
© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 578

Comparative Benchmarking of SLAM, Global Path

Planning and Local Planning Capabilities of ROS and

ROS2 Navigation Frameworks

Surabhi Gupta1, Amit Barde2, Siddhant Swan3, Sapna Wagaj4

1,2,3,4Dept. Electronics and telecommunication engineering, Vishwakarma Institute of Technology, Pune,

India

Abstract—This research paper comprehensively

benchmarks the SLAM, global path planning, and local

planning capabilities of the ROS Navigation Stack and

ROS2 Navigation2 (Nav2) for autonomous mobile robot

navigation. As robots operate in increasingly complex

environments, evaluating navigation frameworks is

critical. The study highlights Nav2's strengths in global

planning and competitive local planning performance,

offering insights for optimizing navigation solutions

across applications. The study reveals Nav2's superior

global planning performance with the SMAC planner

and generally competitive local planning capabilities

compared to ROS's Navigation Stack, albeit with an

isolated instance of collision observed with the DWB

planner.

Keywords—ROS, ROS2, navigation, SLAM, path planning

I. INTRODUCTION

The field of autonomous mobile robotics has

witnessed remarkable advancements in recent years,

driven by the ever-increasing demand for autonomous

systems capable of operating in diverse and complex

environments. From industrial automation and

logistics to exploration and search-and-rescue

operations, the applications of autonomous mobile

robots continue to expand, pushing the boundaries of

what is possible. At the heart of these autonomous

systems lies the critical challenge of enabling robust

and efficient navigation capabilities. Navigation, in the

context of mobile robotics, encompasses a multitude

of intricate tasks, including simultaneous localization

and mapping (SLAM), global path planning, and local

path planning. SLAM algorithms are responsible for

constructing a coherent representation of the

environment while concurrently determining the

robot's location within that map. Global path planning

involves the computation of an optimal path from the

robot's current position to a desired goal location,

taking into account the static obstacles present in the

mapped environment. Local path planning, on the

other hand, focuses on generating feasible trajectories

and velocity commands that allow the robot to

navigate safely through its immediate surroundings,

accounting for dynamic obstacles and kinematic

constraints.

The seamless integration and coordination of these

navigation tasks are essential for enabling truly

autonomous operation of mobile robots. Failure in any

one of these components can compromise the overall

navigation performance, potentially leading to

collisions, suboptimal paths, or even complete mission

failure. Consequently, the development of robust and

efficient navigation solutions has become a critical

area of research and development within the robotics

community.

The Robot Operating System (ROS) has emerged as a

widely adopted middleware framework for developing

robotic applications, providing a rich ecosystem of

tools, libraries, and packages. Among its core

components, the ROS Navigation Stack and the more

recent Navigation2 (Nav2) Stack, part of the ROS2

framework, stand as comprehensive solutions for

mobile robot navigation. These stacks offer a

collection of algorithms and functionalities aimed at

addressing the challenges associated with localization,

mapping, and path planning. The ROS Navigation

Stack, introduced in the earlier iterations of ROS, has

been extensively utilized in various robotics projects

and research endeavors. It offers a well-documented

and robust framework for integrating SLAM

algorithms, global path planners, and local trajectory

planners, enabling autonomous navigation in diverse

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 579

environments. However, as the field of robotics

continues to evolve rapidly, the limitations of the

Navigation Stack have become increasingly apparent,

particularly in terms of flexibility, extensibility, and

compatibility with emerging hardware and software

platforms.

To address these limitations and unlock new

possibilities in mobile robot navigation, the ROS2

community has developed the Navigation2 Stack, a

modern and modular navigation solution designed to

leverage the enhanced capabilities of the ROS2

framework. Built upon the foundations of its

predecessor, Nav2 incorporates several architectural

improvements, including a behavior tree-based

approach, modular design, and support for multiple

local trajectory and path planners within a single

navigation task. These advancements aim to provide

developers with greater flexibility and adaptability,

enabling the tailoring of navigation strategies to

specific application contexts and facilitating the

integration of cutting-edge algorithms and techniques.

As the adoption of ROS2 and Nav2 continues to grow,

a comprehensive understanding of their capabilities,

performance, and limitations becomes crucial for

researchers, developers, and practitioners in the field

of robotics. This research paper aims to conduct a

comparative benchmarking study, evaluating the

SLAM, global path planning, and local planning

capabilities of both the ROS Navigation Stack and the

ROS2 Navigation2 Stack. Through rigorous

experimentation and analysis, this study seeks to

provide valuable insights into the strengths and

weaknesses of each framework, enabling informed

decision-making and guiding future development

efforts in the domain of autonomous mobile robot

navigation.

II. LITERATURE REVIEW

This proposal [1] introduces Navigation2 as a modern

navigation solution building on ROS Navigation's

legacy. Utilizing behavior trees and dynamic

environment methods, it operates on ROS2 for safety

and lifecycle management. Its application alongside

pedestrians showcases its relevance for comparative

studies between navigation stacks in ROS and ROS2.

The paper [2] introduces a real-time plane

segmentation method for indoor navigation systems

for the visually impaired, utilizing surface normal

estimation in range images. Efficiency and accuracy

challenges are addressed through integral images for

normal estimation efficiency and dynamic smoothing

region determination for enhanced accuracy.

Compared to PCL methods, it offers superior

performance across depths (1∼8m) within a ROS

framework at 30fps, showcasing its relevance for

comparative studies between navigation stacks in ROS

and ROS2. This paper [3] discusses an autonomous

mobile robot's control system, combining STM32-

based hardware circuitry and ROS for software control.

The lower computer handles motor control and sensor

data, while the upper computer utilizes ROS for

SLAM and autonomous navigation. This setup's

relevance to comparative studies lies in evaluating

ROS and ROS2 navigation stacks' effectiveness and

compatibility with hardware systems like STM32. The

paper [4] explores global path planning for mobile

robots using a hybrid A* algorithm and genetic

algorithm approach, preceded by MAKLINK graph

theory and the Dijkstra algorithm. Results show

improved performance over Dijkstra in solution

quality and computational time. This study's relevance

to comparative studies lies in assessing how such path

planning algorithms integrate with ROS and ROS2

navigation stacks for real-world robotic applications.

The paper [5] focuses on real-time positioning and

map building for mobile robots, employing an

improved artificial potential field method for local

path planning. It utilizes FastSLAM algorithm via

particle filter for map construction and integrates

autonomous positioning, path planning, obstacle

avoidance, and motion simulation on ROS within the

Gazebo platform. This study's relevance to

comparative studies lies in evaluating how ROS and

ROS2 navigation stacks accommodate advanced

algorithms like FastSLAM and artificial potential

fields for robust robotic navigation.

This paper [6] investigates ROS-based visual SLAM

methods for mobile robot applications in indoor

environments, comparing trajectories from various

sensors processed by different SLAM algorithms.

Methods include monocular ORB-SLAM, monocular

DPPTAM, stereo ZedFu, and RTAB-Map, verified

against LIDAR-based Hector SLAM and ground truth

measurements. This study is pertinent to comparative

studies between ROS and ROS2 navigation stacks, as

it assesses the compatibility and performance of

SLAM algorithms within each framework for real-

world robotic navigation. This paper [7] introduces a

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 580

SLAM technique without odometer information,

modifying the HECTOR SLAM method for different

hardware and excluding IMU devices. It optimizes the

method for Commercial Off-The-Shelf (COTS)

hardware, enhancing its applicability. This study's

relevance to comparative studies between ROS and

ROS2 navigation stacks lies in assessing how such

SLAM techniques integrate with each framework,

considering their hardware requirements and

optimization capabilities.

The paper [8] explores SLAM implementation using

ROS and Arduino, detailing an inexpensive

differential drive robot for mapping in domestic

environments. It offers a theoretical explanation of the

Rao-Blackwellization particle filter algorithm and

provides a cost-effective approach with code and

guidelines for 2D mapping. In a comparative study

between ROS and ROS2 navigation stacks, this work

highlights the adaptability of ROS for integrating with

low-cost hardware like Arduino, offering insights into

compatibility and performance across different

platforms. This paper [9] introduces a novel SLAM

framework combining ant system and LMB filter,

facilitating joint estimation of feature locations and

numbers. It employs a real-time moving ant estimator

for vehicle trajectory estimation, outperforming PHD-

SLAM and LMB-SLAM with better map quality and

trajectory accuracy. In a comparative study between

ROS and ROS2 navigation stacks, this work

emphasizes the adaptability of ROS to innovative

SLAM algorithms, suggesting potential improvements

and integration strategies for future developments. The

paper presents a ROS-based template for

implementing the agent-based subsumption model in

mobile robot control systems, leveraging ROS's

reusable function units and messaging mechanism. It

formalizes behaviors as ROS-based finite state

machines and represents inhibitors and suppressors

among layers as ROS nodes, facilitating easy

instantiation. This work's relevance [10] to a

comparative study between ROS and ROS2 navigation

stacks lies in evaluating how ROS's messaging

mechanism and software resources support the

implementation of complex control systems, providing

insights into potential improvements or adaptations for

ROS2 integration. This paper [11] discusses

combining ROS with MATLAB and Simulink to

address the lack of graphical analysis and operation

interfaces in ROS. MATLAB's powerful data

processing and visualization capabilities, along with

Simulink's visual interface, offer a convenient and

efficient solution for analyzing and tracking moving

objects in robot design. In comparative studies

between ROS and ROS2 navigation stacks, this

approach highlights the potential for integrating ROS

with external tools like MATLAB for enhanced data

processing and visualization, suggesting avenues for

improvement or expansion in ROS2.

The paper [12] presents autonomous mobile robot

implementations using ROS, focusing on safety and

low power consumption. It utilizes 2D LiDAR and

RGB-D camera with ROS 2D navigation stack,

showcasing two setups: one on Raspberry Pi 3 with

only 2D LiDAR and another on Intel NUC with 2D

LiDAR and RGB-D camera. The experiments

demonstrate dynamic obstacle avoidance capabilities,

relevant for comparative studies between ROS and

ROS2 navigation stacks to assess their performance

and compatibility with different hardware setups.

This paper [13] details an autonomous mobile robot's

control system using STM32 and ROS, covering

hardware circuit design, lower computer tasks like

motor control and sensor data transfer, and upper

computer tasks including SLAM and autonomous

navigation via ROS. This setup's relevance to a

comparative study between ROS and ROS2 navigation

stacks lies in assessing how each framework

accommodates complex control systems, including

SLAM and autonomous navigation, while leveraging

different hardware platforms like STM32. This paper

[14] presents a control system hardware based on ROS

for cooperative robots operating in unknown areas,

employing SLAM for localization and mapping. It

introduces a new hybrid architecture utilizing one PC

as master and Odroid-U3 embedded systems for

communication, eliminating the need for expensive

external sensors. This work's relevance to a

comparative study between ROS and ROS2 navigation

stacks lies in assessing how each framework supports

such hybrid architectures and their compatibility with

different hardware configurations for multi-robot

control in complex environments.

The paper [15] investigates discrepancies between

planned and traveled paths of a virtual differential

drive robot in Gazebo-ROS simulator using ROS

navigation stack. It conducts experiments navigating

the robot through fixed destinations while recording

and comparing planned and actual path coordinates,

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 581

considering scenarios with dynamic obstacles. This

study's relevance to a comparative study between ROS

and ROS2 navigation stacks lies in evaluating how

each stack handles path planning and execution in

simulated environments, identifying strengths and

weaknesses for real-world application.

III. METHODOLOGY/EXPERIMENTAL

A. Components & Software Setup

Within the context of the research project, the

fundamental hardware infrastructure comprises a

differential drive robot, encompassing essential

components such as the chassis, motors, wheels, and

encoders. This configuration enables precise control

over locomotion and facilitates odometric

measurements through the monitoring of wheel

rotation. Augmenting this setup is a lidar sensor,

serving as the primary means of environment

perception and mapping. The LDROBOT D200

LiDAR sensor with a range of 8m was utilized. It has a

scanning angle of 360°and a scanning frequency of 6

Hz. Facilitating the computational tasks is the

Raspberry Pi 4 Model B, serving as the onboard

computing platform. Equipped with a quad-core ARM

Cortex-A72 CPU and available with 2GB, 4GB, or

8GB of RAM, the Raspberry Pi 4 offers substantial

processing power for executing ROS 2 and ROS

frameworks. Its array of USB ports enables seamless

integration with sensors and peripherals, while GPIO

pins facilitate connectivity with external hardware

elements. To regulate the robot's motors, a motor

controller such as the L298N Dual H-Bridge Motor

Driver is employed. This component interfaces with the

Raspberry Pi, converting digital commands into analog

signals to govern motor speed and direction.

Additionally, auxiliary hardware components including

connectors, cables, breadboards, and mounting

hardware are indispensable for the assembly and

integration process.

In the ROS (Robot Operating System) setup, the core

software framework used is ROS 1, which is widely

adopted in the robotics community. ROS 1 provides a

comprehensive ecosystem of libraries, tools, and

packages for building robotic systems. For navigation

tasks, the ROS Navigation Stack is utilized, which

includes components such as the Trajectory Rollout

planner and the Dynamic Window Approach (DWA)

planner for generating feasible trajectories.

Additionally, the stack incorporates the gmapping

package for SLAM (Simultaneous Localization and

Mapping) and the move_base package for high-level

navigation planning. These components work together

to enable autonomous navigation and mapping

capabilities for the robot. On the other hand, in the ROS

2 setup, the focus shifts to the next-generation robotics

framework, ROS 2. ROS 2 offers several advantages

over ROS 1, including improved performance, better

real-time capabilities, and enhanced security features.

In the research project, the Humble framework is

utilized as a part of the ROS 2 Navigation Stack.

Humble is a lightweight navigation system designed

specifically for ROS 2, offering efficient and scalable

solutions for navigation tasks. It includes components

such as the DWB (Dynamic Window Approach)

planner, which computes optimal trajectories for the

robot, and the AMCL (Adaptive Monte Carlo

Localization) package for accurate localization.

Additionally, the SLAM Toolbox is integrated into the

ROS 2 setup for simultaneous localization and mapping.

B. The ROS (1) NavStack

The navigation stack constitutes a coherent

amalgamation of packages within the framework of

Robot Operating System (ROS) 1, dedicated to

facilitating mobile robot navigation. Its operational

framework involves the assimilation of data streams

originating from odometry readings, sensory inputs,

and prescribed goal poses. Subsequently, it generates

and issues velocity commands conducive to ensuring

the safe movement of the mobile robot's base. The

navigation stack operates through the coordination of

multiple packages, with the 'move_base' package

serving as its central hub. This package encompasses a

range of functionalities including state machines,

planners, internal cost maps, and recovery behaviors

essential for effective navigation.

Fig 1. The NavStack Design

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 582

In the illustrated design, white nodes represent

implemented mandatory components, blue nodes

denote essential components requiring setup for each

specific robot platform, and gray nodes indicate

optional components that have already been integrated.

The navigation system comprises several essential

components crucial for its effective operation. Firstly,

the Odometry Source component serves as a

foundational element, requiring access to odometry

information formatted as nav_msgs/Odometry. This

information is indispensable for accurately determining

the robot's pose and motion within its environment.

Secondly, sensor sources play a vital role by providing

laser scan or point cloud data related to the surrounding

environment. This data is instrumental during both

local and global path planning stages, particularly for

obstacle avoidance, where it informs the generation of

cost maps. The third component, Sensor Transforms, is

tasked with ensuring proper coordination between

various coordinate frames. This necessitates the

publication of transforms by the robot, notably

including the odom->base_link transform derived from

odometry readings. Additionally, if a map is utilized, a

map->odom transform becomes requisite for seamless

integration. The fourth component, the Base Controller,

interfaces with the move_base package to execute

navigation commands. It requires a robot base

controller capable of interpreting velocity commands

formatted as geometry_msgs/Twist, thereby facilitating

the robot's movement according to the navigation plan.

Lastly, while optional, the AMCL (Adaptive Monte

Carlo Localization) component becomes necessary if a

map->odom transform is employed. Similarly, the Map

Server component, also optional, provides the

functionality of loading maps when required, further

enhancing the system's adaptability and functionality.

The navigation system possesses the flexibility to

initialize with or without a static map. In the absence of

a static map, the system relies solely on information

regarding encountered obstacles, forming optimistic

global plans concerning unexplored areas.

Subsequently, it adjusts its path planning strategy as

additional obstacles are encountered, necessitating

periodic replanning. Primarily, the move_base

component assimilates pertinent data, generating both

global and local path plans by considering

corresponding global and local cost maps. It

subsequently issues velocity commands to the robot's

actuators, persisting until the navigation objective is

achieved.

The navigation system comprises several fundamental

components essential for its operational integrity. The

first component is the Global Costmap, which

functions as a comprehensive representation of the

environment in a two-dimensional voxel grid format. It

serves as the basis for global or full-length path

planning, continuously integrating real-time obstacle

data obtained from sensors to ensure accuracy and

relevance. Complementing the Global Costmap is the

Local Costmap, which focuses on the immediate

surroundings of the robot. This map provides a detailed

depiction of the local region visible to the robot and is

dynamically updated with real-time obstacle

information. Its primary role lies in facilitating local or

short-distance path planning, offering a nuanced

understanding of the immediate terrain. The Global

Planner stands as a critical component, employing the

A* algorithm to chart a path from the robot's current

pose to its designated end goal pose. While serving as

a high-level navigation guide, the Global Planner

utilizes inputs such as the Global Costmap, robot

localization data, and goal pose to generate an optimal

trajectory. Conversely, the Local Planner operates on a

shorter timescale, employing the Dynamic Window

Approach (DWA) to plan short-distance paths. Its

objective is to translate the high-level path guidance

provided by the Global Planner into actionable velocity

commands for the robot. To accomplish this, the Local

Planner relies on inputs from the Local Costmap and

guidance from the Global Planner. Lastly, the

navigation system incorporates Recovery Behaviors,

which activate in response to obstacles or potential

failures encountered by the robot. These behaviors are

designed to navigate the robot out of challenging

situations, ensuring continued progress towards its

objectives and maintaining operational resilience. In

summary, the integration of odometry, sensor data,

costmaps, and goal positions enables both the Global

and Local Planners to generate velocity commands

tailored to guide the robot effectively along its intended

path, ensuring robust navigation capabilities.

Issues with the Navigation Stack in ROS 1 are

discernible upon scrutiny. The move_base package is

reliant on a monolithic and unconfigurable state

machine, thereby limiting the flexibility available to

developers seeking to tailor the system to meet specific

application requirements. This constraint hampers the

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 583

exploration of diverse developmental avenues,

consequently impeding the realization of optimal

solutions. Furthermore, the move_base functionality is

inherently restricted to differential drive and holonomic

wheeled robots. This limitation imposes constraints on

the scope of applicability, rendering the navigation

stack unsuitable for broader classes of robotic

platforms. Additionally, the move_base package

mandates the utilization of a singular set of global and

local planning algorithms concurrently. This rigidity

precludes the dynamic loading of alternative plugins

for planning algorithms, thereby constraining the

adaptability of the system to accommodate diverse

operational contexts and custom applications.

C. The ROS2 Nav2 Stack

ROS 2 was conceived with the explicit objective of

transcending the confines of laboratory environments,

ushering the Robot Operating System into real-world

applications. Navigation 2, building upon the

foundation of ROS 2 and drawing inspiration from the

achievements of its predecessor, the nav stack, aspires

to extend the boundaries of navigational capabilities.

By leveraging the enhanced reliability, security, and

speed inherent in ROS 2, Navigation 2 endeavors to

address the aforementioned limitations encountered

within the nav stack. Departing from the unyielding

nature of monolithic state machines, Navigation 2

adopts a Behavior Tree-based approach to navigation.

This paradigm shift affords developers greater

configurability and adaptability, fostering the

exploration of diverse navigational strategies tailored

to specific application contexts. Moreover, Navigation

2 adopts a modular architecture comprising

independent servers responsible for planning, control,

and recovery tasks. This modularity enables the

seamless integration, removal, substitution, or

augmentation of individual components, thereby

enhancing the system's versatility and extensibility. In

contrast to its predecessor, Navigation 2 introduces

support for multiple local trajectory and path planners

within the context of a single navigation task. This

capability empowers developers to deploy a diverse

array of planning algorithms, facilitating the

optimization of navigation strategies in varying

environments and scenarios.

Nav2 incorporates two key design patterns. The BT

Navigator serves as the central component, housing

the behavior tree essential for navigation behavior

implementation. Task-Specific Asynchronous Servers,

operating as ROS 2 nodes, host multiple algorithm

plugins tailored to specific tasks, enhancing the

framework's adaptability. Additionally, Nav2 employs

Managed (Lifecycle) Nodes for deterministic

behaviors and consolidates all relevant packages like

AMCL and Map Server, ensuring a cohesive

framework for efficient navigation system

management. The Behavior Navigation Server

assumes the role of the principal component and

primary interface within the system, serving as the

locus for navigation behavior implementation. Tasked

with orchestrating the navigation process upon receipt

of a goal pose from the user, it employs a Behavior

Tree to govern the navigation task. To facilitate

communication with the BT Navigator, ROS 2 action

servers are employed, utilizing a NavigateToPose

action message to initiate navigation requests.

Subsequently, the Behavior Tree housed within the

Behavior Navigation Server interfaces with additional

action servers embedded within the controller, planner,

behavior, and smoother servers. These servers

collectively manage control efforts, compute plans,

execute recovery maneuvers, and perform other

pertinent tasks integral to the navigation process. The

Behavior Tree nodes within the BT Navigator establish

communication with modular servers, including the

controller, planner, behavior, smoother, and potentially

custom servers, to coordinate and facilitate robot

navigation. Each action server is assigned a

distinct .action type to enable interaction with the BT

Navigator and other components of the navigation

system.

Fig 2. Nav2 Core Overview

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 584

These servers serve as hosts for a variety of algorithm

plugins pertinent to their respective tasks, affording the

Behavior Tree Node the flexibility to dynamically

select an appropriate plugin at runtime. Moreover, they

adhere to a standardized plugin interface, facilitating

the creation and selection of new algorithms during

runtime. All depicted servers within the design are

realized as ROS 2 Managed (Lifecycle) Nodes. The

Lifecycle Manager assumes responsibility for

orchestrating the program lifecycle of both the BT

Navigator and subsequent server Nodes. It

systematically guides each server through the

managed node lifecycle stages, namely: inactive,

active, and finalized, ensuring orderly and controlled

execution.

D. Mapping using both stacks

We have developed an expansive Gazebo world

resembling a large factory site. The primary objective

of this endeavor was to create an environment of

significant scale, thereby presenting a formidable

challenge for Simultaneous Localization and Mapping

(SLAM) techniques. Autonomous Mobile Robots

(AMRs) commonly operate within such expansive

settings, particularly in factory floors and warehouses.

These environments pose several inherent challenges

for robotic systems. Mapping extensive spatial

domains entails complexities beyond mere size

considerations. Factors such as dynamic

environmental conditions and potential symmetries

within the arena further complicate the task of re-

localization. Moreover, the collaborative and

imperfect nature of human activities and other objects

present within the environment introduce additional

hurdles for global and local planners alike.

Consequently, our designed Gazebo world serves as a

testbed for evaluating the efficacy of navigation

algorithms and strategies within large-scale and

dynamic environments characteristic of real-world

industrial settings. Through rigorous experimentation

and analysis within this simulated environment, we

aim to refine and enhance the navigation capabilities

of autonomous robotic systems, thereby addressing the

challenges inherent to deployment in complex

industrial environments. We used a differential drive

LiDAR-based mobile robot for the experiment.

1) GMapping (SLAM – ROS NavStack)

ROS employs the gmapping package, a particle filter-

based Simultaneous Localization and Mapping

(SLAM) solution tailored for mobile robotic platforms.

Default parameters were utilized to evaluate the

mapping performance within the context of our

experimentation. The performance exhibited by

gmapping within our simulated environment proved to

be notably commendable. The generation of the map

was achieved seamlessly, without necessitating any

parameter tuning.

Fig 3. Map created via GMapping

2) SLAM ToolBox

The SLAM Toolbox offers a comprehensive array of

features, encompassing functionalities such as

relocalization, continued mapping, long-term mapping,

and map merging. However, for the purpose of this

comparison, our attention is specifically directed

towards SLAM capabilities. The slam_toolbox

package adopts a pose graph SLAM methodology,

leveraging the karto scan matcher algorithm. Notably,

this package is purported to exhibit particular efficacy

within expansive indoor environments. Although the

package demonstrates competence in mapping

extensive spatial domains, the process of saving the

map using the map_server ROS2 package encountered

obstacles, as documented (refer to the issue here).

While the SLAM Toolbox represents a notable stride

towards establishing a dependable SLAM solution, its

efficacy in real-world scenarios remains contingent

upon accruing sufficient empirical experience.

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 585

Fig 4. Map created by SLAM Toolbox

IV. RESULTS AND DISCUSSIONS

The global and the local planners for both the systems

were evaluated.

1) NavFN (Global Planner – NavStack)

NavFn employs Dijkstra's planner to calculate the

shortest path from the starting point to the designated

goal. While the exploration of A* planning,

incorporating heuristics, remains an alternative under

consideration, NavFn offers limited flexibility in

governing the nature of the global plan generated.

Specifically, it prioritizes the generation of the shortest

cost path, with the cost being determined by the

associated costmap. However, NavFn does not account

for factors such as path smoothness, the number of

turns, or constraints such as the radius of curvature. As

empirical evidence suggests, the pursuit of simplicity

confers distinct advantages in certain contexts. The

time taken by the NavFN global planner was 3.4

seconds.

Fig 5. NavFN Global Plan

2) SMAC Planner (Global Planner – Nav2

Stack)

Within the Nav2Stack, the SMAC planner stands as

one of the two planning servers included, the other

being NavFn. Leveraging the Hybrid State A*

algorithm, the SMAC planner facilitates continuous

state transitions within discrete navigation cells,

offering the additional capability to select various

motion models such as DUBIN or 2D Moore.

Furthermore, numerous parameters concerning

optimization, down-sampling, and cost multipliers

contribute to the planner's adaptability, enabling the

modification of its behavior to suit specific application

requirements. The SMAC Planner took 1.5 seconds to

generate the path plan.

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 586

Fig 6. SMAC Global Plan

3) Trajectory Rollout Planner (Local Planner –

NavStack)

The ROS NavStack incorporates the trajectory rollout

planner and the Dynamic Window Approach (DWA)

as integral components. Both planners operate on the

principle of discretely sampling the robot's control

inputs within user-specified constraints, followed by

the evaluation of resulting trajectories based on

relevant costs, culminating in the selection of the most

optimal inputs. Conducting multiple simulations

without parameter tuning for the trajectory rollout

planner, albeit with the appropriate consideration of

the robot's footprint, yielded results that were

regrettably unsatisfactory. Drawing from previous

experiences in hardware deployment, albeit not

without imperfections, superior outcomes have been

observed with the DWA and TEB local planners.

4) DWB Planner (Local Planner – Nav2 Stack)

Nav2 incorporates the DWB planner, representing an

evolutionary iteration of the DWA planner. While the

core algorithm remains largely unchanged, software

enhancements aimed at bug fixes and code

customization have been implemented, as indicated by

available documentation. In an effort to assess the

comparative performance of NavStack and Nav2, both

systems were subjected to analogous, if not identical,

test conditions. The objective was to evaluate their

navigational efficacy in scenarios characterized by

static yet undisclosed obstacles and congested

dynamic environments. In the majority of instances,

the DWB planner facilitated successful navigation,

enabling the robot to navigate around obstacles.

However, a singular occurrence was observed where

the robot collided with an obstacle, representing an

anomalous outcome.

V. FUTURE SCOPE

The ROS NavStack serves as a widely utilized platform

among students, hobbyists, and various industrial

sectors. Its popularity is attributed to the abundance of

comprehensive documentation and robust community

support, facilitating a seamless process for configuring

robotic systems with NavStack. In contrast, our

experience indicates that ROS2 documentation may be

lacking, particularly in areas such as the setup of launch

files in Python and the comprehension of novel

concepts such as lifecycle management and Quality of

Service (QoS) settings. These factors may contribute to

a sense of overwhelm among users.

In terms of algorithmic advancements, it appears that

significant bug fixes have been implemented,

particularly within the realm of local planning. While

this study did not explore several parameters associated

with the SLAM toolbox, SMAC planner, and DWB

planner, we intend to investigate these aspects in future

research endeavors.

VI. CONCLUSION

This research conducted a comprehensive

benchmarking study to evaluate and compare the

simultaneous localization and mapping (SLAM),

global path planning, and local planning capabilities of

the ROS Navigation Stack and the ROS2 Navigation2

(Nav2) Stack for autonomous mobile robot navigation.

An expansive Gazebo simulation environment

resembling a large factory site was developed to

rigorously test these navigation frameworks in a

challenging, dynamic, and large-scale setting akin to

real-world industrial deployments. The gmapping

package in ROS and SLAM Toolbox in Nav2 were

evaluated for SLAM performance, with gmapping

exhibiting seamless map generation without parameter

tuning. For global planning, Nav2's SMAC planner

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 587

demonstrated superior performance compared to ROS's

NavFN planner in terms of computational time. As for

local planning, both the ROS Navigation Stack's

trajectory rollout planner and Nav2's DWB planner

facilitated successful obstacle avoidance in most

instances, though an isolated collision occurred with

the DWB planner. Overall, the study highlighted

Nav2's strengths in global planning efficiency and

competitive local planning capabilities, offering

valuable insights to guide the selection and

optimization of navigation solutions across diverse

robotic applications.

VII. ACKNOWLEDGEMENT

We extend our sincere gratitude to Prof. Rupali

Gavaraskar for her invaluable contributions to our

project. Her expertise in writing and formatting the

paper helped us write and present our research paper.

We would also like to express our appreciation for her

guidance in presentations, suggestions for

improvements in design, in-depth research of the

problem statements, and for providing us with

resources for study.

REFERENCES

[1] S. Macenski, F. Martín, R. White and J. G.

Clavero, "The Marathon 2: A Navigation System,"

2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Las Vegas,

NV, USA, 2020, pp. 2718-2725

[2] Ke Jin, Peilin Liu, Rongdi Sun, Zhenqi Wei and

Zunquan Zhou, "Real-time plane segmentation in

a ROS-based navigation system for the visually

impaired," 2016 Fourth International Conference

on Ubiquitous Positioning, Indoor Navigation and

Location Based Services (UPINLBS), Shanghai,

China, 2016, pp. 170-175

[3] L. Zhi and M. Xuesong, "Navigation and Control

System of Mobile Robot Based on ROS," 2018

IEEE 3rd Advanced Information Technology,

Electronic and Automation Control Conference

(IAEAC), Chongqing, China, 2018, pp. 368-372

[4] C. Zeng, Q. Zhang and X. Wei, "Robotic Global

Path-Planning Based Modified Genetic Algorithm

and A* Algorithm," 2011 Third International

Conference on Measuring Technology and

Mechatronics Automation, Shanghai, China, 2011,

pp. 167-170

[5] Z. Liu, "Implementation of SLAM and path

planning for mobile robots under ROS

framework," 2021 6th International Conference

on Intelligent Computing and Signal Processing

(ICSP), Xi'an, China, 2021, pp. 1096-1100

[6] I. Z. Ibragimov and I. M. Afanasyev, "Comparison

of ROS-based visual SLAM methods in

homogeneous indoor environment," 2017 14th

Workshop on Positioning, Navigation and

Communications (WPNC), Bremen, Germany,

2017, pp. 1-6

[7] A. Spournias, T. Skandamis, E. Pappas, C.

Antonopoulos and N. Voros, "Enchancing SLAM

method for mapping and tracking using a low cost

laser scanner," 2019 10th International

Conference on Information, Intelligence, Systems

and Applications (IISA), Patras, Greece, 2019, pp.

1-4

[8] A. L. Ibáñez, R. Qiu and D. Li, "An

implementation of SLAM using ROS and

Arduino," 2017 IEEE International Conference on

Manipulation, Manufacturing and Measurement

on the Nanoscale (3M-NANO), Shanghai, China,

2017, pp. 1-6

[9] M. Li, B. Xu, M. Lu, P. Zhu and J. Shi, "Ant

system based LMB filter for SLAM

implementation in ROS platform," 2017

International Conference on Control, Automation

and Information Sciences (ICCAIS), Chiang Mai,

Thailand, 2017, pp. 209-214

[10] M. Li, X. Yi, Y. Wang, Z. Cai and Y. Zhang,

"Subsumption model implemented on ROS for

mobile robots," 2016 Annual IEEE Systems

Conference (SysCon), Orlando, FL, USA, 2016,

pp. 1-6

[11] W. -J. Tang and Z. -T. Liu, "A convenient method

for tracking color-based object in living video

based on ROS and MATLAB/Simulink," 2017

2nd International Conference on Advanced

Robotics and Mechatronics (ICARM), Hefei and

Tai'an, China, 2017, pp. 724-727

[12] S. Gatesichapakorn, J. Takamatsu and M.

Ruchanurucks, "ROS based Autonomous Mobile

Robot Navigation using 2D LiDAR and RGB-D

Camera," 2019 First International Symposium on

Instrumentation, Control, Artificial Intelligence,

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 588

and Robotics (ICA-SYMP), Bangkok, Thailand,

2019, pp. 151-154

[13] L. Zhi and M. Xuesong, "Navigation and Control

System of Mobile Robot Based on ROS," 2018

IEEE 3rd Advanced Information Technology,

Electronic and Automation Control Conference

(IAEAC), Chongqing, China, 2018, pp. 368-372

[14] S. Park and G. Lee, "Mapping and localization of

cooperative robots by ROS and SLAM in

unknown working area," 2017 56th Annual

Conference of the Society of Instrument and

Control Engineers of Japan (SICE), Kanazawa,

Japan, 2017, pp. 858-861

[15] R. K. Megalingam, A. Rajendraprasad and S. K.

Manoharan, "Comparison of Planned Path and

Travelled Path Using ROS Navigation Stack,"

2020 International Conference for Emerging

Technology (INCET), Belgaum, India, 2020, pp.

1-6

