregarded. Up until no more matches

are discovered, these two phases are repeated. The

method is guaranteed to end since each step sees a

decrease in the length of the maximal matches of at

least 1. Matches of just a few tokens would frequently

happen by chance if matches of any length were

permitted. Therefore, a minimum match length, also

known as the "Minimum Match Length," is defined to

prevent erroneous matches.

IV.RESULT AND DISCUSSION

Figure 1 shows the fundamental interface of the

application which provides users with a variety of

options to choose from. The user can select the type of

action they want to perform, whether it is text or

source code comparison. Additionally, they have the

option to choose between single or bulk mode

depending on their needs and preferences. Finally,

language selection is also available to ensure that the

results are accurate and relevant to the user's

requirements. These various choices give users greater

flexibility and control over how they use the

application in order to achieve their desired outcomes.

The outline below captures the supported operations

A. Single code comparison (Requires two source

codes)

B. Bulk comparison (Any number of source codes)

C. Selection of comparison mode (Source code or

Text)

D. Threshold (disabled by default)

E. Languages selection and

F. Button to trigger the comparison operation

Figure 2: Fundamental Interface of the Application

Figure 3 Showing Single Mode Interface

The system has the capability to provide support for

two different modes of detection, namely Single and

Bulk. When choosing the Single mode, users are able

to investigate plagiarism on just two source codes. The

interface displayed depicts the gathering of source

codes in this particular mode. There are two text areas

that permit users to input sources based on their

language mode preference. Once both sources have

been provided and a language has been selected, users

can initiate processing by clicking "process." During

this process, the system will identify any instances of

plagiarism present within the source codes. It is worth

noting that this mode operates in a straightforward

manner as both sources are parsed and processed

directly without being temporarily stored in a

directory.

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 635

Figure 4: Interface showing Sample of Output

The single source/text comparison mode allows the

user to check for plagiarism between two texts or

sources and the Engine used depends on the Language

selected. This takes the two sources or texts and as

shown in the architecture diagram, the system saves

these two files on a temporary file storage system

before being loaded by the Parser for parsing and

comparison. The ensuing report comprises of the

following:

Sources: The total number of source codes processed

for checking plagiarism

The similarity: The score of the similarity check

between the sources codes and the score is computed

on a scale of 0-1.

Suggestion: This suggests if there is plagiarism or not

based on the similarity score computed, it could be not

plagiarized, partially plagiarism, plagiarized and

totally plagiarized

The information presented below offers a thorough

and comprehensive analysis of the results obtained

from the tests conducted on various programming

languages that were used in this study. This data has

been meticulously collected and compiled to provide

valuable insights into the performance and

effectiveness of different programming languages.

The analysis takes into account several key factors,

including but not limited to, speed, efficiency,

reliability, and scalability. Through this detailed

examination of the test results, we hope to gain a better

understanding of how these programming languages

can be optimized and utilized in various contexts.

Table 4.1 Comprehensive Analysis of the Results

Test # Language Sources Score Time(seconds)

Test 1 Java 2 1.0 0.30s

Test 2 Java 2 0.71 0.38s

Test 1 Kotlin 2 0.49 0.36s

Test 2 Kotlin 2 1.0 0.41s

Test 1 CSHARP 2 1.0 0.29s

Test 2 CSHARP 2 0.0 0.33s

Test 1 PYTHON 2 0.0 0.38s

Test 2 PYTHON 2 1.0 0.40s

Test 1 C++ 2 1.0 0.31s

Test 2 C++ 2 0.62 0.37s

The results depicted in a Table 1, which is now being

visually represented below. This means that the data

has been organized and displayed in a clear and

concise manner for easy understanding. Through this

visual representation, it will be easier to analyse the

data and draw conclusions from it. The use of tables

and graphs is an effective way to present complex

information in a simplified manner, making it

accessible to a wider audience. Therefore, by

presenting the test results in both tabular and visual

forms, it allows for better comprehension and

interpretation of the data.

Figure 5: Kotlin test 1

Figure 6: Kotlin test 2

Figure 7: Java test

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 636

Figure 8: Python test 1

Figure 9: Python test 2

Figure 10: CSHARP test 1

Figure 11: CSHARP test 2

Figure 12: C++ test 1

Table 4.2

The following is the comparison result for all the

programming languages used

Prediction TP TN FP FN

Count 98 64 2 15

% 54.7% 35.8% 1.1% 8.4%

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 =

96+64

98+2+64+15
 = 0.92

Figure 13: C++ test 2

4.1 Text comparison

When it comes to comparing texts, the procedure is

quite similar to that of comparing source code.

However, there is a key difference in that the Abstract

Syntax Tree is not taken into consideration. In

addition, a specific algorithm known as the

levenshtein distance algorithm is utilized for this

particular task. This technique involves measuring the

difference between two sequences of characters by

counting the minimum number of operations required

to transform one sequence into another. While it may

seem complex, this algorithm has proven to be an

Test # Language Source
s

Score Time
(s)

Suggesti
on

Test 1 Java 2 1.0 0.30s

Test 2 Java 2 0.71 0.38s

Test 1 Kotlin 2 0.49 0.36s

Test 2 Kotlin 2 1.0 0.41s

Test 1 CSHARP 2 1.0 0.29s

Test 2 CSHARP 2 0.0 0.33s

Test 1 PYTHON 2 0.0 0.38s

Test 2 PYTHON 2 1.0 0.40s

Test 1 C++ 2 1.0 0.31s

Test 2 C++ 2 0.62 0.37s

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 637

effective method for comparing texts and identifying

any discrepancies or similarities between them. The

following is the result for comparison two texts.

Figure 14: test comparison 1

Figure 15: text comparison 2

Figure 16: Test Comparison 3

4.2 Bulk Mode Plagiarism Detection

The detection of plagiarism can be achieved through

different methods, one of which is the Bulk method.

This approach involves users uploading compressed

source code files in zip format for analysis. The

interface provided for this purpose allows users to

initiate the process easily and conveniently. Unlike the

Single Mode 2's source code comparison, the Bulk

method identifies instances of plagiarism and groups

them together based on a predetermined minimum

threshold. However, it is important to note that users

cannot specify this threshold via the interface at

present. To ensure accurate results, users must also

select the language of their uploaded sources. This

allows the system to process them appropriately using

distinct Abstract Syntax Tree processing requirements

for each programming language. Overall, the Bulk

method offers an efficient way to detect plagiarism in

large sets of source code files while maintaining high

levels of accuracy and reliability.

Figure 16: Bulk Mode Plagiarism Detection

4.3 Bulk Comparison results

The outcome of the comparison operation for

programs coded in CSharp, involving 7 sources, is

presented below. The process was completed within a

span of approximately 2 to 3 seconds. Notably, two

sources (i.e., second and third) encountered parsing

errors and were thus excluded from further analysis;

only the first, fourth, fifth, sixth and seventh sources

remained for comparison purposes. Parsing failure

occurs when the syntax employed is incorrect.

Figure 17: Interface for Uploading Sources

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 638

Figure 18:

Figure 19:

V CONCLUSION

The purpose of the study is to propose a novel method

for detecting code similarity among different

programs. The method utilizes an abstract syntax

implementation structure diagram, which has

demonstrated promising results in effectively

identifying instances of plagiarism. Compared to

existing detection methods, the approach employed in

this study has been found to be more accurate and

precise. The process involves feature quantization

calculation and translation into an abstract

implementation structure diagram. Although these

steps are complex, the study suggests that further

exploration and refinement could enhance the

method's effectiveness. The experimental results

presented in the paper showcase the potential of this

technique in identifying plagiarism while minimizing

errors. As a result, the proposed method holds

significant value as a tool for software developers and

educators alike, facilitating better plagiarism detection

and promoting academic integrity in programming and

software development environments.

VI RECOMMENDATION

The study introduces a novel method for detecting

code similarity in different programs using an abstract

syntax implementation structure diagram. The

approach shows promise in effectively identifying

plagiarism and outperforms existing detection

methods in accuracy and precision. Further

exploration is recommended to improve the method's

effectiveness, especially in handling code obfuscation

and variations. The study's experimental results

demonstrate its potential as a valuable tool for

software developers and educators in detecting

plagiarism while minimizing errors. To strengthen its

findings, extensive evaluation and benchmarking

against real-world scenarios are suggested.

Optimizing performance and addressing potential

limitations would enhance the method's applicability

and credibility.

REFERENCE

[1] Adebayo, I., Adeyemi, I., & Onumanyi, P. (2017).

Design and Abuhamad, M., Jung, C., Mohaisen,

D., & Nyang, D. (2023). SHIELD: Thwarting

Code Authorship Attribution. arXiv preprint

arXiv:2304.13255.

[2] Asghari, H., Mohtaj, S., Fatemi, O., Faili, H.,

Rosso, P., & Potthast, M. (2018). Algorithms and

corpora for persian plagiarism detection:

overview of PAN at FIRE 2016. In Text

Processing: FIRE 2016 International Workshop,

Kolkata, India, December 7–10, 2016, Revised

Selected Papers (pp. 61-79). Springer

International Publishing.

[3] Austin, M. J., & Brown, L. D. (1999). Internet

plagiarism: Developing strategies to curb student

academic dishonesty. The Internet and higher

education, 2(1), 21-33.

[4] Barrón-Cedeño, A., Potthast, M., Rosso, P., Stein,

B., & Eiselt, A. (2010, May). Corpus and

Evaluation Measures for Automatic Plagiarism

Detection. In LREC.

[5] Chae, D. K., Ha, J., Kim, S. W., Kang, B., & Im,

E. G. (2013, October). Software plagiarism

detection: a graph-based approach. In

Proceedings of the 22nd ACM international

© August 2023| IJIRT | Volume 10 Issue 3 | ISSN: 2349-6002

IJIRT 161319 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 639

conference on Information & Knowledge

Management (pp. 1577-1580).

[6] Cooper, K. D., & Torczon, L. (2012). Chapter 5-

intermediate representations. Engineering a

Compiler (Second Edition). Ed. by Keith D.

Cooper and Linda Torczon. Second Edition.

Boston: Morgan Kaufmann, 221-268.

[7] Duracik, M., Hrkut, P., Krsak, E. and Toth, S.

(2020): Abstract Syntax tree based code

Antiplagiarism System for large Project set. IEEE

Access Digital Object Identifier

10.1109/ACCESS.2020.3026422

[8] Ison, D. C. (2015). The influence of the Internet

on plagiarism among doctoral dissertations: An

empirical study. Journal of Academic Ethics, 13,

151-166.

[9] Maurer, H. A., Kappe, F., & Zaka, B. (2006).

Plagiarism-A survey. J. Univers. Comput.

Sci., 12(8), 1050-1084.

[10] Neamtiu, I., Foster, J. S., & Hicks, M. (2005,

May). Understanding source code evolution using

abstract syntax tree matching. In Proceedings of

the 2005 international workshop on Mining

software repositories (pp. 1-5).

[11] Shrestha, P., & Solorio, T. (2013). Using a

Variety of n-Grams for the Detection of Different

Kinds of Plagiarism. Notebook for PAN at

CLEF, 2013.

[12] Torres, S., & Gelbukh, A. (2009). Comparing

similarity measures for original WSD lesk

algorithm. Research in Computing Science, 43,

155-166.

[13] Ullah, F., Jabbar, S., & Al-Turjman, F. (2020).

Programmers' de-anonymization using a hybrid

approach of abstract syntax tree and deep

learning. Technological Forecasting and Social

Change, 159, 120186.

[14] Ullah, F., Wang, J., Jabbar, S., Al-Turjman, F., &

Alazab, M. (2019). Source code authorship

attribution using hybrid approach of program

dependence graph and deep learning model. IEEE

Access, 7, 141987-141999.

