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Abstract: We have covered a few optimizations of 

various Traveling Salesman Problem (TSP) variations in 

this paper, along with Ant Colony Optimization (ACO)-

based methods for TSP. Techniques for ant colony 

optimization were created for static optimization issues, 

where the input data is predetermined and does not 

change over time. Among the significant suggestions of 

this kind are various modifications to the ACO algorithm 

to improve information reuse and a population-based 

ACO algorithm created especially for dynamic 

combinatorial optimization problems. We cover the 

ACO algorithm for a time-dependent traveling salesman 

problem, hybrid ACO for a solid multiple traveling 

salesman problem, and ACO for a multi-conveyance 

TSP with a cost and time limit among these. An extensive 

survey of ACO-based solutions for TSP issues is 

presented in this paper. The experimental section 

presents computational results using various input data 

sets. 
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INTRODUCTION 

 

The traveling salesman problem (GTSP) has been put 

up by Henry-Labordere, Saksena, and Srivastava 

about visit sequencing through social organizations 

and computer record balance since the 1960s. In a 

sense, the GTSP is a combinatorial optimization 

problem. It can be defined as the challenge of locating 

a particular Hamiltonian cycle with the lowest cost in 

a complete weighted graph. 

 

Review on Optimization of Different variants of TSP: 

Finding the shortest path between a collection of n 

vertices so that, save from the starting vertex, each 

vertex is visited exactly once is the aim of the TSP, a 

combinatorial optimization problem. This problem is 

known to be NP-hard, meaning that it cannot be solved 

exactly in polynomial time, since the tour stops at the 

initial vertex. 

Coello et al. (2005) used an artificial immune system 

to solve multi-objective optimization problems. In this 

research, a method based on the clonal selection 

principle was suggested to tackle multi-objective 

optimization problems, either confined or 

unconstrained. They employed two types of mutation: 

uniform mutation applied to the clones produced and 

non-uniform mutation applied to the "not so good" 

antibodies (which are represented by binary strings 

that encode the decision variables of the problem to be 

solved).  

Bektas (2006) presented an overview of formulations 

and solution techniques for the multiple traveling 

salesman issue. The purpose of the overview was to 

analyze the problem and its practical applications, 

highlight certain formulations, and explain precise and 

heuristic solution procedures that have been proposed 

for this problem. 

To address imprecision in vehicle routing difficulties, 

Goncalves and Djadane Hsu (2007) suggested using 

fuzzy logic. This article discusses the fleet 

management of dynamic vehicles that are assigned to 

the delivery and/or pickup of items on behalf of 

consumers. Travel times and time windows are subject 

to change to create a more realistic model. They also 

present preliminary results from two approaches 

(heuristic insertion and genetic algorithm) to resolve 

the vehicle routing problem, as well as a realistic 

model created by introducing uncertain data (flexible 

time windows and fuzzy travel times) modeled by 

fuzzy logic. 

Numerous combinatorial optimization issues have 

been successfully solved using the simulated 

annealing method. In traditional simulated annealing, 

simple algorithms with a larger transition probability 

at the start of the search and a lower probability 
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towards the end of the search dictate temperature and 

local search repetition. However, these easy 

techniques may result in a less effective search 

procedure. To address this flaw, Jeong Kim Lee 

(2009) introduced an effective search technique for 

simulated annealing utilizing a fuzzy logic controller. 

This method offers an adaptive simulated annealing 

algorithm that makes use of a fuzzy logic controller 

(FLC). The search process of simulated annealing can 

be made more effective by FLC by controlling the 

temperature and the local search repetition. 

To tackle the traveling salesman problem, 

JolaiGhanbari (2010) combined Hopfield neural 

networks with data transformation techniques. An 

enhanced artificial neural network (ANN) method for 

the traveling salesman problem (TSP) is presented in 

this article. Together, they use data transformation 

techniques (DTT) and Hopfield neural networks 

(HNN) to increase the accuracy of the results and find 

the best tours with shorter overall lengths.  

Majumdar Bhunia (2011) presented a genetic solution 

for an asymmetric traveling salesman issue with 

inaccurate journey periods. This study provides a 

version of the asymmetric traveling salesman problem 

(ATSP) where, instead of a fixed (deterministic) value 

as in the conventional ATSP, the traveling time 

between each pair of cities is represented by an 

interval of values (wherein the actual journey time is 

predicted to lie).  

Deb (2011) provided a succinct overview of an 

evolutionary optimization method for multi-objective 

optimization. The principles of evolutionary multi-

objective optimization were then covered by him. 

Time-dependent fuzzy velocity was employed by Sifa 

Jiandong Keqiang (2011) to address the problem of 

urban pickup and delivery. In this research, a realistic 

model that takes into account the time-dependent 

fuzzy velocity of vehicles is proposed to handle the 

urban pickup and delivery problem. First, a simulation 

of the fuzzy velocity membership function was made 

using traffic data gathered from typical urban city 

roadways. Then, using the Alfa-Cut Set Algorithm, the 

fuzzy arrival time for the consumers was determined. 

The urban pickup and delivery problem under time-

dependent fuzzy velocity was then discussed, and the 

issue was resolved using a modified version of Tabu 

Search.  

The Fixed Destination Multi-Depot Multiple 

Travelling Salesmen Problem (MmTSP) is a problem 

where multiple salesmen leave from multiple starting 

cities and return to the starting city to form tours such 

that the tour lengths stay within predetermined bounds 

and exactly one salesman visits each city. There 

haven't been many previous studies on this issue 

because of its complexity. To tackle the problem, 

Ghafurian Javadian (2011) proposed an ant colony 

strategy for handling fixed destination multi-depot 

multiple traveling salesman concerns. The solutions 

found by using Lingo 8.0, which employs exact 

methodologies, are compared to the findings obtained 

by Ghafurian Javadian. 

Liao, Yau, and Chen (2012) presented an improved 

version of the Particle Swarm Optimization (PSO) 

technique as an evolutionary solution for Travelling 

Salesman Problems (TSP). This evolutionary process 

consists of two steps. The first phase includes fuzzy C-

Means clustering, a random swap approach, a rule-

based route permutation, and a cluster merge 

technique. By first creating a non-crossing initial 

route, this technique speeds up the suggested PSO 

algorithm's ability to solve the TSP. Using sub-clusters 

reduces complexity and enhances performance when 

handling scenarios with a high number of cities. The 

proposed Genetic-based PSO technique is then applied 

in the second phase to solve the TSP more efficiently. 

Robati, Barani, &Anaraki (2012) introduced balanced 

fuzzy particle swarm optimization for TSP, an 

adaptation of the realistic particle swarm optimization 

(PSO) technique, to address combinatorial 

optimization challenges. The foundation of this 

algorithm's development is the theory of balanced 

fuzzy sets. In the new method, both positive and 

negative membership function information are equally 

meaningful, whereas, in the classic fuzzy sets theory, 

they cannot be separated. The balanced fuzzy particle 

swarm optimization technique is used to solve the 

traveling salesman problem (TSP), a fundamental 

optimization problem.  

In 2012, Ries Beullens and Salt put forth the parameter 

setting problem is instance-specific multi-objective 

parameter tuning based on fuzzy logic to determine 

optimal parameter values for meta-heuristics. A novel 

instance-specific way to examine the trade-off 

between computational time and solution quality is 

presented: the IPTS strategy for parameter adjustment. 

A priori statistical analysis to determine the factors 

influencing heuristic performance in terms of quality 

and time for a particular kind of problem, as well as 
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the conversion of these insights into a fuzzy inference 

system rule base to return parameter values on the 

Pareto-front concerning a decision maker's preference, 

are two crucial steps in the method. 

An optimization method using ant colonies was 

presented by Changdar and Mahapatra Pal (2013) for 

the binary knapsack problem under fuzziness. They 

provide a brand-new ant colony optimization 

technique for handling binary knapsack problems. By 

using fuzzy possibility and necessity techniques, the 

suggested ant colony algorithm arrives at the best 

possible option. Computational trials using several 

data sets are provided to bolster the suggested 

methodology. 

 

Observation from known results from the previous 

experiments: Based on observations of ants' foraging 

behavior and their ability to find the shortest path 

between their colony and food sources, an algorithmic 

model was developed in 1992 to tackle a 

combinatorial optimization problem. There has been a 

rise in interest in developing ant-based algorithms 

since then, resulting in a wide range of techniques and 

applications. 

 

Description of considered variants of TSP 

1. The time-dependent traveling salesman problem: 

Formulations (Picard and Queyranne, 1978): The 

time-dependent traveling salesman problem (TDTSP) 

is a version of the classical traveling salesman problem 

(TSP) where the transition cost between node i and 

node j depends on which period node i is visited, 

knowing that one period is needed to travel from one 

node to another. 

This problem can be addressed more formally as 

follows. Let G(N; A) be an oriented graph with the 

node set N = {1, . . . , n}. For each arc (i,j) ∈ A, the 

cost 𝑐𝑖𝑗
𝑡  of traveling on the arc at period t is known, 

where t = 1, . . . , n. The time-dependent traveling 

salesman problem thus consists of finding the least 

cost Hamiltonian circuit in G, 

ξ = (𝑖1 = 1,𝑖2, . . . ,𝑖𝑛,𝑖𝑛+1 = (𝑖1  = 1), 

where the cost of tour ξ is 𝑐𝜉= 𝑐𝑖1𝑖2
1 + 𝑐𝑖2𝑖3

2 + · · · + 

𝑐𝑖𝑛𝑖𝑛+1
𝑛 . 

Fox (1973, 1980) introduced the time-dependent traveling salesman problem and gave it two very compact (but 

nonpractical) integer programming formulations. Picard and Queyranne [1978] later proposed two stronger integer 

programming formulations. The first formulation contains O(𝑛3) variables and O(𝑛2) constraints and is very similar 

to a formulation proposed by Hadley [1964] for the classical traveling salesman problem: 

𝑍𝑇3= min ∑ ∑ ∑ 𝑐𝑖𝑗
𝑡𝑛

𝑡=1
𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑖𝑗

𝑡  

∑ ∑ 𝑥𝑖𝑗
𝑡𝑛

𝑡=1
𝑛
𝑖=1 =1 , j=1,…..,n 

∑ 𝑥𝑖𝑗
1

(𝑖,𝑗)∈𝐴 =1 , 

∑ 𝑥𝑖𝑗
1

(𝑖,𝑗)∈𝐴  - ∑ 𝑥𝑗𝑖
𝑡+1

(𝑗,𝑙)∈𝐴 =0  t=2,…..n-1,j=1,…n. 

∑ 𝑥𝑖𝑖
𝑛

(𝑖,𝑙)∈𝐴  =1 

𝑥𝑖𝑗
𝑡 ∈{0,1},i=1…..n , j=1…n , t=1….n. 

This formulation illustrates that the time-dependent 

traveling salesman problem can be seen as the shortest 

path problem on a multipartite network with 

complicating constraints that are used to force the path 

to visit every node once and only once (see Fig. 1). Let 

us define (𝑖, 𝑗)𝑡as the decision of visiting arc (i,j) at 

position t and (i, t) the state indicating that node i is 

visited at position t in the tour. In this multipartite 

network, we simply associate an arc of cost 𝑐𝑖𝑗
𝑡  to every 

possible decision (𝑖, 𝑗)𝑡 which consists of going from 

state (i, t) to state (j, t +1). Considering that states (1, 

1) and (1, n+1) are respectively the source and sink 

nodes in this network, then every path going from the 

source to the sink that respects constraints (2)–(6) can 

thus be seen as a feasible solution to the TSTSP since 

it defines a Hamiltonian circuit and no solution to the 

TDTSP cannot be transposed as a path in this network. 

The use of path variables, instead of flow variables 𝑥𝑖𝑗
𝑡 ,  

deduction is possible of the second formulation of 

Picard and Queyranne for the time-dependent 

traveling salesman problem: 

𝑍𝐷𝑊(𝑇3)= min∑ (∑ ∑ ∑ 𝑐𝑖𝑗
𝑡𝑛

𝑡=1
𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑖𝑗

𝑡 )𝑝∈𝛺 θp 

∑ (∑ ∑ 𝑥𝑖𝑗
𝑡𝑝𝑛

𝑡=1
𝑛
𝑖=1 )𝑝∈𝛺 θp  =1, j=1,….,n 

Θp∈{0,1},p ∈ Ω 
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where Ω is the set of feasible paths of the multipartite network and 𝑥𝑖𝑗
𝑡𝑝

 is a constant taking value 1 if path p visits arc 

(i,j) at position t and 0 otherwise. This formulation contains only n constraints but an exponential number of columns 

and can be seen as a Dantzig and Wolfe [1960] reformulation of T3. 

 
Fig. 1. The multipartite network for a 4 cities problem. 

Despite the huge number of columns, it can be easier to solve DW(T3) than T3. Indeed, for a vector of dual variables 

π associated with constraints (8), one can find the path p associated with the variable θp that has the smallest reduced 

cost by solving the auxiliary problem: 

ZSP(T3) = min∑ ∑ ∑  𝑛
𝑡=1

𝑛
𝑗=1

𝑛
𝑖=1 ( 𝑐𝑖𝑗

𝑡  – πj)𝑥𝑖𝑗
𝑡                                    

 ∑  (1,𝑗)∈𝐴  𝑥𝑖𝑗
1   = 1,          

 ∑  (𝑖,𝑗)∈𝐴 𝑥𝑖𝑗
𝑡  - ∑  𝑥𝑖𝑗

𝑡+1
(1,𝑗)∈𝐴 =0, t= 2,…, n-1, j= 1,…, n,      

 ∑  (𝑖,𝑗)∈𝐴 𝑥𝑖1
𝑛  = 1,          

 𝑥𝑖1
𝑛 ∈ {0,1},    i= 1,… n, j= 1,…,n     

which can be solved as a shortest path problem in the multipartite network described previously. If one uses this 

subproblem to price the columns within the revised simplex algorithm (instead of the classical procedure), this can 

alleviate the difficulty of handling a huge number of columns. 

Application to single machine scheduling problems: 

TDTSP formulations can easily be extended to single-machine problems with sequence-dependent setup times. 

Let N = {1,…, n} be the set of jobs to process where the assumption is that job 1 is a dummy job used to mark the beginning and the 

end of the sequence. For each job to be processed, there is a required process time pj, a released time rj, and a setup time sij incurred if 

job j is sequenced right after i. By introducing variables Ct that give the completion time of the job in position t and by setting : 

C1 = 0  

 Ct ≥ 𝐶𝑡−1 + ∑ ∑    𝑛
𝑗=1

𝑛
𝑖=1 (sij + pj)𝑥𝑖𝑗

𝑡−1,   t = 2,…, n, 

 Ct ≥ ∑ ∑  𝑛
𝑗=1  

𝑛
𝑖=1 (rj + pj)𝑥𝑖𝑗

𝑡−1 ,   t = 2,…, n,  

we can enforce constraints on the release date of jobs. 

If we add these constraints to one of the TDTSP 

formulations presented before and we minimize 

∑  𝑛
𝑡=1 Ct instead of ∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 ∑  𝑐𝑖𝑗

𝑡 𝑥𝑖𝑗
𝑡𝑛

𝑡=1  , we thus 

obtain a valid integer programming formulation for 1 |

 rj , sij| ∑Cj. Note that for instances without 

release times, 1 |sij| ∑Cj, there is no idle time in any 

optimal solution and we do not need these inequalities 

to calculate position completion time. In this case, we 

just need to minimize ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 ∑  𝑐𝑖𝑗
𝑡 𝑥𝑖𝑗

𝑡𝑛
𝑡=1   with 

costs: 

𝐶𝑖𝑗 
𝑡 = (n – t + 1) (sij + pj). 

Similarly, problem 1|rj , sij| ∑ Tj can be modeled by 

introducing in TDTSP formulations variables Tt which 

measure the tardiness of the job processed in position 

t, and by setting: 

Tt ≥  Ct - ∑ ∑  𝑛
𝑗=1  

𝑛
𝑖=1 dj𝑥𝑖𝑗

𝑡−1
 ,    t= 2,…, n,  

Tt ≥ 0 

Since tardiness for job j is defined as max{cj – dj, 0}, 

where dj is the due date of job j. The objective of the 

problem is now 𝑚𝑖𝑛𝑡=1
𝑛 Tt (instead of min 

∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 ∑  𝑐ij
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑡=1  ). Unlike the total flow time 

problem, extra constraints are needed to evaluate the 

objective and to our knowledge, there is no way to 

model 1|sij| ∑Tj as a pure TDTSP. 

In this research, the author demonstrated how integer 

programming formulations of the time-dependent 

traveling salesman problem may be applied to single-

machine scheduling problems with sequence-

dependent setup times. Also, it was discovered how 

these formulations can be strengthened by applying 

results from the traveling salesman problem (subtour 

and 2-matching cuts), the node packing problem 

(clique cuts), and the vehicle routing problem 



© January 2024| IJIRT | Volume 10 Issue 8 | ISSN: 2349-6002 

IJIRT 162229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 427 

(Dantzig-Wolfe reformulation and k-cycle 

elimination), to finally confirm, with computational 

experiments, that it often pays to use stronger lower 

bounds, particularly those obtained with the Dantzig-

Wolfe decomposition principle. Several cases were 

solved with stronger formulations that could not be 

solved with weaker ones. 

 

2. Solid multiple traveling salesman problem in a fuzzy 

rough environment. 

Problem definition and notation  

In this section, at first, the mTSP is described in a crisp 

environment and then in the fuzz-rough environment. 

 Single depot solid mTSP: Usually, multiple TSP is 

formulated by integer programming formulations. 

However, in the case of integer programming some 

parts (variables) of the formulation may not be integer. 

In the proposed problem, the traveling cost is 

considered as a real number. The mTSP is more 

capable of modeling real-life applications than TSP 

since it handles two or more salesmen. In our proposed 

problem of solid mTSP, assuming that there are 

different conveyance facilities to travel from any city 

to any other city and travel cost is different for 

different conveyance/vehicles. 

Consider a complete directed graph G = (V, A, H), 

where V is the set of n nodes (vertices), A is the set of 

arcs, C = cijk is the cost (distance) matrix associated 

with each arc(i, j, k) ∈A using kth type conveyance, 

and H is the set of conveyances’/vehicles’ type. The 

cost matrix C can be symmetric, asymmetric, or 

Euclidean. Let there be m sales-men and all salesman 

and all salesmen start from depot city 1 and return to 

the same, depot city. Thus, the single depot solid 

mTSP consists of finding tours for m salesmen such 

that all start and end at the depot city, but the tours for 

each pair of salesmen are likely to be different, along 

with their conveyances. The maximum and minimum 

number of nodes visited by a salesman lies within a 

predetermined interval, and the goal is to minimize the 

overall cost of visiting all the nodes. 

Each salesman starts from the depot city and visits a 

set of cities exactly once using suitable conveyances 

available at the cities and returns to the depot city at 

minimum cost. Let us define xijk as a binary variable 

equal to 1, if arc(i, j, k) is in the optimal solution and 

0, otherwise. For any salesman ui is the number of 

nodes visited on that salesman’s path from the origin 

up to city i(i.e., the visit number of the ith city). Each 

salesman may visit at most W cities and at least K 

cities; thus, 1 ≤ui≤W for all i≥  2. When xi1 = 1, then 

K≤ui ≤W. Thus, the problem can be written as follows: 

Z = Minimize ∑  (𝑖,𝑗)∈𝐴 𝑎𝑛𝑑 𝑘∈𝐻 cijkxijk 

subject to ∑ 𝑥𝑗1𝑘𝑛
𝑗=2  = m, 

 ∑ 𝑥𝑖𝑗1𝑘𝑛
𝑗=2  = m, 

 ∑ 𝑥𝑖𝑗𝑘𝑛
𝑖=1  = 1,  j =2,3,…, n, and k ∈ H 

 ∑ 𝑥𝑖𝑗𝑘𝑛
𝑗=1  = 1,  i =2,3,…, n, and k ∈ H 

ui  + (W-2)xi1k  - xi1k ≤  W – 1; i = 2,3,…,n, and k ∈ H 

ui + x1ik + (2-K)xi1k  ≥ 2, i= 2,3,…,n, and k ∈ H 

xijk ∈ {0,1}, such that (i,j) ∈ A. 

The above formulation ensures that 2 ≤ K ≤ [(n-1)/m] 

and W≥K. For minimum and maximum number of 

nodes visited by each salesman is defined by constants 

5 and 6, and ui = 1 if and only if i is the first node in 

the tour for any salesman. 

The proposed genetic ant colony optimization 

algorithm: 

In this paper, they proposed a new Genetic Ant 

Colony-based algorithm to solve the proposed 

problem. At first, the pseudo-code for the proposed 

genetic ant colony optimization algorithm and then the 

algorithm is described in detail for the proposed 

problem.  

Genetic ant colony optimization algorithm ( ) 

(a) Initialization of population: 

For one to popsize repeat the following steps. [Pop 

size is the size of the population in GA.] 

(i) Randomly generate a set of N random numbers 

between 1 and N without repetition and each number 

is again associated with a vehicle type. 

(ii) Divide the sets into m subparts/subgroups (for m 

salesman problem) except the depot city. 

(iii) Rearrange each subgroup/subtotal using the ACO 

algorithm (call subroutine ALGO_ACO()). 

End For 

(b) Evolution 
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 Do While (the termination condition has not been 

reached) 

(i) Selection for mating pool 

(ii) Cyclic crossover 

(iii) Mutation 

(iv) Sequentially extract or sub-divide each 

chromosome into m subparts for each salesman 

path 

(v) Rearrange each sub-tour using ACO algorithm 

using subroutine  ALGO_ACO 

Calculate fitness for each chromosome of the 

population 

End While 

(c) Extract optimal solution for GA 

(d) Stop 

Subroutine ALGO_ACO( ) 

Initialize pheromone for each sub-tour based on 

traveling cost from city to city 

Evaluation: 

Do While (the termination condition has reached or 

not  converged) 

(i) Construct a path/solution for each ant 

(ii) Pheromone evaporation 

(iii) Pheromone update 

(iv) Refinement 

End While 

Extract the best path and return 

 

Single depot solid mTSP with fuzzy-rough travel cost 

If the cost of travel parameter of an objective function described in Eq. (3) is fuzzy-rough, this type of problem is 

called the single-objective optimization problem under fuzzy-rough environment. Then the above problem may be 

represented in the following way: 

Z= Minimize ∑      𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘̃
(𝑖,𝑗)∈𝐴 𝑎𝑛𝑑 𝑘∈𝐻  

subject to ∑ 𝑥1𝑗𝑘𝑛
𝑗=2  = m, 

∑ 𝑥𝑗1𝑘𝑛
𝑗=2  = m, 

∑ 𝑥𝑖𝑗𝑘𝑛
𝑖=1  = 1, j=2,3,…,n, and k ∈ H 

∑ 𝑥𝑖𝑗𝑘𝑛
𝑗=1  = 1, i=2,3,…,n, and k ∈ H 

ui + (W-2)x1ik - xi1k≤ W – 1; i= 2,3,…,n, and k ∈ H 

ui + x1ik + (2-K)xi1k≥ 2, i= 2,3,…,n, and k ∈ H 

xijk∈ {0,1}, such that (i,j) ∈ A. 

Here 𝑐𝑖𝑗�̃� (�̃� – L, �̃�,�̃�+ R) is assumed to be a fuzzy-rough variable, where 

�̃�ijk = ([cijk1, cijk2], [cijk3, cijk4]) is a rough variable. 

     Following existing literature can be re-written as follows: 

       Z = Minimize [𝐸( ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘)̃
(𝑖,𝑗)∈𝐴,   𝑘∈𝐻 ] 

     Minimize ∑ (
𝑐𝑖𝑗𝑘1+𝑐𝑖𝑗𝑘2+𝑐𝑖𝑗𝑘3+𝑐𝑖𝑗𝑘4)

4
+ (

(𝜎𝑅−(1−𝜎)𝐿

2
))(𝑖,𝑗)∈𝐴,   𝑘∈𝐻   

      subject to ∑ 𝑥1𝑗𝑘𝑛
𝑗=2  = m, 

∑ 𝑥1𝑗𝑘𝑛
𝑗=2  = m, 

∑ 𝑥𝑖𝑗𝑘𝑛
𝑖=1  = 1, j=2,3,…,n, and k∈H 

∑ 𝑥𝑖𝑗𝑘𝑛
𝑗=1  = 1, i=2,3,…,n, and k∈H 

ui + (W-2)x1ik – xi1k ≤ W  - 1; i= 2,3,…,n, and k ∈ H 

ui + x1ik + (2-K)xi1k ≥ 2; i = 2,3,…,n,  

xijk∈ {0,1}, such that (i,j) ∈ A. 

Thus, it describes the formulation of single depot 

mTSP in a fuzzy-rough environment. In the 

experimental section, we have depicted the 

computational results. 

The traveling salesman problem (TSP) is a well-

known NP-complete problem. Numerous scientific 

and engineering applications exist for it. A multi-

conveyance TSP, wherein many conveyances are 

present to move from one city to another, was 

proposed by Mondal and Srivastava (2022). This is a 

development of traditional TSP. via this TSP, the 

salesperson travels between cities via various modes 

of transportation and only makes one visit to each city 

for the course of the tour. The price of using different 



© January 2024| IJIRT | Volume 10 Issue 8 | ISSN: 2349-6002 

IJIRT 162229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 429 

forms of transport to go between cities varies. The goal 

of this research is to satisfy the restrictions of the 

proposed multi-conveyance TSP to discover the 

minimal cost tour utilizing an ant colony optimization 

(ACO) based technique. 

In this research, a genetic-ant colony optimization 

approach for solving a solid multiple Travelling 

Salesman Problem (mTSP) in a fuzzy rough 

environment. In solid mTSP, a set of nodes 

(locations/cities) is provided, and each city must be 

visited exactly once by the salesman, with each 

starting and ending at a depot via a separate 

transportation facility. A solid mTSP is an expansion 

of mTSP in which travelers move between cities using 

various modes of transportation. To solve a mTSP, a 

hybrid algorithm was devised that combines the 

concepts of two algorithms: the genetic algorithm 

(GA) and the ant colony optimization (ACO) 

algorithm. Each salesman chooses his or her route 

using ACO, while the GA controls the routes of other 

salesmen (to provide a comprehensive solution). A set 

of simple ACO features has been further enhanced by 

integrating a specific feature known as 'refinement'. In 

this research, the proposed technique uses cyclic 

crossover and two-point mutation to solve the 

problem. The journey cost is regarded as inaccurate 

(fuzzy-rough) and is approximated crisply using 

fuzzy-rough expectations. Computational findings for 

various data sets are presented, along with some 

sensitivity analysis. 

 

3. Solving a Multi-Conveyance Travelling Salesman 

Problem using an Ant Colony Optimization Method 

A multi-conveyance TSP was proposed where 

different conveyances are present to travel from one 

city to another city. This is an extension of classical 

TSP. In this TSP, the salesman visits all the cities only 

once during his/her tour, using different conveyances 

to travel from one city to another. The cost of traveling 

between cities using various modes of conveyance 

varies. The objective of this research is to find the 

minimum cost tour using an ant colony optimization 

(ACO) based approach by satisfying the constraints of 

the proposed multi-conveyance TSP. 

3.1 Problem definition  

 Classical TSP with cost and time limit constraints 

 In a classical two-dimensional traveling salesman 

cities use minimum cost. Let c(i,j) be the cost of 

traveling from i-th city to j-th city. The total cost limit 

is CostMAX  and the time limit is Time. Then the 

problem can be mathematically formulated as:  

 

                         

Minimize Z = ∑ =𝑁
𝑖 1∑ =𝑁

𝑗 1yijc(i, j)

     Subject to ∑ =𝑁
𝑖 1yij = 1 for j = 1, 2, . . . , N

∑ =𝑁
𝑗 1yij = 1 for i = 1, 2, . . . , N

                        ∑ =𝑁
𝑖 1∑ =𝑁

𝑗 1yijc(i, j) ≤ CostMAX

                        ∑ =𝑁
𝑖 1∑ =𝑁

𝑗 1yijt(i, j) ≤  TimeMAX 

                       

}
 
 

 
 

  (1)  

where yij = 1 if the salesman travels from city-i to city-j, otherwise yij = 0 and; CostMAX and TimeMAX are the maximum 

cost limit and time limit of the tour, respectively. Let (x1, x2, ..., xN, x1) be a complete tour of a salesman, where xi ∈ 

{1, 2, ..., N} for I = 1, 2 ,...,N and all xi are distinct. Then the above problem reduces to:  

 

 

Determine a complete tour(x1, x2, . . . , xN, x1)

     to minimize Z = ∑   𝑐𝑜𝑁−1
𝑖=1 (xi, xi + 1) + co(xN, x1)

subject to ∑   𝑐𝑜𝑁−1
𝑖=1 (xi, xi + 1) + co(xN, x1) ≤ CostMAX  

                     and ∑   𝑡𝑚𝑁−1
𝑖=1 (xi, xi + 1) + tm(xN, x1) ≤ TimeMAX

           

}
 
 

 
 

            (2) 

where co(i,j) and tm(i,j) are the travel cost and time, respectively, for traveling from the i-th city to the j-th city.  

3.2 Multi-conveyance TSP with time limit constraint  

In a multi-conveyance traveling salesman problem, a 

salesman must travel between N cities for the least 

amount of cost by taking any of the M available modes 

of transportation. In his/her trip, the salesman begins 

in one city, visits all of the cities exactly once using 

the best mode of transportation available in each city, 

and then returns to the starting city for the least amount 

of cost. Traveling from one city to another using 

various modes of transportation has varied costs and 

times. Let co(i,j,k) and tm(i, j, k) be the cost and time, 

respectively, it takes to travel from i-th city to j-th city 

using the k-th type of conveyance. The salesperson 

must then determine a complete tour (x1, x2, ..., xN, x1) 

in which a specific or different combination of 
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conveyance types (con1, con2, ... ,conN) is to be 

employed for the tour, where xi ∈ (1, 2, ..., N} for i= 

1, 2, ..., N, coni ∈ (1, 2, ..., M} and all xi ’s are distinct. 

The problem can then be expressed numerically as:  

      

Determine a complete tour (x1, x2, . . . , xN, x1) 

             and corresponding conveyance types  (con1, con2, . . . , conN) 

       to minimize Z = ∑ 𝑐𝑜𝑠𝑁−1
𝑖=1 (xi, xi + 1, coni) + co(xN, x1, conN)

                     subject to ∑   𝑐𝑜𝑁−1
𝑖=1 (xi, xi + 1, coni) + co(xN, x1, conN) ≤ CostMAX  

                 and ∑    𝑡𝑚𝑁−1
𝑖=1 (xi, xi + 1, coni) + tm(xN, x1, conN) ≤  TimeMAX 

       

}
 
 

 
 

                (3) 

where CostMAX and TimeMAX are the maximum travel cost and time limit of a complete tour, respectively, that should 

be maintained by the salesman.  
 

METHODOLOGY 

 

Proposed ACO algorithm  

In 1992, based on observations of ants’ foraging 

behavior and their ability to locate the shortest path 

between their colony and food sources, created an 

algorithmic model to solve a combinatorial 

optimization issue. Since then, there has been a surge 

in interest in developing ant-based algorithms, 

resulting in a significant variety of algorithms and 

applications. A chemical trail called pheromone is left 

on the ground by ants throughout their travels. The 

original ACO method is somewhat modified as shown 

below.  

 

Basic steps of the proposed ACO: 

1. Start 

2. Initialize parameters 

3. Initialize pheromone 

4. For i = 1 to MaxIt (Maximum number of iterations) 

5. For j = 1 to NOANT 

6. Construct a path for each ant 

7. End for 

8. Perform evaporation 

9. Perform a pheromone update for each ant's path. 

10. End for 

11. Tuning solution 

12. End 

In this study, the author presents an ACO-based 

technique for solving a multi-conveyance TSP. This is 

a new form of TSP in which a different mode of 

transport is used to move from city to city, and the total 

travel cost and tour duration are fixed. This is a new 

type of TSP in which time and expense constraints are 

set with several transportation options. A unique 

ACO-based technique was employed to solve the TSP. 

A new procedure called "tuning solution" has been 

introduced by ACO to recover better neighbor 

solutions for each path. This is a unique aspect of the 

ACO and one of this study's contributions.  

 

CONCLUSION 

 

This review paper looks into a time-sharing program 

(TSP) where a salesperson has to meet budget and time 

constraints while traveling between cities. The cost 

and time required to travel between cities differ 

depending on the mode of transportation used. The 

salesman should make the most of both the overall trip 

duration and total travel expenses. 

We have seen in this study how single-machine 

scheduling problems with sequence-dependent setup 

durations can be extended to integer programming 

formulations of the time-dependent traveling salesman 

problem. Additionally, these formulations can be 

strengthened by applying results from the vehicle 

routing problem (k-cycle elimination and Dantzig-

Wolfe reformulation), the node packing problem 

(clique cuts), and the traveling salesman problem 

(subtour and 2-matching cuts). Ultimately, 

computational experiments confirm that using 

stronger lower bounds—especially those derived 

using the Dantzig-Wolfe decomposition principle—

pays off. Stronger formulations were necessary in 

certain cases, and weaker formulations could not solve 

the problem. 

ACO-based approaches to solving multi-conveyance 

TSPs—a unique kind of TSP in which the total travel 

cost and tour duration are fixed—have not been widely 

used in methodology. This is a new version of the TSP 

where different conveyance facilities are used along 

with time and cost constraints. A novel ACO-based 

method was used to solve the TSP. ACO has 

implemented a novel process known as a "tuning 

solution" to obtain superior neighbor solutions for 

every path. This is a distinctive feature of the ACO and 

a contribution to the research. 
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Future Research Scope: The implementation of a 

probabilistic and multi-objective TSP involves many 

more steps. Additionally, a bee colony optimization 

algorithm can solve a random fuzzy type-2 TSP. 

Additionally unknown are the outcomes of multi-

depot multi-conveyance TSP using a bat algorithm. In 

a fuzzy random environment, precedence constraints 

and multiple-conveyance TSP can also be used to 

solve the TSP problems. 
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