
© March 2024| IJIRT | Volume 10 Issue 10 | ISSN: 2349-6002

IJIRT 162642 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 588

A Literature Review on Various Balanced Binary Search

Techniques

Ms.Reshma Jadhav1, Ms.N. S. Soni2, Mrs. D. V. Kirange3

1,2,3Computer Department, DYPCOE, Akurdi

Abstract—Binary Search Tree (BST) is a Basic Data

Structure in Computer Science; because of its efficient

time complexity for performing various operations such

as insertion, deletion and searching a particular value in

BST. But in the worst case of BST or unbalanced BST is

not efficient for any of the operations on BST it is just

like a linked list. In this paper we will compare various

techniques to construct a balanced BST.

Keywords— BST, AVL, RBT, LL, RR, LR, RL.

I. INTRODUCTION

Binary Search Tree is an Advanced Data Structure

used to manage data storing in such a way that Time

complexity to perform various operations such as add

record, delete record will be O(log n). To achieve this

TC BST having some properties.

1. Every Node having at most 2 children’s (2

pointers left and right)

2. If child node value less than root node it will be

placed to left side of root node

3. If child node value Greater than root node it will

be placed to right side of root node [2]

The Worst case occurs when data is in sorted form like

in ascending or descending then it will create either

right biased or left biased BST and in this case TC to

perform various operations on BST will be O (n). In

this case the BST needs to be balanced.[1]

In Present Literature Survey multiple Balancing

methods for BST were proposed and these methods

guarantee all Basic operations search, insert, delete

with TC (log n). Each method has its own advantages

and disadvantages as well different application areas

This paper introduces some balancing methods and

their comparisons as well as their applications this will

help software developers to choose most efficient BST

method.

II. EXISTING BST BALANCING METHODS

A. AVL Tree

AVL tree named after inventors Adelson Vleskii and

Landis.in 1962. In avl tree BF (balance Factor) is most

important parameter. So the node structure for AVL

tree is

Left pointer BF Data Right pointer

Fig. 2.1 AVL tree node structure

BF of each node can be calculated as

BF(X) =Height (right subtree(X)) – Height (left

subtree(X))

A binary tree is an AVL tree if B(X) ϵ {-1, 0, 1}

In worst case we need to rebalance the tree and achieve

BF property of AVL tree and this rebalancing done

through rotations. And these rotations divided into 2

parts

a) Single rotation: this rotation is used when tree

is left skewed or right skewed, single rotations are of

two types RR(right rotation) and LL (left rotation) for

key values 5,4,3 tree will be as shown below [3]

lptr BF=-2 5 rptr

lptr BF=-1 4 rptr

lprt Bf=0 3 rptr

In above fig BF of node X is -2 not in range and it is

left biased tree apply rotation and balance tree after

balancing

lptr BF=0 4 rptr

Above fig shows tree after balancing the BF of root

node is 0 which is valid

lptr BF=0 5 rptr lptr BF=0 5 rptr

© March 2024| IJIRT | Volume 10 Issue 10 | ISSN: 2349-6002

IJIRT 162642 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 589

b) Double rotation: this rotation is used when

there is unbalancing in left- right or right-left subtree

these rotations are left right (LR) rotation and right left

(RL) rotations

For keys 4, 6,5 The tree will be as shown below

lptr BF=-2 4 rptr

lptr BF=1 6 rptr

lptr BF=0 5 rptr

BF for node x is -2 which is not in range and this thee

is unbalanced tree due to right left insertion of data so

apply (RL) rotation first we apply right rotation and

then apply left rotation this is called as double rotation.

lptr BF=0 5 rptr

lptr BF=0 4 rptr

Above fig shows tree after (RL) balancing and the BF

now changes.

Operations on AVL tree:

1. Insertion

2. Deletion

3. Searching

Insertion rules for AVL tree:

Time Complexity analysis of AVL tree:

1. Insertion: AVL also follows BST properties so

insertion takes O (log n) time in worst case one

node must be rebalanced and rebalancing by

rotation takes O (1) time by rotation at each node.

So overall TC of insertion is O (log n).

2. Deletion: AVL also follows BST properties so

deletion takes O (log n) time in worst case one

node must be rebalanced and rebalancing by

rotation takes O (1) time by rotation at each node.

So overall TC of deletion is O (log n).

3. Searching: AVL tree is balanced BST so for both

average and worst case TC is O (log n)[4]

B. Red Black Tree(RB Tree)

The red-black tree was invented by Rudolf Bayer in

1972. RB tree is a balanced BST where each node

having color either red or black. In BST worst case we

apply some RB tree properties to make a BST

Balanced BST with TC O (log n) the properties are

as follows

1. It should be a binary search tree.

2. Every node having color either red or black.

3. Root node is always black.

4. The children of red colored node must be black.

5. The number of black colored nodes should be same

for all paths.

6. Every new node must be inserted with red color.

7. Every leaf must be of black color.

Operations on red-black tree:

1. Insertion

2. Deletion

3. Searching

Insertion rules in RBT:

1. Check weather tree is empty or not if it is empty

create a new node with color black

2. If tree is not empty create a leaf node with color

red.

3. If parent of new node is black then exit

4. If parent of new node is not black or red then we

have to check parents sibling of new node

a) If sibling is black then we perform rotation

and re coloring.

b) If sibling is red then we recolor the node and

check for its grandparent if grandparent is root node or

not if root node then exit else we will recolor and

recheck the node.

Example: Insert following keys into RBT

10,11,12,15

Step 1: insert 10 with color Black (insertion R1)

lptr 10 rptr Color black

Step2: insert 11 with color red (insertion R2)

lptr 10 rptr Color black

lptr 11 rptr Color Red

Step 3 insert 12 with color red (Insertion R2) but

violets RBT Property no 4 so according to insertion

R4a rule rotate and recolor

lptr 10 rptr Color black

lptr 11 rptr Color Red

lptr 12 rptr Color red

lptr BF=0 6 rptr

© March 2024| IJIRT | Volume 10 Issue 10 | ISSN: 2349-6002

IJIRT 162642 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 590

After Rotation and Recoloring

lptr 11 rptr Color black

lptr 10 rptr Color

Red

Step 4 insert 15 with color red (insertion R2) but

violates RBT property 4 so according to insertion

property 4b recolor the node

lptr 11 rptr Color black

lptr 10 rptr Color

Red

lptr 15 rptr Color red

After Recoloring

lptr 11 rptr Color black

lptr 10 rptr Color

Black

lptr 15 rptr Color red

Above is final RBT

Time Complexity analysis of RBT

1. Time complexity for inserting a node into a Red-

Black Tree is O(log n).and Rotation takes O(1)

2. Deletion: RBT also follows BST properties so

deletion takes O (log n) time in worst case one

node must be rebalanced and rebalancing by

rotation takes O (1) time by rotation at each node.

So overall TC of deletion is O (log n).

3. Searching: RBT tree is balanced BST so for both

average and worst case TC is O (log n)[1]

C. Splay Tree

Is also one of self balancing tree. Splay tree contain 6

types of rotations

• Zig rotation: Similar as right rotation

• Zag rotation: Similar as Left rotation

• Zig-Zig rotation: Similar as two right rotations

• Zag-Zag rotation: Similar as two left rotations

• Zig-Zag rotation: Similar as right left rotation

• Zag-Zig rotation: Similar as two left rotations

Time Complexity analysis of splay tree:

1. Time complexity for inserting a node into a splay

Tree is O(log n).and Rotation takes O(1)

2. Deletion: splay tree deletion takes O (log n) time

in worst case

3. Searching: Splay tree searching takes for both

average and worst case TC is O (log n)[1]

III. APPLICATIONS OF VARIOUS

BALANCED TREES

Sr. No Tree Name Application

1 AVL Tree network routing, text editor, file

system etc.

2 RB Tree data structure, memory allocator,

file system etc.

3 Splay Tree geospatial data , online algorithms

etc.

REFERENCE

[1] Fahd Mustapha Meguellati, , Djamel Eddine, “A

Survey on Balanced Binary Search Trees

methods,”)ICSAT 2021

[2] Dr.R.Chinnaiyan, Abhishek Kumar ,

“Construction of Estimated Level Based Balanced

Binary Search Tree “, ICECA 2017

[3] Siddharth Nair, Simran Singh Oberoi, Shubham

Sharma, “AVL TREE AND ITS OPERATIONS”,

IJIRT 2014

[4] Lalit Kumar, Gourav Agghi, Nishant Malik, Ajay

Anand,” A BRIEF STUDY OF BALANCING OF

AVL TREE” IJIRT 2014

lptr 12 rptr Color

red

lptr 12 rptr Color

red

lptr 12 rptr Color

black

