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Abstract—This research paper comprehensively 

benchmarks the SLAM, global path planning, and local 

planning capabilities of the ROS Navigation Stack and 

ROS2 Navigation2 (Nav2) for autonomous mobile robot 

navigation. As robots operate in increasingly complex 

environments, evaluating navigation frameworks is 

critical. The study highlights Nav2's strengths in global 

planning and competitive local planning performance, 

offering insights for optimizing navigation solutions 

across applications. The study reveals Nav2's superior 

global planning performance with the SMAC planner 

and generally competitive local planning capabilities 

compared to ROS's Navigation Stack, albeit with an 

isolated instance of collision observed with the DWB 

planner. 
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I. INTRODUCTION 

 

The field of autonomous mobile robotics has 

witnessed remarkable advancements in recent years, 

driven by the ever-increasing demand for autonomous 

systems capable of operating in diverse and complex 

environments. From industrial automation and 

logistics to exploration and search-and-rescue 

operations, the applications of autonomous mobile 

robots continue to expand, pushing the boundaries of 

what is possible. At the heart of these autonomous 

systems lies the critical challenge of enabling robust 

and efficient navigation capabilities. Navigation, in the 

context of mobile robotics, encompasses a multitude 

of intricate tasks, including simultaneous localization 

and mapping (SLAM), global path planning, and local 

path planning. SLAM algorithms are responsible for 

constructing a coherent representation of the 

environment while concurrently determining the 

robot's location within that map. Global path planning 

involves the computation of an optimal path from the 

robot's current position to a desired goal location, 

taking into account the static obstacles present in the 

mapped environment. Local path planning, on the 

other hand, focuses on generating feasible trajectories 

and velocity commands that allow the robot to 

navigate safely through its immediate surroundings, 

accounting for dynamic obstacles and kinematic 

constraints. 

The seamless integration and coordination of these 

navigation tasks are essential for enabling truly 

autonomous operation of mobile robots. Failure in any 

one of these components can compromise the overall 

navigation performance, potentially leading to 

collisions, suboptimal paths, or even complete mission 

failure. Consequently, the development of robust and 

efficient navigation solutions has become a critical 

area of research and development within the robotics 

community. 

The Robot Operating System (ROS) has emerged as a 

widely adopted middleware framework for developing 

robotic applications, providing a rich ecosystem of 

tools, libraries, and packages. Among its core 

components, the ROS Navigation Stack and the more 

recent Navigation2 (Nav2) Stack, part of the ROS2 

framework, stand as comprehensive solutions for 

mobile robot navigation. These stacks offer a 

collection of algorithms and functionalities aimed at 

addressing the challenges associated with localization, 

mapping, and path planning. The ROS Navigation 

Stack, introduced in the earlier iterations of ROS, has 

been extensively utilized in various robotics projects 

and research endeavors. It offers a well-documented 

and robust framework for integrating SLAM 

algorithms, global path planners, and local trajectory 

planners, enabling autonomous navigation in diverse 



© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002 

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 579 

environments. However, as the field of robotics 

continues to evolve rapidly, the limitations of the 

Navigation Stack have become increasingly apparent, 

particularly in terms of flexibility, extensibility, and 

compatibility with emerging hardware and software 

platforms. 

To address these limitations and unlock new 

possibilities in mobile robot navigation, the ROS2 

community has developed the Navigation2 Stack, a 

modern and modular navigation solution designed to 

leverage the enhanced capabilities of the ROS2 

framework. Built upon the foundations of its 

predecessor, Nav2 incorporates several architectural 

improvements, including a behavior tree-based 

approach, modular design, and support for multiple 

local trajectory and path planners within a single 

navigation task. These advancements aim to provide 

developers with greater flexibility and adaptability, 

enabling the tailoring of navigation strategies to 

specific application contexts and facilitating the 

integration of cutting-edge algorithms and techniques. 

As the adoption of ROS2 and Nav2 continues to grow, 

a comprehensive understanding of their capabilities, 

performance, and limitations becomes crucial for 

researchers, developers, and practitioners in the field 

of robotics. This research paper aims to conduct a 

comparative benchmarking study, evaluating the 

SLAM, global path planning, and local planning 

capabilities of both the ROS Navigation Stack and the 

ROS2 Navigation2 Stack. Through rigorous 

experimentation and analysis, this study seeks to 

provide valuable insights into the strengths and 

weaknesses of each framework, enabling informed 

decision-making and guiding future development 

efforts in the domain of autonomous mobile robot 

navigation. 

II. LITERATURE REVIEW 

 

This proposal [1] introduces Navigation2 as a modern 

navigation solution building on ROS Navigation's 

legacy. Utilizing behavior trees and dynamic 

environment methods, it operates on ROS2 for safety 

and lifecycle management. Its application alongside 

pedestrians showcases its relevance for comparative 

studies between navigation stacks in ROS and ROS2. 

The paper [2] introduces a real-time plane 

segmentation method for indoor navigation systems 

for the visually impaired, utilizing surface normal 

estimation in range images. Efficiency and accuracy 

challenges are addressed through integral images for 

normal estimation efficiency and dynamic smoothing 

region determination for enhanced accuracy. 

Compared to PCL methods, it offers superior 

performance across depths (1∼8m) within a ROS 

framework at 30fps, showcasing its relevance for 

comparative studies between navigation stacks in ROS 

and ROS2. This paper [3] discusses an autonomous 

mobile robot's control system, combining STM32-

based hardware circuitry and ROS for software control. 

The lower computer handles motor control and sensor 

data, while the upper computer utilizes ROS for 

SLAM and autonomous navigation. This setup's 

relevance to comparative studies lies in evaluating 

ROS and ROS2 navigation stacks' effectiveness and 

compatibility with hardware systems like STM32. The 

paper [4] explores global path planning for mobile 

robots using a hybrid A* algorithm and genetic 

algorithm approach, preceded by MAKLINK graph 

theory and the Dijkstra algorithm. Results show 

improved performance over Dijkstra in solution 

quality and computational time. This study's relevance 

to comparative studies lies in assessing how such path 

planning algorithms integrate with ROS and ROS2 

navigation stacks for real-world robotic applications. 

The paper [5] focuses on real-time positioning and 

map building for mobile robots, employing an 

improved artificial potential field method for local 

path planning. It utilizes FastSLAM algorithm via 

particle filter for map construction and integrates 

autonomous positioning, path planning, obstacle 

avoidance, and motion simulation on ROS within the 

Gazebo platform. This study's relevance to 

comparative studies lies in evaluating how ROS and 

ROS2 navigation stacks accommodate advanced 

algorithms like FastSLAM and artificial potential 

fields for robust robotic navigation.  

This paper [6] investigates ROS-based visual SLAM 

methods for mobile robot applications in indoor 

environments, comparing trajectories from various 

sensors processed by different SLAM algorithms. 

Methods include monocular ORB-SLAM, monocular 

DPPTAM, stereo ZedFu, and RTAB-Map, verified 

against LIDAR-based Hector SLAM and ground truth 

measurements. This study is pertinent to comparative 

studies between ROS and ROS2 navigation stacks, as 

it assesses the compatibility and performance of 

SLAM algorithms within each framework for real-

world robotic navigation. This paper [7] introduces a 
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SLAM technique without odometer information, 

modifying the HECTOR SLAM method for different 

hardware and excluding IMU devices. It optimizes the 

method for Commercial Off-The-Shelf (COTS) 

hardware, enhancing its applicability. This study's 

relevance to comparative studies between ROS and 

ROS2 navigation stacks lies in assessing how such 

SLAM techniques integrate with each framework, 

considering their hardware requirements and 

optimization capabilities.  

The paper [8] explores SLAM implementation using 

ROS and Arduino, detailing an inexpensive 

differential drive robot for mapping in domestic 

environments. It offers a theoretical explanation of the 

Rao-Blackwellization particle filter algorithm and 

provides a cost-effective approach with code and 

guidelines for 2D mapping. In a comparative study 

between ROS and ROS2 navigation stacks, this work 

highlights the adaptability of ROS for integrating with 

low-cost hardware like Arduino, offering insights into 

compatibility and performance across different 

platforms. This paper [9] introduces a novel SLAM 

framework combining ant system and LMB filter, 

facilitating joint estimation of feature locations and 

numbers. It employs a real-time moving ant estimator 

for vehicle trajectory estimation, outperforming PHD-

SLAM and LMB-SLAM with better map quality and 

trajectory accuracy. In a comparative study between 

ROS and ROS2 navigation stacks, this work 

emphasizes the adaptability of ROS to innovative 

SLAM algorithms, suggesting potential improvements 

and integration strategies for future developments. The 

paper presents a ROS-based template for 

implementing the agent-based subsumption model in 

mobile robot control systems, leveraging ROS's 

reusable function units and messaging mechanism. It 

formalizes behaviors as ROS-based finite state 

machines and represents inhibitors and suppressors 

among layers as ROS nodes, facilitating easy 

instantiation. This work's relevance [10] to a 

comparative study between ROS and ROS2 navigation 

stacks lies in evaluating how ROS's messaging 

mechanism and software resources support the 

implementation of complex control systems, providing 

insights into potential improvements or adaptations for 

ROS2 integration. This paper [11] discusses 

combining ROS with MATLAB and Simulink to 

address the lack of graphical analysis and operation 

interfaces in ROS. MATLAB's powerful data 

processing and visualization capabilities, along with 

Simulink's visual interface, offer a convenient and 

efficient solution for analyzing and tracking moving 

objects in robot design. In comparative studies 

between ROS and ROS2 navigation stacks, this 

approach highlights the potential for integrating ROS 

with external tools like MATLAB for enhanced data 

processing and visualization, suggesting avenues for 

improvement or expansion in ROS2.  

The paper [12] presents autonomous mobile robot 

implementations using ROS, focusing on safety and 

low power consumption. It utilizes 2D LiDAR and 

RGB-D camera with ROS 2D navigation stack, 

showcasing two setups: one on Raspberry Pi 3 with 

only 2D LiDAR and another on Intel NUC with 2D 

LiDAR and RGB-D camera. The experiments 

demonstrate dynamic obstacle avoidance capabilities, 

relevant for comparative studies between ROS and 

ROS2 navigation stacks to assess their performance 

and compatibility with different hardware setups.  

This paper [13] details an autonomous mobile robot's 

control system using STM32 and ROS, covering 

hardware circuit design, lower computer tasks like 

motor control and sensor data transfer, and upper 

computer tasks including SLAM and autonomous 

navigation via ROS. This setup's relevance to a 

comparative study between ROS and ROS2 navigation 

stacks lies in assessing how each framework 

accommodates complex control systems, including 

SLAM and autonomous navigation, while leveraging 

different hardware platforms like STM32. This paper 

[14] presents a control system hardware based on ROS 

for cooperative robots operating in unknown areas, 

employing SLAM for localization and mapping. It 

introduces a new hybrid architecture utilizing one PC 

as master and Odroid-U3 embedded systems for 

communication, eliminating the need for expensive 

external sensors. This work's relevance to a 

comparative study between ROS and ROS2 navigation 

stacks lies in assessing how each framework supports 

such hybrid architectures and their compatibility with 

different hardware configurations for multi-robot 

control in complex environments.  

The paper [15] investigates discrepancies between 

planned and traveled paths of a virtual differential 

drive robot in Gazebo-ROS simulator using ROS 

navigation stack. It conducts experiments navigating 

the robot through fixed destinations while recording 

and comparing planned and actual path coordinates, 
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considering scenarios with dynamic obstacles. This 

study's relevance to a comparative study between ROS 

and ROS2 navigation stacks lies in evaluating how 

each stack handles path planning and execution in 

simulated environments, identifying strengths and 

weaknesses for real-world application. 

 

III. METHODOLOGY/EXPERIMENTAL 

 

A. Components & Software Setup 

Within the context of the research project, the 

fundamental hardware infrastructure comprises a 

differential drive robot, encompassing essential 

components such as the chassis, motors, wheels, and 

encoders. This configuration enables precise control 

over locomotion and facilitates odometric 

measurements through the monitoring of wheel 

rotation. Augmenting this setup is a lidar sensor, 

serving as the primary means of environment 

perception and mapping. The LDROBOT D200 

LiDAR sensor with a range of 8m was utilized. It has a 

scanning angle of 360°and a scanning frequency of 6 

Hz. Facilitating the computational tasks is the 

Raspberry Pi 4 Model B, serving as the onboard 

computing platform. Equipped with a quad-core ARM 

Cortex-A72 CPU and available with 2GB, 4GB, or 

8GB of RAM, the Raspberry Pi 4 offers substantial 

processing power for executing ROS 2 and ROS 

frameworks. Its array of USB ports enables seamless 

integration with sensors and peripherals, while GPIO 

pins facilitate connectivity with external hardware 

elements. To regulate the robot's motors, a motor 

controller such as the L298N Dual H-Bridge Motor 

Driver is employed. This component interfaces with the 

Raspberry Pi, converting digital commands into analog 

signals to govern motor speed and direction. 

Additionally, auxiliary hardware components including 

connectors, cables, breadboards, and mounting 

hardware are indispensable for the assembly and 

integration process. 

In the ROS (Robot Operating System) setup, the core 

software framework used is ROS 1, which is widely 

adopted in the robotics community. ROS 1 provides a 

comprehensive ecosystem of libraries, tools, and 

packages for building robotic systems. For navigation 

tasks, the ROS Navigation Stack is utilized, which 

includes components such as the Trajectory Rollout 

planner and the Dynamic Window Approach (DWA) 

planner for generating feasible trajectories. 

Additionally, the stack incorporates the gmapping 

package for SLAM (Simultaneous Localization and 

Mapping) and the move_base package for high-level 

navigation planning. These components work together 

to enable autonomous navigation and mapping 

capabilities for the robot. On the other hand, in the ROS 

2 setup, the focus shifts to the next-generation robotics 

framework, ROS 2. ROS 2 offers several advantages 

over ROS 1, including improved performance, better 

real-time capabilities, and enhanced security features. 

In the research project, the Humble framework is 

utilized as a part of the ROS 2 Navigation Stack. 

Humble is a lightweight navigation system designed 

specifically for ROS 2, offering efficient and scalable 

solutions for navigation tasks. It includes components 

such as the DWB (Dynamic Window Approach) 

planner, which computes optimal trajectories for the 

robot, and the AMCL (Adaptive Monte Carlo 

Localization) package for accurate localization. 

Additionally, the SLAM Toolbox is integrated into the 

ROS 2 setup for simultaneous localization and mapping. 

 

B. The ROS (1) NavStack 

The navigation stack constitutes a coherent 

amalgamation of packages within the framework of 

Robot Operating System (ROS) 1, dedicated to 

facilitating mobile robot navigation. Its operational 

framework involves the assimilation of data streams 

originating from odometry readings, sensory inputs, 

and prescribed goal poses. Subsequently, it generates 

and issues velocity commands conducive to ensuring 

the safe movement of the mobile robot's base. The 

navigation stack operates through the coordination of 

multiple packages, with the 'move_base' package 

serving as its central hub. This package encompasses a 

range of functionalities including state machines, 

planners, internal cost maps, and recovery behaviors 

essential for effective navigation. 

 
Fig 1. The NavStack Design 
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In the illustrated design, white nodes represent 

implemented mandatory components, blue nodes 

denote essential components requiring setup for each 

specific robot platform, and gray nodes indicate 

optional components that have already been integrated. 

The navigation system comprises several essential 

components crucial for its effective operation. Firstly, 

the Odometry Source component serves as a 

foundational element, requiring access to odometry 

information formatted as nav_msgs/Odometry. This 

information is indispensable for accurately determining 

the robot's pose and motion within its environment. 

Secondly, sensor sources play a vital role by providing 

laser scan or point cloud data related to the surrounding 

environment. This data is instrumental during both 

local and global path planning stages, particularly for 

obstacle avoidance, where it informs the generation of 

cost maps. The third component, Sensor Transforms, is 

tasked with ensuring proper coordination between 

various coordinate frames. This necessitates the 

publication of transforms by the robot, notably 

including the odom->base_link transform derived from 

odometry readings. Additionally, if a map is utilized, a 

map->odom transform becomes requisite for seamless 

integration. The fourth component, the Base Controller, 

interfaces with the move_base package to execute 

navigation commands. It requires a robot base 

controller capable of interpreting velocity commands 

formatted as geometry_msgs/Twist, thereby facilitating 

the robot's movement according to the navigation plan. 

Lastly, while optional, the AMCL (Adaptive Monte 

Carlo Localization) component becomes necessary if a 

map->odom transform is employed. Similarly, the Map 

Server component, also optional, provides the 

functionality of loading maps when required, further 

enhancing the system's adaptability and functionality.  

The navigation system possesses the flexibility to 

initialize with or without a static map. In the absence of 

a static map, the system relies solely on information 

regarding encountered obstacles, forming optimistic 

global plans concerning unexplored areas. 

Subsequently, it adjusts its path planning strategy as 

additional obstacles are encountered, necessitating 

periodic replanning. Primarily, the move_base 

component assimilates pertinent data, generating both 

global and local path plans by considering 

corresponding global and local cost maps. It 

subsequently issues velocity commands to the robot's 

actuators, persisting until the navigation objective is 

achieved. 

The navigation system comprises several fundamental 

components essential for its operational integrity. The 

first component is the Global Costmap, which 

functions as a comprehensive representation of the 

environment in a two-dimensional voxel grid format. It 

serves as the basis for global or full-length path 

planning, continuously integrating real-time obstacle 

data obtained from sensors to ensure accuracy and 

relevance. Complementing the Global Costmap is the 

Local Costmap, which focuses on the immediate 

surroundings of the robot. This map provides a detailed 

depiction of the local region visible to the robot and is 

dynamically updated with real-time obstacle 

information. Its primary role lies in facilitating local or 

short-distance path planning, offering a nuanced 

understanding of the immediate terrain. The Global 

Planner stands as a critical component, employing the 

A* algorithm to chart a path from the robot's current 

pose to its designated end goal pose. While serving as 

a high-level navigation guide, the Global Planner 

utilizes inputs such as the Global Costmap, robot 

localization data, and goal pose to generate an optimal 

trajectory. Conversely, the Local Planner operates on a 

shorter timescale, employing the Dynamic Window 

Approach (DWA) to plan short-distance paths. Its 

objective is to translate the high-level path guidance 

provided by the Global Planner into actionable velocity 

commands for the robot. To accomplish this, the Local 

Planner relies on inputs from the Local Costmap and 

guidance from the Global Planner. Lastly, the 

navigation system incorporates Recovery Behaviors, 

which activate in response to obstacles or potential 

failures encountered by the robot. These behaviors are 

designed to navigate the robot out of challenging 

situations, ensuring continued progress towards its 

objectives and maintaining operational resilience. In 

summary, the integration of odometry, sensor data, 

costmaps, and goal positions enables both the Global 

and Local Planners to generate velocity commands 

tailored to guide the robot effectively along its intended 

path, ensuring robust navigation capabilities.  

Issues with the Navigation Stack in ROS 1 are 

discernible upon scrutiny. The move_base package is 

reliant on a monolithic and unconfigurable state 

machine, thereby limiting the flexibility available to 

developers seeking to tailor the system to meet specific 

application requirements. This constraint hampers the 
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exploration of diverse developmental avenues, 

consequently impeding the realization of optimal 

solutions. Furthermore, the move_base functionality is 

inherently restricted to differential drive and holonomic 

wheeled robots. This limitation imposes constraints on 

the scope of applicability, rendering the navigation 

stack unsuitable for broader classes of robotic 

platforms. Additionally, the move_base package 

mandates the utilization of a singular set of global and 

local planning algorithms concurrently. This rigidity 

precludes the dynamic loading of alternative plugins 

for planning algorithms, thereby constraining the 

adaptability of the system to accommodate diverse 

operational contexts and custom applications. 

 

C. The ROS2 Nav2 Stack 

ROS 2 was conceived with the explicit objective of 

transcending the confines of laboratory environments, 

ushering the Robot Operating System into real-world 

applications. Navigation 2, building upon the 

foundation of ROS 2 and drawing inspiration from the 

achievements of its predecessor, the nav stack, aspires 

to extend the boundaries of navigational capabilities. 

By leveraging the enhanced reliability, security, and 

speed inherent in ROS 2, Navigation 2 endeavors to 

address the aforementioned limitations encountered 

within the nav stack. Departing from the unyielding 

nature of monolithic state machines, Navigation 2 

adopts a Behavior Tree-based approach to navigation. 

This paradigm shift affords developers greater 

configurability and adaptability, fostering the 

exploration of diverse navigational strategies tailored 

to specific application contexts. Moreover, Navigation 

2 adopts a modular architecture comprising 

independent servers responsible for planning, control, 

and recovery tasks. This modularity enables the 

seamless integration, removal, substitution, or 

augmentation of individual components, thereby 

enhancing the system's versatility and extensibility. In 

contrast to its predecessor, Navigation 2 introduces 

support for multiple local trajectory and path planners 

within the context of a single navigation task. This 

capability empowers developers to deploy a diverse 

array of planning algorithms, facilitating the 

optimization of navigation strategies in varying 

environments and scenarios.  

Nav2 incorporates two key design patterns. The BT 

Navigator serves as the central component, housing 

the behavior tree essential for navigation behavior 

implementation. Task-Specific Asynchronous Servers, 

operating as ROS 2 nodes, host multiple algorithm 

plugins tailored to specific tasks, enhancing the 

framework's adaptability. Additionally, Nav2 employs 

Managed (Lifecycle) Nodes for deterministic 

behaviors and consolidates all relevant packages like 

AMCL and Map Server, ensuring a cohesive 

framework for efficient navigation system 

management. The Behavior Navigation Server 

assumes the role of the principal component and 

primary interface within the system, serving as the 

locus for navigation behavior implementation. Tasked 

with orchestrating the navigation process upon receipt 

of a goal pose from the user, it employs a Behavior 

Tree to govern the navigation task. To facilitate 

communication with the BT Navigator, ROS 2 action 

servers are employed, utilizing a NavigateToPose 

action message to initiate navigation requests. 

Subsequently, the Behavior Tree housed within the 

Behavior Navigation Server interfaces with additional 

action servers embedded within the controller, planner, 

behavior, and smoother servers. These servers 

collectively manage control efforts, compute plans, 

execute recovery maneuvers, and perform other 

pertinent tasks integral to the navigation process. The 

Behavior Tree nodes within the BT Navigator establish 

communication with modular servers, including the 

controller, planner, behavior, smoother, and potentially 

custom servers, to coordinate and facilitate robot 

navigation. Each action server is assigned a 

distinct .action type to enable interaction with the BT 

Navigator and other components of the navigation 

system. 

 
Fig 2. Nav2 Core Overview 
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These servers serve as hosts for a variety of algorithm 

plugins pertinent to their respective tasks, affording the 

Behavior Tree Node the flexibility to dynamically 

select an appropriate plugin at runtime. Moreover, they 

adhere to a standardized plugin interface, facilitating 

the creation and selection of new algorithms during 

runtime. All depicted servers within the design are 

realized as ROS 2 Managed (Lifecycle) Nodes. The 

Lifecycle Manager assumes responsibility for 

orchestrating the program lifecycle of both the BT 

Navigator and subsequent server Nodes. It 

systematically guides each server through the 

managed node lifecycle stages, namely: inactive, 

active, and finalized, ensuring orderly and controlled 

execution. 

 

D. Mapping using both stacks 

We have developed an expansive Gazebo world 

resembling a large factory site. The primary objective 

of this endeavor was to create an environment of 

significant scale, thereby presenting a formidable 

challenge for Simultaneous Localization and Mapping 

(SLAM) techniques. Autonomous Mobile Robots 

(AMRs) commonly operate within such expansive 

settings, particularly in factory floors and warehouses. 

These environments pose several inherent challenges 

for robotic systems. Mapping extensive spatial 

domains entails complexities beyond mere size 

considerations. Factors such as dynamic 

environmental conditions and potential symmetries 

within the arena further complicate the task of re-

localization. Moreover, the collaborative and 

imperfect nature of human activities and other objects 

present within the environment introduce additional 

hurdles for global and local planners alike. 

Consequently, our designed Gazebo world serves as a 

testbed for evaluating the efficacy of navigation 

algorithms and strategies within large-scale and 

dynamic environments characteristic of real-world 

industrial settings. Through rigorous experimentation 

and analysis within this simulated environment, we 

aim to refine and enhance the navigation capabilities 

of autonomous robotic systems, thereby addressing the 

challenges inherent to deployment in complex 

industrial environments. We used a differential drive 

LiDAR-based mobile robot for the experiment.  

 

1) GMapping  (SLAM – ROS NavStack) 

ROS employs the gmapping package, a particle filter-

based Simultaneous Localization and Mapping 

(SLAM) solution tailored for mobile robotic platforms. 

Default parameters were utilized to evaluate the 

mapping performance within the context of our 

experimentation. The performance exhibited by 

gmapping within our simulated environment proved to 

be notably commendable. The generation of the map 

was achieved seamlessly, without necessitating any 

parameter tuning. 

 
Fig 3. Map created via GMapping 

 

 

2) SLAM ToolBox  

 

The SLAM Toolbox offers a comprehensive array of 

features, encompassing functionalities such as 

relocalization, continued mapping, long-term mapping, 

and map merging. However, for the purpose of this 

comparison, our attention is specifically directed 

towards SLAM capabilities. The slam_toolbox 

package adopts a pose graph SLAM methodology, 

leveraging the karto scan matcher algorithm. Notably, 

this package is purported to exhibit particular efficacy 

within expansive indoor environments. Although the 

package demonstrates competence in mapping 

extensive spatial domains, the process of saving the 

map using the map_server ROS2 package encountered 

obstacles, as documented (refer to the issue here). 

While the SLAM Toolbox represents a notable stride 

towards establishing a dependable SLAM solution, its 

efficacy in real-world scenarios remains contingent 

upon accruing sufficient empirical experience. 
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Fig 4. Map created by SLAM Toolbox 

 

IV. RESULTS AND DISCUSSIONS 

 

The global and the local planners for both the systems 

were evaluated. 

1) NavFN (Global Planner – NavStack) 

NavFn employs Dijkstra's planner to calculate the 

shortest path from the starting point to the designated 

goal. While the exploration of A* planning, 

incorporating heuristics, remains an alternative under 

consideration, NavFn offers limited flexibility in 

governing the nature of the global plan generated. 

Specifically, it prioritizes the generation of the shortest 

cost path, with the cost being determined by the 

associated costmap. However, NavFn does not account 

for factors such as path smoothness, the number of 

turns, or constraints such as the radius of curvature. As 

empirical evidence suggests, the pursuit of simplicity 

confers distinct advantages in certain contexts. The 

time taken by the NavFN global planner was 3.4 

seconds. 

 
Fig 5. NavFN Global Plan 

 

2) SMAC Planner (Global Planner – Nav2 

Stack) 

Within the Nav2Stack, the SMAC planner stands as 

one of the two planning servers included, the other 

being NavFn. Leveraging the Hybrid State A* 

algorithm, the SMAC planner facilitates continuous 

state transitions within discrete navigation cells, 

offering the additional capability to select various 

motion models such as DUBIN or 2D Moore. 

Furthermore, numerous parameters concerning 

optimization, down-sampling, and cost multipliers 

contribute to the planner's adaptability, enabling the 

modification of its behavior to suit specific application 

requirements. The SMAC Planner took 1.5 seconds to 

generate the path plan. 
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Fig 6. SMAC Global Plan 

 

3) Trajectory Rollout Planner (Local Planner – 

NavStack) 

The ROS NavStack incorporates the trajectory rollout 

planner and the Dynamic Window Approach (DWA) 

as integral components. Both planners operate on the 

principle of discretely sampling the robot's control 

inputs within user-specified constraints, followed by 

the evaluation of resulting trajectories based on 

relevant costs, culminating in the selection of the most 

optimal inputs. Conducting multiple simulations 

without parameter tuning for the trajectory rollout 

planner, albeit with the appropriate consideration of 

the robot's footprint, yielded results that were 

regrettably unsatisfactory. Drawing from previous 

experiences in hardware deployment, albeit not 

without imperfections, superior outcomes have been 

observed with the DWA and TEB local planners. 

 

4) DWB Planner (Local Planner – Nav2 Stack) 

Nav2 incorporates the DWB planner, representing an 

evolutionary iteration of the DWA planner. While the 

core algorithm remains largely unchanged, software 

enhancements aimed at bug fixes and code 

customization have been implemented, as indicated by 

available documentation. In an effort to assess the 

comparative performance of NavStack and Nav2, both 

systems were subjected to analogous, if not identical, 

test conditions. The objective was to evaluate their 

navigational efficacy in scenarios characterized by 

static yet undisclosed obstacles and congested 

dynamic environments. In the majority of instances, 

the DWB planner facilitated successful navigation, 

enabling the robot to navigate around obstacles. 

However, a singular occurrence was observed where 

the robot collided with an obstacle, representing an 

anomalous outcome. 

 

V. FUTURE SCOPE 

 

The ROS NavStack serves as a widely utilized platform 

among students, hobbyists, and various industrial 

sectors. Its popularity is attributed to the abundance of 

comprehensive documentation and robust community 

support, facilitating a seamless process for configuring 

robotic systems with NavStack. In contrast, our 

experience indicates that ROS2 documentation may be 

lacking, particularly in areas such as the setup of launch 

files in Python and the comprehension of novel 

concepts such as lifecycle management and Quality of 

Service (QoS) settings. These factors may contribute to 

a sense of overwhelm among users. 

In terms of algorithmic advancements, it appears that 

significant bug fixes have been implemented, 

particularly within the realm of local planning. While 

this study did not explore several parameters associated 

with the SLAM toolbox, SMAC planner, and DWB 

planner, we intend to investigate these aspects in future 

research endeavors. 

 

VI. CONCLUSION 

 

This research conducted a comprehensive 

benchmarking study to evaluate and compare the 

simultaneous localization and mapping (SLAM), 

global path planning, and local planning capabilities of 

the ROS Navigation Stack and the ROS2 Navigation2 

(Nav2) Stack for autonomous mobile robot navigation. 

An expansive Gazebo simulation environment 

resembling a large factory site was developed to 

rigorously test these navigation frameworks in a 

challenging, dynamic, and large-scale setting akin to 

real-world industrial deployments. The gmapping 

package in ROS and SLAM Toolbox in Nav2 were 

evaluated for SLAM performance, with gmapping 

exhibiting seamless map generation without parameter 

tuning. For global planning, Nav2's SMAC planner 
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demonstrated superior performance compared to ROS's 

NavFN planner in terms of computational time. As for 

local planning, both the ROS Navigation Stack's 

trajectory rollout planner and Nav2's DWB planner 

facilitated successful obstacle avoidance in most 

instances, though an isolated collision occurred with 

the DWB planner. Overall, the study highlighted 

Nav2's strengths in global planning efficiency and 

competitive local planning capabilities, offering 

valuable insights to guide the selection and 

optimization of navigation solutions across diverse 

robotic applications. 
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