
© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1468

A Novel Architecture for AI-as-a-Service Applications

using Docker Containers and Kubernetes

ABHI AKSHAT1, KRITIKA TRIPATHI2, DEVANSHI MALIK3, SANDEEP KUMAR4
1, 2, 3, 4 Department of Computer Science and Engineering, Sharda University, Greater Noida, India

Abstract— AI services can broadly be separated into three

main categories: Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service

(SaaS). Businesses are using AI microservices for

automation, customer engagement, speech recognition,

data analysis, and other tasks to improve operations,

customer experiences, and innovation. However, the

platforms for adopting these services differ for different

purposes and business domains. This paper proposes a

simple architecture for a container-based AI as a Service

(AIaaS) Application that will provide all three Services -

SaaS, PaaS, and IaaS to the business on a single platform,

thereby, making it uncomplicated for them to adopt and

manage these services. This paper also discusses how using

the containers-based architecture can help in creating

such a platform with the help of Kubernetes and Docker

Indexed Terms— AIaaS, SaaS, PaaS, IaaS, microservices,

containers, Kubernetes, Docker, Containerisation.

I. INTRODUCTION

With the speed at which technology is developing these
days, artificial intelligence (AI) has developed from a
theoretical idea to a practical technology with the
potential to revolutionize many different fields. AI's
capabilities have redefined what is achievable from
healthcare to finance, manufacturing to entertainment.

In this field, researchers require thorough knowledge of
every concept and this is where the “AI as a Service”
comes as a game changer. AIaaS provides researchers
with on-demand access to AI tools, models, and
infrastructure, democratizing AI and enabling
researchers to focus on their core objectives. The term
"AI as a Service" (AIaaS) refers to a paradigm shift that
gives researchers access to advanced AI tools and
resources without the requirement for specialized
knowledge or large-scale computing equipment.
Traditionally, using AI in the research field required
significant expenditures to hire people with specialized
training, software, and hardware. AI as a service has
significantly altered this, which offers a cloud-based
framework that makes AI tools, models, and resources
available as needed. This leads researchers from
diverse backgrounds and domains to fully utilize their
potential.

This paper aims to deliver a platform based on AI as a
service broadly classified into four categories.

Software as a Service: The software-as-a-service
(SaaS) framework allows service professionals to
digitally engage and collaborate with clients using
web-based software accessible on any internet-
connected device [1]. In the software as a service
(SaaS) model, the software is accessed by users via
web browsers, mobile applications, and APIs, and is
managed and updated by the service provider on
remote servers. Users can only utilise the programme
by investing in pricey infrastructure because it is
housed on the servers of the service provider. The cost
and complexity of implementing and operating SaaS
applications have been significantly lowered because
of developments in cloud computing, which have made
it possible to provide software applications over the
Internet utilizing distant servers.

Platform as a Service: A cloud service paradigm called
Platform as a Service (PaaS) offers a platform for the
creation and implementation of cloud applications
without worrying about hardware or system software
[2]. PaaS includes middleware, development tools,
database management systems, business intelligence
(BI) services, and more in addition to infrastructure
(servers, storage, and networking). You may save
money and simplify your life by using PaaS instead of
buying and maintaining middleware, application
infrastructure, container orchestrators like Kubernetes,
development tools, and software licenses.

Infrastructure as a Service: An essential part of cloud
computing, infrastructure as a service (IaaS) offers
networking, processing, and storage capabilities to
consumers [3]. You may save money on hardware, get
real-time business insights, and lessen the upkeep of
on-premises data centres by migrating your
organization's infrastructure to an IaaS provider. You
only pay for a particular resource at the times when you
really utilise it. Each resource is offered as a separate
service component.

Container as a Service: CaaS, or Container as a Service
is a form of implementing micro services architecture
using containers. Containers are isolated environments
that replace the need for Virtual Machines. It is built on
a host OS, but every container can also have its own
OS.

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1469

Therefore, this paper aims to build a system that can
integrate all three kinds of services together in one
platform so that it is easier for businesses to adopt and
manage the services without any technical and
managerial problems. This paper discusses an
architecture for this type of platform by making a basic
platform for three kinds of services, namely- Cold
Email Writer, SEO Optimisation, and Image
Generation.
Open AI API and Llama model are used in order to
make it possible to implement the backend.
Artificial intelligence (AI) technologies are the primary
focus of OpenAI, a technology startup. It seeks to
guarantee that AI is advantageous to all people. AI
research is carried out by OpenAI is used in several
domains, including natural language processing,
computer vision, and reinforcement learning. It has
produced several powerful AI models, such as GPT-3,
which is renowned for its capacity to produce prose that
resembles that of a human. Chatbots, content creation,
and language translation are just a few of the uses for
OpenAI's technology. Enhancing text and picture
production as well as chatbot functionality in mobile
apps has shown potential when OpenAI's AI models
are combined with Flutter, an application development
platform [5].

Docker and Kubernetes for containerization offer a
practical and efficient approach to deploying and
managing microservices. Therefore, this paper uses the
implementation of Docker and Kubernetes for the
deployment of microservices [4].

By using these concepts and technologies this paper
implements a Container based architecture for AI as a
Service (AIaaS) Application. Three types of services
are tackled - Software, Platform, and Infrastructure.

Container as a Service: CaaS, or Container as a Service

is a form of implementing micro services architecture

using containers. Containers are isolated environments

that replace the need for Virtual Machines. It is built on

a host OS, but every container can also have its own

OS.

By using these concepts and technologies this paper

implements a Container based architecture for AI as a

Service (AIaaS) Application. Three types of services

are tackled - Software, Platform, and Infrastructure.

Figure 1: Basic Overview of the all-in-One-Platform

for AIaaS Services

In Figure 1 an example organization (Logix6.ai) is

mentioned. This organization has three components –

AI SaaS, PaaS, and IaaS services. In the SaaS

component, the organization is ready to use AI tools.

The PaaS component provides APIs and SDKs for a

developer to build their own applications on top of the

platform. In the IaaS component, the organizations

build customs solutions for a client using containers.

For this organization, this architecture would be

fruitful as it would provide scalability and flexibility.

II. LITERATURE SURVEY

A model and template-based method that creates test

cases and scripts automatically was introduced by

Zhou et al. [6] in 2014; this technique lowers the cost

of performance testing and finds possible problems

with performance.

Pahl et al. [7] conducted a thorough analysis of the

application of clusters and containers in edge cloud

architectures in 2015. It assesses how well edge-cloud

computing infrastructures based on containers operate

and identifies areas where they may be improved to

better satisfy the demands of industrial applications

that require speed.

It offers an orchestration and containerization

approach for robotic software applications on

heterogeneous systems, based on Docker and

Kubernetes.

Cluster as a Service (ClaaS), a container-based method

that facilitates cluster sharing and offers multi-user

support, was suggested by Wei et al. [8] in 2016. It

enables the majority of programmes to function

without change by virtualizing the cluster environment

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1470

for application frameworks. To prove its viability,

ClaaS uses lightweight containers and incorporates an

actual system named Docklet. It also emphasises

application definition in a way that makes deployment

easier. The issues of executing diverse programmes

and efficiently sharing cluster resources are addressed

by ClaaS, which provides a container-based solution

to cluster sharing with support for many users.

Container-as-a-service (CaaS) architecture is a service

paradigm that allows cloud computing to deliver

scalable systems while avoiding the drawbacks of

conventional hypervisors. Tao et al. [9] published

about it in 2018. It may be used to business process

management, enabling organisations to more

effectively and performance-focusedly outsource their

procedures to the cloud. In order to optimise business

process deployment on cloud containers, a linear

programme is suggested, and its efficacy in

comparison to conventional deployment tactics is

demonstrated.

Zhang et al.'s study [10] compared the performance of

virtual machines and containers in a large data context,

and it was completed that same year. According to the

study, virtual machines—more precisely, KVMs and

Xen virtual machines—were slower than Docker

containers. The study also looked at scaling containers

using the Kubernetes framework, which enhanced

Docker container performance over alternative

frameworks.

Using the container technology that was demonstrated,

Yao et al. [11] suggested a distributed architecture in

which each service container is matched one at a time

with a target service. A distributed architecture built

on the foundation of container technology makes up

the cloud platform. The innovation provides a

containerized cloud platform with container

management functionality. Without the need to

maintain intricate Kubernetes yaml configuration

files, the cloud platform furthermore offers container

application administration services.

The flexibility and reusability of the container-as-a-

service (CaaS) framework for service migration,

which forms the infrastructures, applications, and

services for various vendors, is demonstrated by Wang

et al. [12], demonstrating the potential benefits of this

approach for business workflow orchestration.

Resources are virtualized and segregated through the

use of containers, making it easier to create and launch

several apps independently across various vendor

systems. Computational activities and worker

processes are contained inside web services inside a

container to take use of service-based workflow

technologies and create efficient and timely

workflows for a smart city environment.

Platform-based containers are a kind of container

intended for transportation and storage, according to

Kong et al. [13]. They may be stacked for effective

storage and transportation, and they are quick and easy

to use. Usually, these containers are made up of corner

pieces, side columns, and a bottom frame. Two

switchable workstations are made possible by the side

columns' rotatably attached bottom structure. This

design reduces expenses and enhances the ease of

carrying and storing empty containers.

A microservice-based framework was developed by

Kousiouris et al. [14] in 2019; it is capable of carrying

out activities like supply chain monitoring and items

location analysis by consuming and annotating data

streams from online systems. Three blocks make up

the system: Red, Node-Red, and AI layer. The AI layer

was a key component of the study. TensorFlow is the

foundation of the AffectUs AI framework, which uses

Python 3. Dockerization of services is another. The

service's Dockerization made it possible for all of the

components to be quickly and seamlessly deployed, as

well as for their automatic configuration, connection,

and discovery.

According to Chen et al. [15], quick deployment is

possible with a big data platform architecture system

built on a container cluster. The big data platform's

cluster management and automated deployment are

made possible by container virtualization technologies

and a descriptive file that serves as a service running

unit. Using a multi-tenant architecture, the system

offers large data applications safe isolation and sharing

techniques in a multi-tenant setting.

Singularity is a containerization strategy intended for

ARC on shared HPC clusters, according to Newlin et

al. [16]. Although there are few studies assessing the

performance trade-offs of deploying AI workloads

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1471

using a container-based approach, it is a feasible

scientific container solution. The paper's authors are

not aware of any previous research that has been done

on this subject. By utilising newly created community-

developed benchmarks, they want to investigate the

trade-offs in performance that arise while executing AI

workloads in a containerized Singularity environment.

A machine learning (ML) pipeline and use cases in

several industries are highlighted in Parsaeefard et al.'s

[17] architectural scheme for providing AIaaS on

SDIs. To address the model creation and operational

stages of AI applications, the model incorporates a

novel training plane and an AIaaS plane. A placement

design that takes resource utilisation into account and

reduces the number of instantiated virtual machines

(VMs) and active physical machines (PMs) in a cloud

environment was presented by Hussein et al. [18] in

the same year.

The difficulties of delivering AI capability "as a

Service" (AIaaS) in corporate settings were covered

by Casati et al. [19] along with some suggested

solutions. The answers are based on the researchers'

experience creating, implementing, and testing AI

services with several ServiceNow clients. ServiceNow

is an Application Platform as a Service that

streamlines complicated tasks into a single cloud

platform and facilitates digital processes. A

framework and architecture are chosen that takes care

of every problem, including automation, security,

performance, efficacy, simplicity of use, and

economical resource usage.

According to Wang et al. [20], containerization

technology encapsulates HPC programmes and their

dependencies, providing a performance-efficient way

to install them. The findings demonstrate that while

default Singularity delivers performance close to bare

metal, fine-grain multi-container deployments are not

supported.

Using decentralised policies based on reinforcement

learning, Rossi et al. [21] investigated the run-time

adaptation of containerized applications with Quality-

of-Service requirements, deployed over

heterogeneous computing and networking resources,

in the same year. The applications were deployed with

elasticity and container migrations in mind.

Debauche et al. [22] used IoT and microservice

architecture in 2020 to integrate AI into the supply

chain. The Edge computing post-cloud techniques

enable jitter and latency to be improved. These

infrastructures manage containerization and

orchestration processes to enable automated and rapid

deployment and migration of services such as

ontologies, reasoning mechanisms, and customised AI

algorithms. They provide a novel architecture in this

study for implementing AI-driven microservice

models at the edge.

A framework for managing containers in a CaaS

environment—which may be used to implement AI

applications—was developed by Boukadi et al. [23].

By offering a framework to fill CDO, deploy apps on

a container orchestration system, and improve

interoperability across cloud providers, the paper

seeks to ease container administration for both users

and cloud providers.

Containers, as introduced by Subil et al. [24], have

become widely used in cloud systems because of their

lightweight design, application mobility, and

deployment flexibility. Additionally, they have been

advantageous for applications involving data analysis

and machine learning in high-performance computing

(HPC) settings. But in HPC, containers have issues

with I/O and performance, particularly with regard to

throughput. Numerous container technologies have

been studied for HPC settings, including Docker,

Podman, Singularity, and Charliecloud. The effects of

these solutions on HPC I/O throughput and how they

work with Lustre and other parallel file systems have

been taken into consideration. Scientific computing

can benefit from the usage of container-based

virtualization since it has demonstrated near-native

speed and reduced overhead in HPC applications.

A cost-effective and lightweight edge intelligence

architecture based on containerization technology was

presented by Mabrook et al. [25]. This architecture

manages, distributes, and launches edge/cloud apps

across clusters of low-power devices, such Raspberry

Pis, using Docker technology. When compared to

typical cloud computing, this method has advantages

in terms of processing time, energy efficiency, and

bandwidth savings. The efficacy of the suggested

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1472

architectural approach has been confirmed by

experimental outcomes using Raspberry Pi clusters.

A path for integrating AI into corporate processes is

presented by Reim et al. [26], who stress the

importance of organisational capacities, internal

competency development, and AI understanding.

The MODAK tool was presented by Mujkanovic et al.

[27]. It maps ideal parameters to target infrastructure

and creates optimised containers to optimise

application deployment in software-defined

infrastructures. Custom-built, optimised containers

perform better than official DockerHub images,

according to the evaluation. The complexity of neural

networks and the target hardware affect graph

compiler performance.

Janbhi et al. [28] put out a paradigm for DAIaaS

provisioning in IoE and 6G systems the same year. The

framework splits the computations involved in

training and inference into smaller, concurrent tasks

that are appropriate for the cloud, fog, and edge layers

of the network. In addition to evaluating the

framework using performance measures and

presenting case examples, the article offers

suggestions for improving performance.

According to Neuhüttler et al. [29], the use of AI has

led to significant changes in the components of

business models, including improved value

propositions, data utilisation, ecosystem collaboration,

and modified revenue models.

The idea that AIaaS providers should keep an eye on

client usage to guarantee proper use of AI services was

first presented by Javadi et al. [30]. Generally

speaking, AIaaS services offer general capability that

is "at a click" away. Given the growing interest in

AIaaS, it is critical to address the associated concerns.

The study focuses on the problems related to

accountability, regulation, and ethics in AI.

An AI service open middle station, or system that

offers a uniform and standardised platform for

accessing AI services, was proposed by Jiayi et al.

[31]. It consists of many modules, including a project

competition system, an automatic training

optimisation system, a data standardisation processing

system, and a standardisation system for service APIs.

The modules that make up this system are the access

layer, business layer, stable layer, and service layer.

This technology increases the system's flexibility and

deployment efficiency while enabling the quick and

continuous deployment of service applications.

A cloud architecture based on containers with

improved autonomy and scalability was proposed by

Kim et al. [32]. In order to provide the container-based

cloud service, user terminals are connected to the

network via a web socket, authentication keys are

generated and stored in the in-memory cluster, users

are authenticated using the keys, cloud services are

provided via the service module, event data is stored

in the in-memory cluster, it is periodically stored in a

database, and the service module is scaled.

Performance and scalability are guaranteed by the

system and technique, even when many people are

logged in at once.

According to Craig et al. [33], container-based

analysis environments enable researchers to access

and analyse large-scale datasets wherever they are

stored, hence facilitating low-barrier access to

research data. Using containers also removes the need

to physically move big datasets and addresses privacy

issues by allowing research apps to be run and

evaluated on the data owner's infrastructure. By giving

researchers access to data that would otherwise be

unavailable and enabling the reproducibility and reuse

of scientific findings, these container-based

techniques have the potential to completely transform

the analysis of research data.

According to Kim et al. [34], a web socket is used to

link user terminals and an access server to the network

in order to deliver a cloud service based on containers.

An authorised user receives the cloud service via a

container-structured service module, and the in-

memory cluster stores event data created during

service provisioning. Periodically, a database is used

to store the event data. Databases, a server module, and

an in-memory cluster are all part of the system. A

container-structured data access control module

allows the server module to access the databases and

leverages the event data to deliver the cloud service.

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1473

An AI-as-a-service stack implementation was

presented by Lins et al. [35] in 2021, which enables

the construction of a system with user-friendly

features and smooth sailing. The stack featured

building blocks and ready-to-use AI applications in the

form of AI software services (which relate to the

traditional SaaS cloud layer). Tools for helping

developers build code to bring forth AI capabilities are

known as AI developer services (related to the

standard PaaS cloud layer). However, there was no

implementation offered for the same.

A container-based edge computing system for smart

healthcare applications was presented by Tuan et al.

[36] in 2021. The solution centralises patient data in a

safe, scalable, and fault-tolerant database by using a

strong cloud computing architecture. The suggested

system also uses a lightweight container orchestration

framework to create AI applications for high

availability, scalability, deployment automation, and

efficient administration.

Using openSUSE Kubic, Pratama et al. [37]

concentrated on the technical implementation and

deployment of CaaS, the fusion of containers with

cloud computing, emphasising its dependability and

user-friendliness for software development. Software

developers may increase the speed and scalability of

software development with the use of Caas.

The practises and difficulties involved in creating deep

learning (DL) and machine learning (ML) models as

components of large software-intensive embedded

systems are examined in a multi-case study presented

by John et al. [38] in 2022. In order to maximise model

design and business integration, they provide a

conceptual framework complete with activities,

iterations, and triggers.

In order to ensure that AI frameworks operate in an

isolated container environment with user credentials,

Kumar et al. [39] describe how Docker containers may

be utilised in safe shared multi-GPU systems without

requiring any changes or raising security issues.

Pre-processing, post-processing, and the model itself

are all included in the AI service architecture that Shah

et al. [40] suggested for edge devices that same year.

The suggested design is appropriate for microservice

architecture as it specifies interfaces for the AI

service's configuration and access. The study also

discusses an explicit content-blocking device that

checks if material is explicit based on an explicit URL

list using explicitness determination model files.

According to a research by McMillan et al. [41],

artificial intelligence (AI) can offer crucial cognitive

insights for handling and executing complex and

unpredictable systems. Tasks like time series

prediction, consumer segmentation, and energy

management systems design have been tackled with

the use of artificial intelligence techniques like deep

learning and unsupervised learning. Improved service

outcomes, flexibility in response to changing

circumstances, and increased productivity across a

range of industries, including industry and healthcare,

are some of the possible advantages of incorporating

AI into infrastructure systems.

Software Testing: An Analysis and Comparison of

Artificial Intelligence Methods [42] because manual

testing is not a practical solution. The difficulties of

reducing software lifecycles and meeting deadlines

have been addressed by AI-powered automated

testing, which has made it possible to execute

complete test suites on every update in a timely

manner. The use of artificial intelligence (AI)

principles, such as neural networks, machine learning,

deep learning, and expert systems, may make software

testing less difficult and time-consuming.

III. METHODOLOGY

The entire architecture is based on two levels - SaaS

level and PaaS level. This model is an architecture for

any company that has the following two features. The

entire architecture is container-based. Each

application or service is hosted in its separate

container. Each docker container has an infrastructure

layer on top of which is the host operating system. The

Docker engine runs on top of the host operating

system. It provides a way to run several isolated

containers. As each container does not need any shared

data among them. Figure 1 shows the architecture of a

container.

Here each model is a separate container with its own

OS, libraries, and data. Using this architecture makes

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1474

the system scalable if traffic increases, we can simply

add more containers and use the docker image file of

the previous container to replicate it. The main

architecture is divided into two parts - SaaS and PaaS.

Firstly, SaaS level. SaaS level will provide ready-to-

use services. It is a frontend that is used to interact with

the services. It will have modules such as

authentication, user subscriptions, and more.

Docker containers employ a client-server model where

the Docker client interacts with the Docker daemon,

responsible for managing containers and images.

Docker images are immutable, layered templates that

include an application and its dependencies.

Containers are runnable instances of images, isolated

from each other and the host system, ensuring

consistency and portability. Docker registries store

and distribute images, with Docker Hub being a

prominent public registry. Docker Compose simplifies

multi-container application management, and Docker

provides networking and volume solutions for inter-

container communication and data persistence,

making it a versatile and widely used technology for

containerization and application deployment.

Figure 2: Basic Architecture of a General Docker

Container

The server runs a Kubernetes cluster which is

responsible for managing the containers. The

deployment and management of containerized apps

are made easier by the open-source Kubernetes

container orchestration platform. It functions inside a

group of computers that consists of a master node and

several worker nodes. Worker nodes execute

containers within Pods, while the master node holds

essential components including the API server, etc,

controller manager, and scheduler. To maintain the

necessary duplicates, these Pods may be maintained

by Replication Controllers and ReplicaSets.

ConfigMaps and Secrets handle configuration and

confidential data, while Services and Ingress offer

networking options. Kubernetes is a crucial tool for

automating the deployment and scaling of applications

in a containerized environment because it makes sure

that the cluster's real state matches the expected state

even in the face of node failures or scaling

requirements.

Figure 3: Architecture of the implementation of the

Proposed Methodology

The Representational State Transfer (REST)

architectural style is followed in the construction of a

RESTful server. A stateless server, or one that does not

retain any state information about its clients or their

requests, is one of the major characteristics of a

RESTful server. Rather, every request that comes in

from a client has all the data that the server needs to

process and reply to it. Because the server does not

need to maintain track of client sessions or other

stateful data, the stateless design helps to simplify and

increase the scalability of the server architecture.

With the help of the following technologies, a robust

and non-redundant architecture could be developed. It

is simple to implement and deploy. Also, with the help

of Docker Container, scaling.

IV. RESULTS AND DISCUSSION

Using the architecture, a simple AI-as-a-service was

made. It has two components - SaaS and PaaS and

targets 5 services - Cold Email generator, Image

Generator, Copywriting tools, SEO optimizer, and

advertisement assistant. For the backend server

NodeJS was used and to manage the docker container

Kubernetes was used.

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1475

For the SaaS part, a front end is built for the user to

interact with. A Server is made that hosts all the

containers for each service is managed by Kubernetes,

and will be deployed to the cloud.

The server is made RESTful so that it's stateless and

does not require to know the type of request that is

coming to it. With the help of this feature, a single

server was made to handle both end-user applications

and API requests for services to be used by other

applications.

For the PaaS part, there is an API gateway that handles

all the API requests and sends the request to the same

backend server. API management service is

used to handle all the requests. The same server is used

for both the SaaS and PaaS implementations as it is a

RESTful server.

Figure 4: Architecture of the proposed AIaaS

Application

This implementation provided a sense that this

architecture can be used by any organization that

wishes to implement Ai-as-a-service model and

provide SaaS and PaaS features. Having contains

eliminates the need of having multiple backend

services that do the same thing. Use the RESTful

architecture a single backend server was able to handle

both the End-user applications and API

requests. Although the implementation done in this

paper was pretty basic, this architecture holds the

potential for larger applications.

CONCLUSION

This paper focuses on the architecture and purpose of

a simple and efficient model for an AI product that has

SaaS and PaaS components. A simple application was

implemented using this architecture. Technologies

like Docker, Kubernetes, streamlit, and Python were

used. This paper was able to accomplish the following

using the architecture.

FUTURE SCOPE

As this paper provided only the architecture and

proper testing was not done. Further rigorous testing is

required. Also, many more technologies could be

added like Kafka, load balancers, and many more.

Also, a proper application following the architecture is

to be built. Optimizing the architecture is also a major

task for future work. Making the model more scalable

is also a major concern. Although because of docker

and Kubernetes, the model is highly scalable but

adding cloud integration could potentially make

it more scalable.

REFERENCES

[1] Raghu, Chilukuri., Aymeric, Grassart., Karnig,

Kerkonian., Harry, Madanyan., Rudy, Minasian.,

Thanadham, Thaveesaengsiri., John, Tran.

(2015). Software as a service framework for the

digital engagement and conclusion of clients by

service professionals.

[2] Dinkar, Sitaram., Geetha, Manjunath. (2012).

Platform as a Service. 73-152. doi:

10.1016/B978-1-59749-725-1.00003-2

[3] Shamim, Hossain. (2013). Infrastructure as a

Service. 146-169. doi: 10.4018/978-1-4666-

2187-9.CH002

[4] Sasaki,, Ken-ichi. (2022). Containerizing

Microservices Using Kubernetes. 213-230. doi:

10.1007/978-1-4842-8832-0_9

[5] (2023). Building Smart Mobile Apps with Flutter

and OpenAI AI-Powered Text and Images and

Chatbots. International Journal For Science

Technology And Engineering, 11(6):904-908.

doi: 10.22214/ijraset.2023.53796

[6] Zhou, J., Zhou, B., & Li, S. (2014). Automated

Model-Based Performance Testing for PaaS

Cloud Services. 2014 IEEE 38th International

Computer Software and Applications

Conference Workshops, 644-649.

[7] Claus, Pahl., Brian, Lee. (2015). Containers and

Clusters for Edge Cloud Architectures -- A

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1476

Technology Review. 379-386. doi:

10.1109/FICLOUD.2015.35

[8] Wei, Cui., Hanglong, Zhan., Bao, Li., Hu,

Wang., Donggang, Cao. (2016). Cluster as a

Service: A Container Based Cluster Sharing

Approach with Multi-user Support. 111-118.

doi: 10.1109/SOSE.2016.16

[9] Ye, Tao., Xiaodong, Wang., Xiaowei, Xu.,

Guozhu, Liu. (2018). Container-as-a-service

architecture for business workflow. International

Journal of Simulation and Process Modelling,

13(2):102-115. doi:

10.1504/IJSPM.2018.10012815

[10] Qi, Zhang., Ling, Liu., Calton, Pu., Qiwei, Dou.,

Liren, Wu., Wei, Zhou. (2018). A Comparative

Study of Containers and Virtual Machines in Big

Data Environment. arXiv: Distributed, Parallel,

and Cluster Computing

[11] Yao, Xiabing., Hu, Linhong. (2018). Contain

cloud platform and server.

[12] Ye, Tao., Xiaodong, Wang., Xiaowei, Xu.,

Guozhu, Liu. (2018). Container-as-a-service

architecture for business workflow. International

Journal of Simulation and Process Modelling,

13(2):102-115. doi:

10.1504/IJSPM.2018.10012815

[13] Kong, Heqing., Li, Shengqi., Zhang, Qianxian.,

Zhao, Jiangang. (2018). Platform-based

container.

[14] Kousiouris, G., Tsarsitalidis, S., Psomakelis, E.,

Koloniaris, S., Bardaki, C., Tserpes, K.,

Nikolaidou, M., & Anagnostopoulos, D. (2019).

A microservice-based framework for integrating

IoT management platforms, semantic and AI

services for supply chain management. ICT

Express, 5, 141-145.

[15] Chen, Tong., Huang, Yongjian., Wang, Yongze.

(2019). Big data platform architecture system

based on container cluster.

[16] Marvin, Newlin., Kyle, Smathers., Mark, E.,

DeYoung. (2019). ARC Containers for AI

Workloads: Singularity Performance

Overhead. 1-. doi: 10.1145/3332186.3333048

[17] Parsaeefard, S., Tabrizian, I., & Leon-Garcia, A.

(2019). Artificial Intelligence as a Services (AI-

aaS) on Software-Defined Infrastructure. ArXiv,

abs/1907.05505.

[18] Hussein, M., Mousa, M., & AlQarni, M. (2019).

A placement architecture for a container as a

service (CaaS) in a cloud environment. Journal

of Cloud Computing, 8.

[19] Casati, F., Govindarajan, K., Jayaraman, B.,

Thakur, A., Palapudi, S., Karakusoglu, F., &

Chatterjee, D. (2019). Operating Enterprise AI as

a Service. International Conference on Service

Oriented Computing.

[20] Yinzhi, Wang., R., Todd, Evans., Lei, Huang.

(2019). Performant Container Support for HPC

Applications. doi: 10.1145/3332186.3332226

[21] Fabiana, Rossi. (2019). Self-Management of

Containers Deployment in Decentralized

Environments. 315-318. doi:

10.1109/SERVICES.2019.00088

[22] Olivier Debauche, Saïd Mahmoudi, Sidi Ahmed

Mahmoudi, Pierre Manneback, Frédéric Lebeau,

A new Edge Architecture for AI-IoT services

deployment, Procedia Computer Science,

Volume 175, 2020, Pages 10-19, ISSN 1877-

0509,

https://doi.org/10.1016/j.procs.2020.07.006.

[23] Khouloud, Boukadi., Molka, Rekik., Jorge,

Bernal, Bernabe., Jaime, Lloret. (2020).

Container description ontology for CaaS.

International Journal of Web and Grid Services,

16(4):341-363. doi:

10.1504/IJWGS.2020.110944

[24] Subil, Abraham., Arnab, K., Paul., Redwan,

Ibne, Seraj, Khan., Ali, R., Butt. (2020). On the

Use of Containers in High Performance

Computing Environments. 284-293. doi:

10.1109/CLOUD49709.2020.00048

[25] Mabrook, Al-Rakhami., Abdu, Gumaei.,

Mohammed, Abdullah, Alsahli., Mohammad,

Mehedi, Hassan., Atif, Alamri., Antonio,

Guerrieri., Giancarlo, Fortino., Giancarlo,

Fortino. (2020). A lightweight and cost effective

edge intelligence architecture based on

containerization technology. World Wide Web,

23(2):1341-1360. doi: 10.1007/S11280-019-

00692-Y

[26] Implementation of Artificial Intelligence (AI): A

Roadmap for Business Model Innovation.

© April 2024 | IJIRT | Volume 10 Issue 11 | ISSN: 2349-6002

IJIRT 162965 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1477

[27] Mujkanovic, N., Sivalingam, K., & Lazzaro, A.

(2020). Optimising AI Training Deployments

using Graph Compilers and Containers. 2020

IEEE High Performance Extreme Computing

Conference (HPEC), 1-8.

[28] Janbi, N., Katib, I.A., Albeshri, A.A., &

Mehmood, R. (2020). Distributed Artificial

Intelligence-as-a-Service (DAIaaS) for Smarter

IoE and 6G Environments. Sensors (Basel,

Switzerland), 20.

[29] Neuhüttler, J., Kett, H., Frings, S., Falkner, J.,

Ganz, W., & Urmetzer, F. (2020). Artificial

Intelligence as Driver for Business Model

Innovation in Smart Service Systems.

International Conference on Applied Human

Factors and Ergonomics.

[30] Javadi, S.A., Cloete, R., Cobbe, J., Lee, M.S., &

Singh, J. (2020). Monitoring Misuse for

Accountable 'Artificial Intelligence as a Service'.

Proceedings of the AAAI/ACM Conference on

AI, Ethics, and Society.

[31] Li, Jiayi., He, Tonglu., Yang, Fei., Guo,

Xuedong., Ren, Yongliang. (2020). AI service

open middle station and method.

[32] Kim, Kee, Baek., Cho, Soo, Hyun., Lee, Yong,

Hyuk., Yang, Young, Jin., Bae, Seung, In., Song,

Jin, Hee. (2020). Cloud system based on

container and method for providing cloud service

having enhanced scalability and autonomy.

[33] Craig, Willis., Mike, Lambert., Kenton,

McHenry., Christine, Kirkpatrick. (2017).

Container-based Analysis Environments for

Low-Barrier Access to Research Data. 58-. doi:

10.1145/3093338.3104164

[34] Kim, Kee, Baek., Cho, Soo, Hyun., Lee, Yong,

Hyuk., Yang, Young, Jin., Bae, Seung, In., Song,

Jin, Hee. (2020). Method for providing cloud

service based on container.

[35] Lins, S., Pandl, K.D., Teigeler, H. et al. Artificial

Intelligence as a Service. Bus Inf Syst Eng 63,

441–456 (2021). https://doi.org/10.1007/s12599-

021-00708-w

[36] Tuan, Le-Anh., Quan, Ngo-Van., Phuong, Vo-

Huy., Dang, Huynh-Van., Quan, Le-Trung.

(2021). A Container-Based Edge Computing

System for Smart Healthcare Applications. 324-

336. doi: 10.1007/978-3-030-77424-0_27

[37] Pratama, I.P. (2021). The implementation of

Container as a Service (CaaS) cloud using

openSUSE kubic.

[38] John, M.M., Olsson, H.H., & Bosch, J. (2022).

Towards an AI‐driven business development

framework: A multi‐case study. Journal of

Software: Evolution and Process, 35.

[39] Kumar, M., & Kaur, G. (2022). Containerized AI

Framework on Secure Shared Multi-GPU

Systems. 2022 Seventh International Conference

on Parallel, Distributed and Grid Computing

(PDGC), 243-247.

[40] Fadia, Shah., Aamir, Anwar., Ijaz, ul, haq.,

Hussain, AlSalman., Saddam, Hussain., Suheer,

Al-Hadhrami. (2022). Artificial Intelligence as a

Service for Immoral Content Detection and

Eradication. Scientific Programming, 2022:1-9.

doi: 10.1155/2022/6825228

[41] Lauren, Kathleen, McMillan., Liz, Varga.

(2022). A review of the use of artificial

intelligence methods in infrastructure systems.

Engineering Applications of Artificial

Intelligence, 116:105472-105472. doi:

10.1016/j.engappai.2022.105472

[42] (2023). Implementation and Comparison of

Artificial Intelligence Techniques in Software

Testing. doi:

10.1109/iscon57294.2023.10112041

